Members Can Post Anonymously On This Site
-
Posts
6,630 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
NASA’s X-59 quiet supersonic research aircraft is seen during its “aluminum bird” systems testing at Lockheed Martin’s Skunk Works facility in Palmdale, California. The test verified how the aircraft’s hardware and software work together, responding to pilot inputs and handling injected system failures.Lockheed Martin/Garry Tice NASA’s X-59 quiet supersonic research aircraft successfully completed a critical series of tests in which the airplane was put through its paces for cruising high above the California desert – all without ever leaving the ground. The goal of ground-based simulation testing was to make sure the hardware and software that will allow the X-59 to fly safely are properly working together and able to handle any unexpected problems. Learn more about this series of exercies, dubbed “aluminum bird” testing by engineers. Image credit: Lockheed Martin/Garry Tice View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) How big is space? Space is really big. Thinking about our solar system, let’s imagine you could get in a car and drive to Pluto at highway speeds. It would take you about 6,000 years to get there. When we start to think about other stars outside of our solar system, we need to think about another unit of distance. This is why astronomers use the unit light-years. Light travels at 186,000 miles per second. One light year is about 6 trillion miles. The closest star to our Sun is about four light years away. Our own Milky Way galaxy is about 100,000 light-years across. We know from deep field images of the universe that there are hundreds of billions, perhaps a trillion other galaxies. Using some of the deepest images yet from the James Webb Space Telescope, we’ve been able to see galaxies that emitted their light about 13 and a half billion years ago. Now, here’s a really important thing. Because the universe is expanding, those most distant galaxies are actually much further away than 13 and a half billion light years. I’m glossing over some math here, but we can estimate that the observable universe is about 92 billion light-years across. But we’re pretty sure that the universe is even bigger than what we can see. And here’s where things get really weird, we don’t actually know if the universe is finite or infinite. As much as we’ve learned about the universe, science has no reliable estimate of the actual size of the entire universe. [END VIDEO TRANSCRIPT] Full Episode List Full YouTube Playlist Share Details Last Updated May 21, 2025 Related TermsAstrophysicsGalaxies, Stars, & Black HolesJames Webb Space Telescope (JWST)Science Mission DirectorateThe Universe Explore More 3 min read Discovery Alert: A Possible Perpendicular Planet The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest… Article 1 hour ago 2 min read Hubble Images Galaxies Near and Far This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy… Article 1 day ago 2 min read Hubble Captures Cotton Candy Clouds This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky… Article 5 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA’s Perseverance took this selfie on May 10, 2025. The small dark hole in the rock in front of the rover is the borehole made when Perseverance collected its latest sample. The small puff of dust left of center and below the horizon line is a dust devil.NASA/JPL-Caltech/MSSS The rover took the image — its fifth since landing in February 2021 — between stops investigating the Martian surface. A Martian dust devil photobombed NASA’s Perseverance Mars rover as it took a selfie on May 10 to mark its 1,500th sol (Martian day) exploring the Red Planet. At the time, the six-wheeled rover was parked in an area nicknamed “Witch Hazel Hill,” an area on Jezero Crater’s rim that the rover has been exploring over the past five months. “The rover self-portrait at the Witch Hazel Hill area gives us a great view of the terrain and the rover hardware,” said Justin Maki, Perseverance imaging lead at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “The well-illuminated scene and relatively clear atmosphere allowed us to capture a dust devil located 3 miles to the north in Neretva Vallis.” The selfie also gives the engineering teams a chance to view and assess the state of the rover, its instruments, and the overall dust accumulation as Perseverance reached the 1,500-sol milestone. (A day on Mars is 24.6 hours, so 1,500 sols equals 1,541 Earth days.) Fifty-nine individual images went into the creation of this Perseverance rover selfie. NASA/JPL-Caltech/MSSS The bright light illuminating the scene is courtesy of the high angle of the Sun at the time the images composing the selfie were taken, lighting up Perseverance’s deck and casting its shadow below and behind the chassis. Immediately in front of the rover is the “Bell Island” borehole, the latest sampling location in the Witch Hazel Hill area. How Perseverance Did It This newest selfie, Perseverance’s fifth since the mission began, was stitched together on Earth from a series of 59 images collected by the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera at the end of the robotic arm. It shows the rover’s remote sensing mast looking into the camera. To generate the version of the selfie with the mast looking at the borehole, WATSON took three additional images, concentrating on the reoriented mast. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video A dust devil also whirled by in the distance as one of the hazard-avoidance cameras on NASA’s Perseverance captured the Mars rover coring a sample near the rim of Jezero Crater on April 29, 2025, the 1,490th Martian day, or sol, of the mission.NASA/JPL-Caltech “To get that selfie look, each WATSON image has to have its own unique field of view,” said Megan Wu, a Perseverance imaging scientist from Malin Space Science Systems in San Diego. “That means we had to make 62 precision movements of the robotic arm. The whole process takes about an hour, but it’s worth it. Having the dust devil in the background makes it a classic. This is a great shot.” Mars Report: Perseverance Catches Dancing Devils The dust covering the rover is visual evidence of the rover’s journey on Mars: By the time the image was captured, Perseverance had abraded and analyzed a total of 37 rocks and boulders with its science instruments, collected 26 rock cores (25 sealed and 1 left unsealed), and traveled more than 22 miles (36 kilometers). “After 1,500 sols, we may be a bit dusty, but our beauty is more than skin deep,” said Art Thompson, Perseverance project manager at JPL. “Our multi-mission radioisotope thermoelectric generator is giving us all the power we need. All our systems and subsystems are in the green and clicking along, and our amazing instruments continue to provide data that will feed scientific discoveries for years to come.” The rover is currently exploring along the western rim of Jezero Crater, at a location the science team calls “Krokodillen.” News Media Contacts DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-073 Share Details Last Updated May 21, 2025 Related TermsPerseverance (Rover)Jet Propulsion LaboratoryMarsMars 2020 Explore More 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’ Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features Article 6 days ago 6 min read NASA Observes First Visible-light Auroras at Mars On March 15, 2024, near the peak of the current solar cycle, the Sun produced… Article 7 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP Artist’s concept of a planet orbiting two brown dwarfs. The planet is in a polar orbit (red), perpendicular to the mutual orbit of the two brown dwarfs (blue). ESO/L. Calçada The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest ever found. An apparent planet traces out an orbit that carries it far over the poles of two brown dwarfs. This pair of mysterious objects – too massive to be planets, not massive enough to be stars – also orbit each other. Yet a third brown dwarf orbits the other two at an extreme distance. Key Facts In a typical arrangement, as in our solar system, families of planets orbit their parent stars in more-or-less a flat plane – the orbital plane – that matches the star’s equator. The rotation of the star, too, aligns with this plane. Everyone is “coplanar:” flat, placid, stately. Not so for possible planet 2M1510 b (considered a “candidate planet” pending further measurements). If confirmed, the planet would be in a “polar orbit” around the two central brown dwarfs – in other words, its orbital plane would be perpendicular to the plane in which the two brown dwarfs orbit each other. Take two flat disks, merge them together at an angle in the shape of an X, and you have the essence of this orbital configuration. “Circumbinary” planets, those orbiting two stars at once, are rare enough. A circumbinary orbiting at a 90-degree tilt was, until now, unheard of. But new measurements of this system, using the ESO (European Southern Observatory) Very Large Telescope in Chile, appear to reveal what scientists previously only imagined. Details The method by which the study’s science team teased out the planet’s vertiginous existence is itself a bit of a wild ride. The candidate planet cannot be detected the way most exoplanets – planets around other stars – are found today: the “transit” method, a kind of mini-eclipse, a tiny dip in starlight when the planet crosses the face of its star. Instead they used the next most prolific method, “radial velocity” measurements. Orbiting planets cause their stars to rock back and forth ever so slightly, as the planets’ gravity pulls the stars one way and another; that pull causes subtle, but measurable, shifts in the star’s light spectrum. Add one more twist to the detection in this case: the push-me-pull-you effect of the planet on the two brown dwarfs’ orbit around each other. The path of the brown dwarf pair’s 21-day mutual orbit is being subtly altered in a way that can only be explained, the study’s authors conclude, by a polar-orbiting planet. Fun Facts Only 16 circumbinary planets – out of more than 5,800 confirmed exoplanets – have been found by scientists so far, most by the transit method. Twelve of those were found using NASA’s now-retired Kepler Space Telescope, the mission that takes the prize for the most transit detections (nearly 2,800). Scientists have observed a small number of debris disks and “protoplanetary” disks in polar orbits, and suspected that polar-orbiting planets might be out there as well. They seem at last to have turned one up. The Discoverers An international science team led by Thomas A. Baycroft, a Ph.D. student in astronomy and astrophysics at the University of Birmingham, U.K., published a paper describing their discovery in the journal “Science Advances” in April 2025. The planet was entered into NASA’s Exoplanet Archive on May 1, 2025. The system’s full name is 2MASS J15104786-281874 (2M1510 for short). Share Details Last Updated May 21, 2025 Related Terms Exoplanets Astrophysics Binary Stars Brown Dwarfs Science & Research The Universe Keep Exploring Discover More Topics From NASA Search for Life Stars Galaxies Black Holes View the full article
-
How Big is Space? We Asked a NASA Expert
-
Megan Harvey is a utilization flight lead and capsule communicator, or capcom, in the Research Integration Office at NASA’s Johnson Space Center in Houston. She integrates science payload constraints related to vehicles’ launch and landing schedules. She is also working to coordinate logistics for the return of SpaceX vehicles to West Coast landing sites. Read on to learn about Harvey’s career with NASA and more! Megan Harvey talking to a flight director from the Remote Interface Officer console in the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Mark Sowa Johnson Space Center is home to the best teams, both on and off the planet! Megan Harvey Utilization Flight Lead and Capsule Communicator Where are you from? I am from Long Valley, New Jersey. How would you describe your job to family or friends who may not be familiar with NASA? Many biological experiments conducted on the space station have specific time constraints, including preparation on the ground and when crew interacts with them on orbit. I help coordinate and communicate those kinds of constraints within the International Space Station Program and with the scientific community. This is especially important because launch dates seldom stay where they are originally planned! I am also currently working in a cross-program team coordinating the logistics for the return to West Coast landings of SpaceX vehicles. As a capcom, I’m the position in the Mission Control Center in Houston that talks to the crew. That would be me responding to someone saying, “Houston, we have a problem!” I’ve worked in the Research Integration Office since the beginning of 2024 and have really enjoyed the change of pace after 11 years in the Flight Operations Directorate, where I supported several different consoles for the International Space Station. I’ve kept my capcom certification since 2021, and it is an absolute dream come true every time I get to sit in the International Space Station Flight Control Room. Johnson Space Center is home to the best teams, both on and off the planet! How long have you been working for NASA? I have been working for the agency for 13 years. What advice would you give to young individuals aspiring to work in the space industry or at NASA? Some things that I have found that helped me excel are: 1. Practice: I am surprised over and over again how simply practicing things makes you better at them, but it works! 2. Preparation: Don’t wing things! 3. Curiosity: Keep questioning! 4. Enthusiasm! Megan Harvey and friends after biking 25 miles to work. What was your path to NASA? I had a very circuitous path to NASA. Since going to Space Camp in Huntsville, Alabama, when I was 10 years old, I wanted to be a capcom and work for NASA. I also traveled to Russia in high school and loved it. I thought working on coordination between the Russian and U.S. space programs would be awesome. In pursuit of those dreams, I earned a bachelor’s degree in physics with a minor in Russian language from Kenyon College in Gambier, Ohio, but I had so much fun also participating in music extracurriculars that my grades were not quite up to the standards of working at NASA. After graduation, I worked at a technology camp for a summer and then received a research assistant position in a neuroscience lab at Princeton University in New Jersey. After a year or so, I realized that independent research was not for me. I then worked in retail for a year before moving to California to be an instructor at Astrocamp, a year-round outdoor education camp. I taught a number of science classes, including astronomy, and had the opportunity to see the Perseverance Mars rover being put together at NASA’s Jet Propulsion Laboratory in Southern California. It dawned on me that I should start looking into aerospace-related graduate programs. After three years at Embry-Riddle in Daytona Beach, Florida, I received a master’s degree in engineering physics and a job offer for a flight control position, initially working for a subcontractor of United Space Alliance. I started in mission control as an attitude determination and control officer in 2012 and kept that certification until the end of 2023. Along the way, I was a Motion Control Group instructor; a Russian systems specialist and operations lead for the Houston Support Group working regularly in Moscow; a Remote Interface Officer (RIO); and supported capcom and the Vehicle Integrator team in a multipurpose support room for integration and systems engineers. I have to pinch myself when I think about how I somehow made my childhood dreams come true. Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you? After I switched offices to Houston Support Group/RIO, most of my training was led by Sergey Sverdlin. He was a real character. Despite his gruffness, he and I got along really well. We were very different people, but we truly respected each other. I was always impressed with him and sought out his approval. Megan Harvey in Red Square in Moscow, Russia. What is your favorite NASA memory? The most impactful experience I’ve had at NASA was working together with the Increment 68 leads during the days and months following the Soyuz coolant leak. I was increment lead RIO and just happened to be in the Increment Management Center the day of a planned Russian spacewalk. The increment lead RIO is not typically based in the Increment Management Center, but that day, things were not going well. All of our Russian colleagues had lost access to a critical network, and I was troubleshooting with the Increment Manager and the International Space Station Mission Management Team chair. I was explaining to International Space Station Deputy Program Manager Dina Contella the plan for getting our colleagues access before their off-hours spacewalk when we saw a snowstorm of flakes coming out of the Soyuz on the downlink video on her office’s wall. Those flakes were the coolant. It was incredible watching Dina switch from winding down for the day to making phone call after phone call saying, “I am calling you in.” The Increment Management Center filled up and I didn’t leave until close to midnight that day. The rest of December was a flurry (no pun intended) of intense and meaningful work with the sharpest and most caring people I know. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth? There is so much to talk about! I love giving insight into the complexities of not only the space station systems themselves, but also the international collaboration of all the teams working to keep the systems and the science running. If you could have dinner with any astronaut, past or present, who would it be? I would have dinner with Mae Jemison or Sally Ride. It’s too hard to pick! Do you have a favorite space-related memory or moment that stands out to you? I was selected by my management a few years ago to visit a Navy aircraft carrier with the SpaceX Crew-1 crew and some of the Crew-1 team leads. We did a trap landing on the deck and were launched off to go home, both via a C-2 Greyhound aircraft. It was mind blowing! I am also very lucky that I saw the last space shuttle launch from Florida when I was in graduate school. Megan Harvey and NASA colleagues on the Nimitz aircraft carrier. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite? My first increment lead role was RIO for Increment 59 and there was a major effort to update all our products in case of needing to decrew the space station. It was eye-opening to work with the entire increment team in this effort. I really enjoyed all the work and learning and getting to know my fellow increment leads better, including Flight Director Royce Renfrew. Also, in 2021 I was assigned as the Integration Systems Engineer (ISE) lead for the Nanorack Airlock. I had never worked on a project with so many stakeholders before. I worked close to 100 revisions of the initial activation and checkout flowchart, coordinating with the entire flight control team. It was very cool to see the airlock extracted from NASA’s SpaceX Dragon trunk and installed, but it paled in comparison to the shift when we did the first airlock trash deploy. I supported as lead ISE, lead RIO, and capcom all from the capcom console, sitting next to the lead Flight Director TJ Creamer. I gave a countdown to the robotics operations systems officer commanding the deploy on the S/G loop so that the crew and flight control team could hear, “3, 2, 1, Engage!” I’ll never forget the satisfaction of working through all the complications with that stellar team and getting to a successful result while also having so much fun. Megan Harvey at a bouldering gym. What are your hobbies/things you enjoy outside of work? I love biking, rock climbing, cooking, board games, and singing. Day launch or night launch? Night launch! Favorite space movie? Space Camp. It’s so silly. And it was the first DVD I ever bought! NASA “worm” or “meatball” logo? Worm Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies. Sign up for our weekly email newsletter to get the updates delivered directly to you. Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram. View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 5 min read Sols 4543-4545: Leaving the Ridge for the Ridges NASA’s Mars rover Curiosity acquired this image, which shows parts of the linear feature in front of where the rover is parked, with lots of textures and structures that will be the topic of today’s investigation. Curiosity captured the image using its Left Navigation Camera on May 16, 2025 — Sol 4541, or Martian day 4,541 of the Mars Science Laboratory mission — at 00:50:45 UTC. NASA/JPL-Caltech Written by Susanne Schwenzer, Planetary Geologist at The Open University Earth planning date: Friday, May 16, 2025 As Curiosity progresses up Mount Sharp, it crosses different terrains, which the team has mapped from orbit. If you want to follow the path and see for yourself, you can have a look on the “Where is Curiosity?” map, an interactive tool that allows you to see all the stops the rover has made. If you look very closely, you can see that the stop on sol 4532 is on an area that has a very textured and red expression on this map, and the next stop on sol 4534 is in an area that appears more gray, while the stop after that (sol 4537) is on redder material again, but that looks much less textured. The next two stops, including today’s parking position, are both very close to a north-south running linear feature. Just looking at the locations of those different stops, and what you can see on this interactive tool, gives you the full story of the latest planning days. We were driving through the rough-looking terrain for quite a while now. So when that change came closer and closer the team started to make plans for how to investigate it. Of course we added the ground-based images to the picture as we edged closer with every drive. Last week, we could finally start to put the plans in place, when we stood at the edge of the changes in the landscape on sol 4532. As you can see from the interactive map, the drives got a bit shorter to make sure we stop at an example of every new feature. So we stopped in the grayish-looking area on sol 4534, then in the middle of the reddish-looking area on sol 4537, and then arrived at the linear feature. Unfortunately, Mars didn’t read the script and placed a pesky pebble under one of our wheels (see the blog post “Sols 4541–4542: Boxwork Structure, or Just ‘Box-Like’ Structure?”). Whenever the rover isn’t on firm ground, we cannot take the arm out. So the engineers used the drive in the last plan to pull the rover back by less than a wheel’s turn; we are now parked on solid ground at the linear feature, and we can do arm activities! That always makes the planning team cheer. Being on stable ground gave us many opportunities for contact science. After careful discussions of what is in front of us, we decided on target “Arroyo Seco,” where it is possible to apply the brush – DRT as we say – and do an APXS measurement on the brushed material. APXS will then measure the edge of that big feature, where the rocks are a little more resistant to weathering — at least that’s what the fact that they are sticking out might suggest. That is the target “Mesa Grande.” Near Mesa Grande is target “Paso Picacho,” which is on the same part of the ridge as the second APXS target. In addition, ChemCam investigates the ridge feature at target “Pauma Valley.” On a weekend there is always a little more time, and Curiosity will make the most of it! In addition to the two APXS and ChemCam LIBS targets, ChemCam will also get a passive spectral investigation on the target “San Ysidro” to investigate the texture we are seeing hints of in the Mastcam image. Talking about Mastcam… There are many interesting features in the vicinity that will add to our investigation of this new expression of the landscape. Thus, Mastcam has more than 50 frames in the plan to image the ridges, fractures, and textures around the rover. Most of the targets have descriptive names today, such as “Fractures,” but there are two names (all from the area in California where JPL is, too!): “Dos Palmas Oasis” is looking at brighter stones in the midfield, and “Sespe Gorge” takes a look at the big, rubbly looking rock right in front of the rover. Of course Mastcam will document the LIBS investigations, too, which includes the AEGIS location from the last plan. The atmospheres and environment investigations are looking at the occurrence of clouds, dust devils and opacity, and we are looking at the surface with the DAN instrument. While you might think, “as always,” it’s important to get a consistent record to understand the patterns, but also to understand when a deviation from them occurs. Thus, I don’t want to forget them here just because we are all so excited about the new expression of the landscape. With all those investigations in the (electronic) bags, it’s time to get back on the road. The next drive is about 20 meters (about 66 feet) and navigates around the ridge in front of us, which at this point has turned from a science target into an obstacle to getting back on the road. After safely maneuvering around it, the next drive will take us closer to the next ridges, and there are many more to come in the distance. They might even get bigger and more beautiful; who knows?! It’s exploration, after all — going places that no rover has gone before. Share Details Last Updated May 20, 2025 Related Terms Blogs Explore More 3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure? Article 1 day ago 1 min read Sols 4539-4540: Back After a Productive Weekend Plan Article 7 days ago 2 min read Sols 4536-4538: Dusty Martian Magnets Article 7 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
-
NASA/JPL-Caltech/Texas A&M/Cornell NASA’s Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars 20 years ago. In this image, the bluish glow in the sky above the Sun would be visible to us if we were there, but an artifact of the panoramic camera’s infrared imaging capabilities is that with this filter combination, the redness of the sky farther from the sunset is exaggerated compared to the daytime colors of the Martian sky. Read more about this photo. Image credit: NASA/JPL-Caltech/Texas A&M/Cornell View the full article
-
The SpaceX Dragon cargo spacecraft, on NASA’s 30th Commercial Resupply Services mission, is pictured docked to the space-facing port on the International Space Station’s Harmony module on March 23, 2024.Credit: NASA NASA and its international partners will soon receive scientific research samples and hardware after a SpaceX Dragon spacecraft departs the International Space Station on Thursday, May 22, for its return to Earth. Live coverage of undocking and departure begins at 11:45 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. The Dragon spacecraft will undock from the zenith, or space-facing, port of the station’s Harmony module at 12:05 p.m. and fire its thrusters to move a safe distance away from the station under command by SpaceX’s Mission Control in Hawthorne, California. After re-entering Earth’s atmosphere, the spacecraft will splash down on Friday, May 23, off the coast of California. NASA will post updates on the agency’s space station blog. There is no livestream video of the splashdown. Filled with nearly 6,700 pounds of supplies, science investigations, equipment, and food, the spacecraft arrived at the space station on April 22 after launching April 21 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 32nd commercial resupply services mission. Some of the scientific hardware and samples Dragon will return to Earth include MISSE-20 (Multipurpose International Space Station Experiment), which exposed various materials to space, including radiation shielding and detection materials, solar sails and reflective coatings, ceramic composites for reentry spacecraft studies, and resins for potential use in heat shields. Samples were retrieved on the exterior of the station and can improve knowledge of how these materials respond to ultraviolet radiation, atomic oxygen, charged particles, thermal cycling, and other factors. Additionally, Astrobee-REACCH (Responsive Engaging Arms for Captive Care and Handling) is returning to Earth after successfully demonstrating grasping and relocating capabilities on the space station. The REACCH demonstration used Astrobee robots to capture space objects of different geometries or surface materials using tentacle-like arms and adhesive pads. Testing a way to safely capture and relocate debris and other objects in orbit could help address end-of-life satellite servicing, orbit change maneuvers, and orbital debris removal. These capabilities maximize satellite lifespan and protect satellites and spacecraft in low Earth orbit that provide services to people on Earth. Books from the Story Time from Space project also will return. Crew members aboard the space station read five science, technology, engineering, and mathematics-related children’s books in orbit and videotaped themselves completing science experiments. Video and data collected during the readings and demonstrations were downlinked to Earth and were posted in a video library with accompanying educational materials. Hardware and data from a one-year technology demonstration called OPTICA (Onboard Programmable Technology for Image Compression and Analysis) also will return to Earth. The OPTICA technology was designed to advance transmission of real-time, ultra-high-resolution hyperspectral imagery from space to Earth, and it provided valuable insights for data compression and processing that could reduce the bandwidth required for communication, lowering the cost of acquiring data from space-based imaging systems without reducing the volume of data. This technology also could improve services, such as disaster response, that rely on Earth observations. For more than 24 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. Learn more about the International Space Station at: https://www.nasa.gov/international-space-station -end- Julian Coltre / Josh Finch Headquarters, Washington 202-358-1600 julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov Sandra Jones / Joseph Zakrzewski Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov Share Details Last Updated May 20, 2025 EditorJessica TaveauLocationNASA Headquarters Related TermsCommercial ResupplyInternational Space Station (ISS)ISS ResearchSpaceX Commercial Resupply View the full article
-
NASA astronauts Butch Wilmore, Suni Williams, Nick Hague, and Don Pettit show off their ‘Proud to be American’ socks in a photo taken aboard the International Space Station. Photo Credit: NASA Four NASA astronauts will participate in a welcome home ceremony at Space Center Houston after recently returning from missions aboard the International Space Station. NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Don Pettit will share highlights from their missions at 6 p.m. CDT Thursday, May 22, during a free, public event at NASA Johnson Space Center’s visitor center. The astronauts also will recognize key mission contributors during an awards ceremony after their presentation. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of NASA’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams with the Expedition 71/72 crew and a return on Crew-9. Hague launched Sept. 28, 2024, with Roscosmos cosmonaut Aleksandr Gorbunov aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida as part of NASA’s SpaceX Crew-9 mission. The next day, they docked to the forward-facing port of the station’s Harmony module. Hague, Gorbunov, Wilmore, and Williams returned to Earth on March 18, 2025, splashing down safely off the coast of Tallahassee, Florida, in the Gulf of America. Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. Hague has logged 374 days in space during two missions. It was the third spaceflight for both Williams and Wilmore. Williams has logged 608 total days in space, and Wilmore has logged 464 days. Pettit launched aboard the Soyuz MS-26 spacecraft on Sept. 11, 2024, alongside Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The seven-month research mission as an Expedition 72 flight engineer was the fourth spaceflight of Pettit’s career, completing 3,520 orbits of the Earth and a journey of 93.3 million miles. He has logged a total of 590 days in orbit. Pettit and his crewmembers safely landed in Kazakhstan on April 19, 2025 (April 20, 2025, Kazakhstan time). The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the International Space Station. Their work included enhancing metal 3D printing capabilities in orbit, exploring the potential of stem cell technology for treating diseases, preparing the first wooden satellite for deployment, and collecting samples from the station’s exterior to examine whether microorganisms can survive in the harsh environment of space. They also conducted studies on plant growth and quality, investigated how fire behaves in microgravity, and advanced life support systems, all aimed at improving the health, safety, and sustainability of future space missions. Pettit also used his spare time and surroundings aboard station to conduct unique experiments and captivate the public with his photography. Expedition 72 captured a record one million photos during the mission, showcasing the unique research and views aboard the orbiting laboratory through astronauts’ eyes. For more than 24 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. Learn more about the International Space Station at: https://www.nasa.gov/station -end- Jaden Jennings Johnson Space Center, Houston 713-281-0984 jaden.r.jennings@nasa.gov Dana Davis Johnson Space Center, Houston 281-244-0933 dana.l.davis@nasa.gov View the full article
-
4 min read Unearthly Plumbing Required for Plant Watering in Space NASA is demonstrating new microgravity fluids technologies to enable advanced “no-moving-parts” plant-watering methods aboard spacecraft. Boeing Astronauts Sunita Williams and Butch Wilmore during operations of Plant Water Management-6 (PWM-6) aboard the International Space Station. Image: NASA Crop production in microgravity will be important to provide whole food nutrition, dietary variety, and psychological benefits to astronauts exploring deep space. Unfortunately, even the simplest terrestrial plant watering methods face significant challenges when applied aboard spacecraft due to rogue bubbles, ingested gases, ejected droplets, and myriad unstable liquid jets, rivulets, and interface configurations that arise in microgravity environments. In the weightlessness of space, bubbles do not rise, and droplets do not fall, resulting in a plethora of unearthly fluid flow challenges. To tackle such complex dynamics, NASA initiated a series of Plant Water Management (PWM) experiments to test capillary hydroponics aboard the International Space Station in 2021. The series of experiments continue to this day, opening the door not only to supporting our astronauts in space with the possibility of fresh vegetables, but also to address a host of challenges in space, such as liquid fuel management, Heating, Ventilation, and Air Conditioning (HVAC), and even urine collection. The latest PWM hardware (PWM-5 and -6) involves three test units, each consisting of a variable-speed pump, tubing harness, assorted valves and syringes, and either one serial or two parallel hydroponic channels. This latest setup enables a wider range of parameters to be tested—e.g., gas and liquid flow rates, fill levels, inlet/outlet configurations, new bubble separation methods, serial and parallel flows, and new plant root types, numbers, and orders. Most of the PWM equipment shipped to the space station consists of 3-D printed, flight-certified materials. The crew assembles the various system configurations on a workbench in the open cabin of the station and then executes the experiments, including routine communication with the PWM research team on the ground. All the quantitative data is collected via a single high-definition video camera. The PWM hardware and procedures are designed to incrementally test the system’s capabilities for hydroponic and ebb and flow, and to repeatedly demonstrate priming, draining, serial/parallel channel operation, passive bubble management, limits of operation, stability during perturbations, start-up, shut-down, and myriad clean plant-insertion, saturation, stable flow, and plant-removal steps. PWM-5 Hydroponic channel flow on the International Space Station with: (1) packed synthetic plant root model in passive bubble separating hydroponic channel, (2) passive aerator, (3) passive fluid reservoirs for water and nutrient solution balance, (4) passive bubble separator, (5) passive water trap, and (6) passive gas/bubble diverter. The flow is left to right across the channel and the aerated oxygenating bubbly flow is fully separated (no bubbles) by the bubble separator returning only liquid to the ‘root zone.’ The water trap, bubble diverter, root bundle and hydroponic channel dramatically increase the reliability of the plumbing by providing redundant passive bubble separating functions. Image courtesy of J. Moghbeli/NASA PWM-5 and -6 Root Models R1 – R4 from smallest to largest: perfectly wetting polymeric strands modelling Asian Mizuna. Image courtesy of IRPI LLC The recent results of the PWM-5 and -6 technology demonstrations aboard the space station have significantly advanced the technology used for passive plant watering in space. These quantitative demonstrations established hydroponic and ebb and flow watering processes as functions of serial and parallel channel fill levels, various types of engineered plant root models, and pump flow rates—including single-phase liquid flows and gas-liquid two-phase flows. Critical PWM plumbing elements perform the role of passive gas-liquid separation (i.e., the elimination of bubbles from liquid and vice versa), which routinely occurs on Earth due to gravitational effects. The PWM-5 and -6 hardware in effect replaces the passive role of gravity with the passive roles of surface tension, wetting, and system geometry. In doing so, highly reliable “no-moving-parts” plumbing devices act to restore the illusive sense of up and down in space. For example, hundreds of thousands of oxygenating bubbles generated by a passive aerator are 100% separated by the PWM bubble separator providing single-phase liquid flow to the hydroponic channel, 100% of the inadvertent liquid carry-over is captured in the passive water trap, and all of the bubbles reaching the bubble diverter are directed to the upper inlet of the hydroponic channel where they are driven ever-upward by the channel geometry, confined by the first plant root, and coalesce leaving the liquid flow as a third, redundant, 100% passive phase-separating mechanism. The demonstrated successes of PWM-5 and -6 offer a variety of ready plug-and-play solutions for effective plant watering in low- and variable-gravity environments, despite the challenging wetting properties of the water-based nutrient solutions used to water plants. Though a variety of root models are demonstrated by PWM-5 and -6, the remaining unknown is the role that real growing plants will play in such systems. Acquiring such knowledge may only be a matter of time. 100% Passive bubbly flow separations in microgravity demonstrated for PWM ‘devices’: a. bubble separator, b. bubble diverter, c. hydroponic channel and root model, and d. water trap. Liquid flows denoted by red arrows, air flows denoted by white arrows. Images courtesy of NASA Project Lead: Dr. Mark Weislogel, IRPI LLC Sponsoring Organization: Biological and Physical Sciences Division Share Details Last Updated May 20, 2025 Related Terms Science-enabling Technology Biological & Physical Sciences International Space Station (ISS) Technology Highlights Explore More 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes Article 2 weeks ago 6 min read Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station Article 2 weeks ago 4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data Article 4 weeks ago View the full article
-
This article is for students grades 5-8. The International Space Station is a large spacecraft in orbit around Earth. It serves as a home where crews of astronauts and cosmonauts live. The space station is also a unique science laboratory. Several nations worked together to build and use the space station. The space station is made of parts that were assembled in space by astronauts. It orbits Earth at an average altitude of approximately 250 miles. It travels at 17,500 mph. This means it orbits Earth every 90 minutes. NASA is using the space station to learn more about living and working in space. These lessons will make it possible to send humans farther into space than ever before. How Old Is the Space Station? The first piece of the International Space Station was launched in November 1998. A Russian rocket launched the Russian Zarya (zar EE uh) control module. About two weeks later, the space shuttle Endeavour met Zarya in orbit. The space shuttle was carrying the U.S. Unity node. The crew attached the Unity node to Zarya. More pieces were added over the next two years before the station was ready for people to live there. The first crew arrived on Nov. 2, 2000. People have lived on the space station ever since. More pieces have been added over time. NASA and its partners from around the world completed construction of the space station in 2011. ______________________________________________________________________ Words to Know Airlock: an air-tight chamber that can be pressurized and depressurized to allow access between spaces with different air pressure. Microgravity: a condition, especially in space orbit, where the force of gravity is so weak that weightlessness occurs. Module: an individual, self-contained segment of a spacecraft that is designed to perform a particular task. Truss: a structural frame based on the strong structural shape of the triangle; functions as a beam to support and connect various components. ______________________________________________________________________ How Big Is the Space Station? The space station has the volume of a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. It is able to support a crew of seven people, plus visitors. On Earth, the space station would weigh almost one million pounds. Measured from the edges of its solar arrays, the station covers the area of a football field including the end zones. It includes laboratory modules from the United States, Russia, Japan, and Europe. What Are the Parts of the Space Station? In addition to the laboratories where astronauts conduct science research, the space station has many other parts. The first Russian modules included basic systems needed for the space station to function. They also provided living areas for crew members. Modules called “nodes” connect parts of the station to each other. Stretching out to the sides of the space station are the solar arrays. These arrays collect energy from the sun to provide electrical power. The arrays are connected to the station with a long truss. On the truss are radiators that control the space station’s temperature. Robotic arms are mounted outside the space station. The robot arms were used to help build the space station. Those arms also can move astronauts around when they go on spacewalks outside. Other arms operate science experiments. Astronauts can go on spacewalks through airlocks that open to the outside. Docking ports allow other spacecraft to connect to the space station. New crews and visitors arrive through the ports. Astronauts fly to the space station on SpaceX Dragon and Russian Soyuz spacecraft. Robotic spacecraft use the docking ports to deliver supplies Why Is the Space Station Important? The space station has made it possible for people to have an ongoing presence in space. Human beings have been living in space every day since the first crew arrived. The space station’s laboratories allow crew members to do research that could not be done anywhere else. This scientific research benefits people on Earth. Space research is even used in everyday life. The results are products called “spinoffs.” Scientists also study what happens to the body when people live in microgravity for a long time. NASA and its partners have learned how to keep a spacecraft working well. All of these lessons will be important for future space exploration. NASA currently is working on a plan to explore other worlds. The space station is one of the first steps. NASA will use lessons learned on the space station to prepare for human missions that reach farther into space than ever before. Career Corner Are you interested in a career that is related to living and working in space? Many different types of jobs make the space station a success. Here are a few examples: Astronaut: These explorers come from a wide variety of backgrounds including military service, the medical field, science research, and engineering design. Astronauts must have skills in leadership, teamwork, and communications. They spend two years training before they are eligible to be assigned to spaceflight missions. Microgravity Plant Scientist: These scientists study ways to grow plants in the microgravity environment of space. Growing plants on future space missions could provide food and oxygen. Plant scientists design experiments to be conducted by astronauts on the space station. These test new techniques for maximizing plant growth. Fitness Trainer: Spending months on the space station takes a toll on astronauts’ bodies. Fitness trainers work with astronauts before, during, and after their space station missions to help keep them strong and healthy. This includes creating workout plans for while they’re living and working in space. More About the International Space Station International Space Station Home Page Spot the Station Video: #AskNASA What Is the International Space Station? Read What Is the International Space Station? (Grades K-4) Explore More For Students Grades 5-8 View the full article
-
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read Hubble Images Galaxies Near and Far This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy. ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy. The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales. Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape. The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images. Text Credit: ESA/Hubble Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated May 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Gravitational Lensing Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble Gravitational Lenses Focusing in on Gravitational Lenses Hubble’s Night Sky Challenge View the full article
-
When future astronauts set foot on Mars, they will stand on decades of scientific groundwork laid by people like Andrea Harrington. As NASA’s sample return curation integration lead, Harrington is helping shape the future of planetary exploration and paving the way for interplanetary discovery. Official portrait of Andrea Harrington. NASA/Josh Valcarcel Harrington works in NASA’s Astromaterials Research and Exploration Sciences Division, or ARES, at Johnson Space Center in Houston, where she integrates curation, science, engineering, and planetary protection strategies into the design and operation of new laboratory facilities and sample handling systems. She also helps ensure that current and future sample collections—from lunar missions to asteroid returns—are handled with scientific precision and preserved for long-term study. “I am charged with protecting the samples from Earth—and protecting Earth from the restricted samples,” Harrington said. This role requires collaboration across NASA centers, senior leadership, engineers, the scientific community, and international space exploration agencies. With a multidisciplinary background in biology, planetary science, geochemistry, and toxicology, Harrington has become a key expert in developing the facility and contamination control requirements needed to safely preserve and study sensitive extraterrestrial samples. She works closely with current and future curators to improve operational practices and inform laboratory specifications—efforts that will directly support future lunar missions. Andrea Harrington in front of NASA’s Astromaterials Research and Exploration Sciences Division Mars Wall at Johnson Space Center in Houston. Her work has already made a lasting impact. She helped develop technologies such as a clean closure system to reduce contamination during sample handling and ultraclean, three-chamber inert isolation cabinets. These systems have become standard equipment and are used for preserving samples from missions like OSIRIS-REx and Hayabusa2. They have also supported the successful processing of sensitive Apollo samples through the Apollo Next Generation Sample Analysis Program. In addition to technology development, Harrington co-led the assessment of high-containment and pristine facilities to inform future technology and infrastructural requirements for Restricted Earth Returns, critical for sample returns Mars, Europa, and Enceladus. Harrington’s leadership, vision, and technical contribution have reached beyond ARES and have earned her two Director’s Commendations. “The experiences I have acquired at NASA have rounded out my background even more and have provided me with a greater breadth of knowledge to draw upon and then piece together,” said Harrington. “I have learned to trust my instincts since they have allowed me to quickly assess and effectively troubleshoot problems on numerous occasions.” Andrea Harrington in Johnson’s newly commissioned Advanced Curation Laboratory. Harrington also serves as the Advanced Curation Medical Geology lead. She and her team are pioneering new exposure techniques that require significantly less sample material to evaluate potential health risks of astromaterials. Her team is studying a range of astromaterial samples and analogues to identify which components may trigger the strongest inflammatory responses, or whether multiple factors are at play. Identifying the sources of inflammation can help scientists assess the potential hazards of handling materials from different planetary bodies, guide decisions about protective equipment for sample processors and curators, and may eventually support astronaut safety on future missions. Harrington also spearheaded a Space Act Agreement to build a science platform on the International Space Station that will enable planetary science and human health experiments in microgravity, advancing both human spaceflight and planetary protection goals. Andrea Harrington at the National Academies Committee on Planetary Protection and Committee on Astrobiology and Planetary Sciences in Irvine, California. Harrington credits her NASA career for deepening her appreciation of the power of communication. “The ability to truly listen and hear other people’s perspectives is just as important as the ability to deliver a message or convey an idea,” she said. Her passion for space science is rooted in purpose. “What drew me to NASA is the premise that what I would be doing was not just for myself, but for the benefit of all,” she said. “Although I am personally passionate about the work I am doing, the fact that the ultimate goal is to enable the fulfillment of those passions for generations of space scientists and explorers to come is quite inspiring.” Andrea Harrington and her twin sister, Jane Valenti, as children (top two photos) and at Brazos Bend State Park in Needville, Texas, in 2024. Harrington loves to travel, whether she is mountain biking through Moab, scuba diving in the Galápagos, or immersing herself in the architecture and culture of cities around the world. She shares her passion for discovery with her family—her older sister, Nicole Reandeau; her twin sister, Jane Valenti; and especially her husband, Alexander Smirnov. A lesson she hopes to pass along to the Artemis Generation is the spirit of adventure along with a reminder that exploration comes in many forms. “Artemis missions and the return of pristine samples from another planetary bodies to Earth are steppingstones that will enable us to do even more,” Harrington said. “The experience and lessons learned could help us safely and effectively explore distant worlds, or simply inspire the next generation of explorers to do great things we can’t yet even imagine.” Explore More 2 min read Hubble Captures Cotton Candy Clouds This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky… Article 4 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features Article 5 days ago 2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds Noctilucent or night-shining clouds are rare, high-altitude clouds that glow with a blue silvery hue… Article 5 days ago View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure? NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 14, 2025 — Sol 4539, or Martian day 4,539 of the Mars Science Laboratory mission — at 00:57:26 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory Earth planning date: Wednesday, May 14, 2025 Today we came into another strange and interesting workspace (see image above) that is as exciting as the one we had on Monday. This is our first arrival at a potential boxwork structure — a series of web-like, resistant ridges visible in orbital images that we have been looking forward to visiting since we first saw them. Today’s observations will be the first step to figure out if these ridges (at least the one in front of us) is part of a boxwork structure. Unfortunately, we can’t quite reach their targets safely today because one of the rover’s front wheels is perched on a small pebble and might slip off if we move the arm. Instead, we will take a lot of remote sensing observations and reposition the rover slightly so that we can try again on Friday. But before repositioning, Curiosity will start off by taking a huge Mastcam mosaic of all terrain around the rover to help us document how it is changing along our path and with elevation. Mastcam then will look at “Temblor Range,” which is a nearby low and resistant ridge that also has some rover tracks from where we previously crossed it. Mastcam is also imaging a trough that is similar to the other troughs we have been seeing locally and that have multiple possible origins. Then, Mastcam will image the AEGIS target from the prior plan. ChemCam is taking a LIBS observation of “Glendale Peak,” a rugged top portion of the ridge defining the potential boxwork structure, which is to the right of the workspace, and an RMI mosaic of Texoli butte. Mastcam follows up the ChemCam observation of Glendale Peak by imaging it. In parallel with all the imaging is our monthly test and maintenance of our backup pump for the Heat Rejection System (the HRS) The HRS is a fluid loop that distributes the heat from the rover’s power source to help keep all the subsystems within reasonable temperatures. We need to periodically make sure it stays in good working order just in case our primary pump has issues. After all the imaging, the rover will bump 30 centimeters backwards (about 12 inches) to come down off the pebble and put the interesting science targets in the arm workspace. This should leave us in a position where it is safe to unstow the arm and put instruments down on the surface. On the second, untargeted sol of the plan, we have some additional atmospheric science including a large dust-devil survey, as well as a Navcam suprahorizon movie and a Mastcam solar tau to measure the dust in the atmosphere. We finish up with another autonomous targeting of ChemCam with AEGIS. Share Details Last Updated May 19, 2025 Related Terms Blogs Explore More 1 min read Sols 4539-4540: Back After a Productive Weekend Plan Article 6 days ago 2 min read Sols 4536-4538: Dusty Martian Magnets Article 6 days ago 2 min read Sols 4534-4535: Last Call for the Layered Sulfates? (West of Texoli Butte, Headed West) Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) One of the navigation cameras on NASA’s Perseverance captured the rover’s tracks coming from an area called “Witch Hazel Hill,” on May 13, 2025, the 1,503rd Martian day, or sol, of the mission. NASA/JPL-Caltech Scientists expect the new area of interest on the lower slope of Jezero Crater’s rim to offer up some of the oldest rocks on the Red Planet. NASA’s Perseverance Mars rover is exploring a new region of interest the team is calling “Krokodillen” that may contain some of the oldest rocks on Mars. The area has been on the Perseverance science team’s wish list because it marks an important boundary between the oldest rocks of Jezero Crater’s rim and those of the plains beyond the crater. “The last five months have been a geologic whirlwind,” said Ken Farley, deputy project scientist for Perseverance from Caltech in Pasadena. “As successful as our exploration of “Witch Hazel Hill” has been, our investigation of Krokodillen promises to be just as compelling.” Named by Perseverance mission scientists after a mountain ridge on the island of Prins Karls Forland, Norway, Krokodillen (which means “the crocodile” in Norwegian) is a 73-acre (about 30-hectare) plateau of rocky outcrops located downslope to the west and south of Witch Hazel Hill. A quick earlier investigation into the region revealed the presence of clays in this ancient bedrock. Because clays require liquid water to form, they provide important clues about the environment and habitability of early Mars. The detection of clays elsewhere within the Krokodillen region would reinforce the idea that abundant liquid water was present sometime in the distant past, likely before Jezero Crater was formed by the impact of an asteroid. Clay minerals are also known on Earth for preserving organic compounds, the building blocks of life. “If we find a potential biosignature here, it would most likely be from an entirely different and much earlier epoch of Mars evolution than the one we found last year in the crater with ‘Cheyava Falls,’” said Farley, referring to a rock sampled in July 2024 with chemical signatures and structures that could have been formed by life long ago. “The Krokodillen rocks formed before Jezero Crater was created, during Mars’ earliest geologic period, the Noachian, and are among the oldest rocks on Mars Data collected from NASA’s Mars orbiters suggest that the outer edges of Krokodillen may also have areas rich in olivine and carbonate. While olivine forms from magma, carbonate minerals on Earth typically form during a reaction in liquid water between rock and dissolved carbon dioxide. Carbonate minerals on Earth are known to be excellent preservers of fossilized ancient microbial life and recorders of ancient climate. The rover, which celebrated its 1,500th day of surface operations on May 9, is currently analyzing a rocky outcrop in Krokodillen called “Copper Cove” that may contain Noachian rocks. Ranking Mars Rocks The rover’s arrival at Krokodillen comes with a new sampling strategy for the nuclear-powered rover that allows for leaving some cored samples unsealed in case the mission finds a more scientifically compelling geologic feature down the road. To date, Perseverance has collected and sealed two regolith (crushed rock and dust) samples, three witness tubes, and one atmospheric sample. It has also collected 26 rock cores and sealed 25 of them. The rover’s one unsealed sample is its most recent, a rock core taken on April 28 that the team named “Bell Island,” which contains small round stones called spherules. If at some point the science team decides a new sample should take its place, the rover could be commanded to remove the tube from its bin in storage and dump the previous sample. “We have been exploring Mars for over four years, and every single filled sample tube we have on board has its own unique and compelling story to tell,” said Perseverance acting project scientist Katie Stack Morgan of NASA’s Jet Propulsion Laboratory in Southern California. “There are seven empty sample tubes remaining and a lot of open road in front of us, so we’re going to keep a few tubes — including the one containing the Bell Island core — unsealed for now. This strategy allows us maximum flexibility as we continue our collection of diverse and compelling rock samples.” Before the mission adopted its new strategy, the engineering sample team assessed whether leaving a tube unsealed could diminish the quality of a sample. The answer was no. “The environment inside the rover met very strict standards for cleanliness when the rover was built. The tube is also oriented in such a way within its individual storage bin that the likelihood of extraneous material entering the tube during future activities, including sampling and drives, is very low,” said Stack Morgan. In addition, the team assessed whether remnants of a sample that was dumped could “contaminate” a later sample. “Although there is a chance that any material remaining in the tube from the previous sample could come in contact with the outside of a new sample,” said Stack Morgan, “it is a very minor concern — and a worthwhile exchange for the opportunity to collect the best and most compelling samples when we find them.” News Media Contact DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-071 Share Details Last Updated May 19, 2025 Related TermsPerseverance (Rover)Jet Propulsion LaboratoryMars Explore More 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features Article 4 days ago 6 min read NASA Observes First Visible-light Auroras at Mars On March 15, 2024, near the peak of the current solar cycle, the Sun produced… Article 5 days ago 6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus Article 5 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
NASA, ESA, CSA, Ralf Crawford (STScI) This artist’s concept illustration, released on May 14, 2025, shows a Sun-like star encircled by a disk of dusty debris containing crystalline water ice. Astronomers long expected that frozen water was scattered in systems around stars. By using detailed data known as spectra from NASA’s James Webb Space Telescope, researchers confirmed the presence of crystalline water ice — definitive evidence of what astronomers expected. Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Read more about what this discovery means. Image credit: NASA, ESA, CSA, Ralf Crawford (STScI) View the full article
-
6 Min Read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing The numbers are notable – 34 years of testing space shuttle main engines at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, 3,244 individual tests, more than 820,000 seconds (totaling more than nine days) of cumulative hot fire. The story behind the numbers is unforgettable. “It is hard to describe the full impact of the space shuttle main engine test campaign on NASA Stennis,” Center Director John Bailey said. “It is hundreds of stories, affecting all areas of center life, within one great story of team achievement and accomplishment.” NASA Stennis tested space shuttle main engines from May 19, 1975, to July 29, 2009. The testing made history, enabling 135 shuttle missions and notable space milestones, like deployment of the Hubble Space Telescope and construction of the International Space Station. The testing also: Established NASA Stennis as the center of excellence for large propulsion testing. Broadened and deepened the expertise of the NASA Stennis test team. Demonstrated and expanded the propulsion test capabilities of NASA Stennis. Ensured the future of the Mississippi site. The first space shuttle main engine is installed on May 8, 1975, at the Fred Haise Test Stand (formerly A-1). The engine would be used for the first six tests and featured a shortened thrust chamber assembly.NASA Assignment and Beginning NASA Stennis was not the immediate choice to test space shuttle main engines. Two other sites also sought the assignment – NASA’s Marshall Flight Center in Alabama and Edwards Air Force Base in California. However, following presentations and evaluations, NASA announced March 1, 1971, that the test campaign would take place in south Mississippi. “(NASA Stennis) was now assured of a future in propulsion testing for decades,” summarized Way Station to Space, a history of the center’s first decades. Testing did not begin immediately. First, NASA Stennis had to complete an ambitious project to convert stands built the previous decade for rocket stage testing to facilities supporting single-engine hot fire. Propellant run tanks were installed and calibrated. A system was fashioned to measure and verify engine thrust. A gimbaling capability was developed on the Fred Haise Test Stand to allow operators to move engines as they must pivot in flight to control rocket trajectory. Likewise, engineers designed a diffuser capability for the A-2 Test Stand to allow operators to test at simulated altitudes up to 60,000 feet. NASA Stennis teams also had to learn how to handle cryogenic propellants in a new way. For Apollo testing, propellants were loaded into stage tanks to support hot fires. For space shuttle, propellants had to be provided by the stand to the engine. New stand run tanks were not large enough to support a full-duration (500 seconds) hot fire, so teams had to provide real-time transfer of propellants from barges, to the run tanks, to the engine. The process required careful engineering and calibration. “There was a lot to learn to manage real-time operations,” said Maury Vander, chief of NASA Stennis test operations. “Teams had to develop a way to accurately measure propellant levels in the tanks and to control the flow from barges to the tanks and from the tanks to the engine. It is a very precise process.” NASA Stennis teams conduct a hot fire of the space shuttle Main Propulsion Test Article in 1979 on the B-2 side of the Thad Cochran Test Stand. The testing involved installing a shuttle external fuel tank, a mockup of the shuttle orbiter, and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously as during an actual launch.NASA Testing the Way The biggest challenge was operation of the engine itself. Not only was it the most sophisticated ever developed, but teams would be testing a full engine from the outset. Typically, individual components are developed and tested prior to assembling a full engine. Shuttle testing began on full-scale engines, although several initial tests did feature a trimmed down thrust chamber assembly. The initial test on May 19, 1975, provided an evaluation of team and engine. The so-called “burp” test did not feature full ignition, but it set the stage for moving forward. “The first test was a monstrous milestone,” Vander said. “Teams had to overcome all sorts of challenges, and I can only imagine what it must have felt like to go from a mostly theoretical engine to seeing it almost light. It is the kind of moment engineers love – fruits-of-all-your-hard-labor moment.” NASA Stennis teams conducted another five tests in quick succession. On June 23/24, with a complete engine thrust chamber assembly in place, teams achieved full ignition. By year’s end, teams had conducted 27 tests. In the next five years, they recorded more than 100 annual hot fires, a challenging pace. By the close of 1980, NASA Stennis had accumulated over 28 hours of hot fire. The learning curve remained steep as teams developed a defined engine start, power up, power down, and shutdown sequences. They also identified anomalies and experienced various engine failures. “Each test is a semi-controlled explosion,” Vander said. “And every test is like a work of art because of all that goes on behind the scenes to make it happen, and no two tests are exactly the same. There were a lot of knowledge and lessons learned that we continue to build on today.” NASA Stennis test conductor Brian Childers leads Test Control Center operations during the 1000th test of a space shuttle main engine on the Fred Haise Test Stand (formerly A-1). on Aug. 17, 2006.NASA Powering History Teams took a giant step forward in 1978 to 1981 with testing of the Main Propulsion Test Article, which involved installing three engines (configured as during an actual launch), with a space shuttle external tank and a mock orbiter, on the B-2 side of the Thad Cochran Test Stand. Teams conducted 18 tests of the article, proving conclusively that the shuttle configuration would fly as needed. On April 12, 1981, shuttle Columbia launched on the maiden STS-1 mission of the new era. Unlike previous vehicles, this one had no uncrewed test flight. The first launch of shuttle carried astronauts John Young and Bob Crippen. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees during a post-test visit to the site. “We couldn’t even make it look hard.” Testing proceeded steadily for the next 28 years. Engine anomalies, upgrades, system changes – all were tested at NASA Stennis. Limits of the engine were tested and proven. Site teams gained tremendous testing experience and expertise. NASA Stennis personnel became experts in handling cryogenics. Following the loss of shuttles Challenger and Columbia, NASA Stennis teams completed rigorous test campaigns to ensure future mission safety. The space shuttle main engine arguably became the most tested, and best understood, large rocket engine in the world – and NASA Stennis teams were among those at the forefront of knowledge. NASA conducts the final space shuttle main engine test on July 29, 2009, on the A-2 Test Stand at NASA Stennis. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission in July 2011.NASA A Foundation for the Future NASA recognized the effort of the NASA Stennis team, establishing the site as the center of excellence for large propulsion test work. In the meanwhile, NASA Stennis moved to solidify its future, growing as a federal city, home to more than 50 resident agencies, organizations, and companies. Shuttle testing opened the door for the variety of commercial aerospace test projects the site now supports. It also established and solidified the test team’s unique capabilities and gave all of Mississippi a sense of prideful ownership in the Space Shuttle Program – and its defining missions. No one can say what would have happened to NASA Stennis without the space shuttle main engine test campaign. However, everything NASA Stennis now is rests squarely on the record and work of that history-making campaign. “Everyone knows NASA Stennis as the site that tested the Apollo rockets that took humans to the Moon – but space shuttle main engine testing really built this site,” said Joe Schuyler, director of NASA Stennis engineering and test operations. “We are what we are because of that test campaign – and all that we become is built on that foundation.” Share Details Last Updated May 19, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 9 min read 45 Years Ago: First Main Propulsion Test Assembly Firing of Space Shuttle Main Engines The development of the space shuttle in the 1970s required several new technologies, including powerful… Article 2 years ago 5 min read 40 Years Ago: Six Months until the STS-1 Launch Article 5 years ago 8 min read 55 Years Ago: First Saturn V Stage Tested in Mississippi Facility Article 4 years ago View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Lunar Reconnaissance Orbiter Camera (LROC) imaged the landing area of the ispace SMBC x HAKUTO-R Venture Moon Mission 2 RESILIENCE lunar lander which is slated to land on the surface of the Moon no earlier than June 5, 2025 (UTC). This view of the primary landing area is 3.13 miles (5,040 meters) wide and north is up. The site is in Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges. Mare Frigoris formed over 3.5 billion years ago as massive basalt eruptions flooded low-lying terrain. Share Details Last Updated May 16, 2025 Related TermsEarth's MoonGoddard Space Flight CenterLunar Reconnaissance Orbiter (LRO) View the full article
-
NASA Dr. Nancy Grace Roman, NASA’s first Chief of Astronomy and namesake of the Nancy Grace Roman Telescope, briefs astronaut Edwin “Buzz” Aldrin on celestial objects in 1965 in Washington, D.C. Nancy Grace Roman passed away on December 25, 2018, in Germantown, Maryland at the age of 93. May 16, 2025, would have been her 100th birthday. Prior to joining NASA in 1959, Dr. Roman was a well-respected and influential astronomer, publishing some of the most cited papers in the mid-20th century, one included in a list of 100 most influential papers in 100 years. At the agency, Roman worked to gain science support for space-based observatories. She established NASA’s scientific ballooning and airborne science, oversaw the start of the Great Observatory program with the first decade of Hubble Space Telescope development, and invested early in charge-coupled devices technology development used on Hubble – and now in digital cameras everywhere. She was also key to the decision to link the development of the Large Space Telescope (that became Hubble) and the Space Transportation System – more commonly known as the Space Shuttle. Finally, after retiring from NASA, Dr. Roman often worked with young students in underserved communities, hoping her story and mentoring could inspire them to join humanity’s quest for knowledge in a STEM field. Learn more about Dr. Roman. Text credit: NASA/Jackie Townsend Image credit: NASA View the full article
-
Astronaut Anne McClain is pictured on May 1, 2025, near one of the International Space Station’s main solar arrays.Credit: NASA NASA astronaut Nichole Ayers and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer prerecorded questions submitted by middle and high school students from New York and Ohio. Both groups will hear from the astronauts aboard the International Space Station in two separate events. The first event at 10:20 a.m. EDT on Tuesday, May 20, includes students from Long Beach Middle School in Lido Beach, New York. Media interested in covering the event at Long Beach Middle School must RSVP no later than 5 p.m. Monday, May 19, to Christi Tursi at: ctursi@lbeach.org or 516-771-3960. The second event at 11 a.m. EDT on Friday, May 23, is with students from Vermilion High School in Vermilion, Ohio. Media interested in covering the event at Vermilion High School must RSVP no later than 5 p.m. Thursday, May 22, to Jennifer Bengele at: jbengele@vermilionschools.org or 440-479-7783. Watch both 20-minute Earth-to-space calls live on NASA STEM YouTube Channel. Long Beach Middle School will host the event for students in grades 6 through 8. The school aims to provide both the students and community with an experience that bridge gaps in space sciences with teaching and learning in classrooms. Vermilion High School will host the event for students in grades 9 through 12, to help increase student interest in science, technology, engineering, and mathematics career pathways. For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network. Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery. See videos of astronauts aboard the space station at: https://www.nasa.gov/stemonstation -end- Gerelle Dodson Headquarters, Washington 202-358-1600 gerelle.q.dodson@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated May 16, 2025 LocationNASA Headquarters Related TermsHumans in SpaceIn-flight Education DownlinksInternational Space Station (ISS)Johnson Space CenterLearning ResourcesNASA Headquarters View the full article
-
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read Hubble Captures Cotton Candy Clouds This NASA/ESA Hubble Space Telescope image features a cloudscape in the Large Magellanic Cloud., a dwarf satellite galaxy of the Milky Way. ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky Way’s galactic neighbors, a dwarf galaxy called the Large Magellanic Cloud. Located 160,000 light-years away in the constellations Dorado and Mensa, the Large Magellanic Cloud is the largest of the Milky Way’s many small satellite galaxies. This view of dusty gas clouds in the Large Magellanic Cloud is possible thanks to Hubble’s cameras, such as the Wide Field Camera 3 (WFC3) that collected the observations for this image. WFC3 holds a variety of filters, and each lets through specific wavelengths, or colors, of light. This image combines observations made with five different filters, including some that capture ultraviolet and infrared light that the human eye cannot see. The wispy gas clouds in this image resemble brightly colored cotton candy. When viewing such a vividly colored cosmic scene, it is natural to wonder whether the colors are ‘real’. After all, Hubble, with its 7.8-foot-wide (2.4 m) mirror and advanced scientific instruments, doesn’t bear resemblance to a typical camera! When image-processing specialists combine raw filtered data into a multi-colored image like this one, they assign a color to each filter. Visible-light observations typically correspond to the color that the filter allows through. Shorter wavelengths of light such as ultraviolet are usually assigned blue or purple, while longer wavelengths like infrared are typically red. This color scheme closely represents reality while adding new information from the portions of the electromagnetic spectrum that humans cannot see. However, there are endless possible color combinations that can be employed to achieve an especially aesthetically pleasing or scientifically insightful image. Watch “How Hubble Images are Made” on YouTube Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated May 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Nebulae Science Behind the Discoveries Hubble’s Night Sky Challenge View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s X-59 quiet supersonic research aircraft is seen during its “aluminum bird” systems testing at Lockheed Martin’s Skunk Works facility in Palmdale, California. The test verified how the aircraft’s hardware and software work together, responding to pilot inputs and handling injected system failures. Lockheed Martin / Garry Tice NASA’s X-59 quiet supersonic research aircraft successfully completed a critical series of tests in which the airplane was put through its paces for cruising high above the California desert – all without ever leaving the ground. “The idea behind these tests is to command the airplane’s subsystems and flight computer to function as if it is flying,” said Yohan Lin, the X-59’s lead avionics engineer at NASA’s Armstrong Flight Research Center in Edwards, California. The goal of ground-based simulation testing was to make sure the hardware and software that will allow the X-59 to fly safely are properly working together and able to handle any unexpected problems. Any new aircraft is a combination of systems, and identifying the little adjustments required to optimize performance is an important step in a disciplined approach toward flight. “We thought we might find a few things during the tests that would prompt us to go back and tweak them to work better, especially with some of the software, and that’s what we wound up experiencing. So, these tests were very helpful,” Lin said. Completing the tests marks another milestone off the checklist of things to do before the X-59 makes its first flight this year, continuing NASA’s Quesst mission to help enable commercial supersonic air travel over land. Simulating the Sky During the testing, engineers from NASA and contractor Lockheed Martin turned on most of the X-59’s systems, leaving the engine off. For example, if the pilot moved the control stick a certain way, the flight computer moved the aircraft’s rudder or other control surfaces, just as it would in flight. At the same time, the airplane was electronically connected to a ground computer that sends simulated signals – which the X-59 interpreted as real – such as changes in altitude, speed, temperature, or the health of various systems. Sitting in the cockpit, the pilot “flew” the aircraft to see how the airplane would respond. “These were simple maneuvers, nothing too crazy,” Lin said. “We would then inject failures into the airplane to see how it would respond. Would the system compensate for the failure? Was the pilot able to recover?” Unlike in typical astronaut training simulations, where flight crews do not know what scenarios they might encounter, the X-59 pilots mostly knew what the aircraft would experience during every test and even helped plan them to better focus on the aircraft systems’ response. NASA test pilot James Less sits in the cockpit of the X-59 quiet supersonic research aircraft as he participates in a series of “aluminum bird” systems tests at Lockheed Martin’s Skunk Works facility in Palmdale, California.Lockheed Martin / Garry Tice Aluminum vs. Iron In aircraft development, this work is known as “iron bird” testing, named for a simple metal frame on which representations of the aircraft’s subsystems are installed, connected, and checked out. Building such a testbed is a common practice for development programs in which many aircraft will be manufactured. But since the X-59 is a one-of-a-kind airplane, officials decided it was better and less expensive to use the aircraft itself. As a result, engineers dubbed this series of exercises “aluminum bird” testing, since that’s the metal the X-59 is mostly made of. So, instead of testing an “iron bird” with copies of an aircraft’s systems on a non-descript frame, the “aluminum bird” used the actual aircraft and its systems, which in turn meant the test results gave everyone higher confidence in the design, “It’s a perfect example of the old tried and true adage in aviation that says ‘Test what you fly. Fly what you test,’” Lin said. Still Ahead for the X-59 With aluminum bird testing in the rearview mirror, the next milestone on the X-59’s path to first flight is take the airplane out on the taxiways at the airport adjacent to Lockheed Martin’s Skunk Works facility in Palmdale, California, where the X-59 was built. First flight would follow those taxi tests. Already in the X-59’s logbook since the fully assembled and painted airplane made its public debut in January 2024: A Flight Readiness Review in which a board of independent experts from across NASA completed a study of the X-59 project team’s approach to safety for the public and staff during ground and flight testing. A trio of important structural tests and critical inspections that included “shaking” the airplane to make sure there were no unexpected problems from the vibrations. Firing up the GE Aerospace jet engine for the first time after installation into the X-59, including a series of tests of the engine running with full afterburner. Checking the wiring that ties together the X-59’s flight computer, electronic systems, and other hardware to be sure there were no concerns about electromagnetic interference. Testing the aircraft’s ability to maintain a certain speed while flying, essentially a check of the X-59’s version of cruise control. The X-59 Tests in 59 Watch this video about the X-59 aluminum bird testing. It only takes a minute. Well, 59 seconds to be precise. About the AuthorJim BankeManaging Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface Article 13 hours ago 3 min read NASA Selects Student Teams for Drone Hurricane Response and Cybersecurity Research Article 16 hours ago 1 min read NASA Glenn Showcases Stirling Engine Technology at Piston Powered Auto-Rama Article 2 days ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated May 15, 2025 EditorJim BankeContactMatt Kamletmatthew.r.kamlet@nasa.gov Related TermsAeronauticsAdvanced Air Vehicles ProgramAeronautics Research Mission DirectorateAmes Research CenterArmstrong Flight Research CenterCommercial Supersonic TechnologyGlenn Research CenterIntegrated Aviation Systems ProgramLangley Research CenterLow Boom Flight DemonstratorQuesst (X-59)Quesst: The VehicleSupersonic Flight View the full article
-
NASA named Stanford University of California winner of the Lunar Autonomy Challenge, a six-month competition for U.S. college and university student teams to virtually map and explore using a digital twin of NASA’s In-Situ Resource Utilization Pilot Excavator (IPEx). The winning team successfully demonstrated the design and functionality of their autonomous agent, or software that performs specified actions without human intervention. Their agent autonomously navigated the IPEx digital twin in the virtual lunar environment, while accurately mapping the surface, correctly identifying obstacles, and effectively managing available power. Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Team photo of NAV Lab Lunar Autonomy Challenge from Stanford UniversityCredit: Stanford University’s NAV Lab team The Lunar Autonomy Challenge has been a truly unique experience. The challenge provided the opportunity to develop and test methods in a highly realistic simulation environment." Adam dai Lunar Autonomy Challenge team lead, Stanford University Dai added, “It pushed us to find solutions robust to the harsh conditions of the lunar surface. I learned so much through the challenge, both about new ideas and methods, as well as through deepening my understanding of core methods across the autonomy stack (perception, localization, mapping, planning). I also very much enjoyed working together with my team to brainstorm different approaches and strategies and solve tangible problems observed in the simulation.” The challenge offered 31 teams a valuable opportunity to gain experience in software development, autonomy, and machine learning using cutting-edge NASA lunar technology. Participants also applied essential skills common to nearly every engineering discipline, including technical writing, collaborative teamwork, and project management. The Lunar Autonomy Challenge supports NASA’s Lunar Surface Innovation Initiative (LSII), which is part of the Space Technology Mission Directorate. The LSII aims to accelerate technology development and pursue results that will provide essential infrastructure for lunar exploration by collaborating with industry, academia, and other government agencies. The work displayed by all of these teams has been impressive, and the solutions they have developed are beneficial to advancing lunar and Mars surface technologies as we prepare for increasingly complex missions farther from home.” Niki Werkheiser Director of Technology Maturation and LSII lead, NASA Headquarters “To succeed, we need input from everyone — every idea counts to propel our goals forward. It is very rewarding to see these students and software developers contributing their skills to future lunar and Mars missions,” Werkheiser added. Through the Lunar Autonomy Challenge, NASA collaborated with the Johns Hopkins Applied Physics Laboratory, Caterpillar Inc., and Embodied AI. Each team contributed unique expertise and tools necessary to make the challenge a success. The Applied Physics Laboratory managed the challenge for NASA. As a systems integrator for LSII, they provided expertise to streamline rigor and engineering discipline across efforts, ensuring the development of successful, efficient, and cost-effective missions — backed by the world’s largest cohort of lunar scientists. Caterpillar Inc. is known for its construction and excavation equipment and operates a large fleet of autonomous haul trucks. They also have worked with NASA for more than 20 years on a variety of technologies, including autonomy, 3D printing, robotics, and simulators as they continue to collaborate with NASA on technologies that support NASA’s mission objectives and provide value to the mining and construction industries. Embodied AI collaborated with Caterpillar to integrate the simulation into the open-source driving environment used for the challenge. For the Lunar Autonomy Challenge, the normally available digital assets of the CARLA simulation platform, such as urban layouts, buildings, and vehicles, were replaced by an IPEx “Digital Twin” and lunar environmental models. “This collaboration is a great example of how the government, large companies, small businesses, and research institutions can thoughtfully leverage each other’s different, but complementary, strengths,” Werkheiser added. “By substantially modernizing existing tools, we can turn today’s novel technologies into tomorrow’s institutional capabilities for more efficient and effective space exploration, while also stimulating innovation and economic growth on Earth.” FINALIST TEAMS First Place NAV Lab team Stanford University, Stanford, California Second Place MAPLE (MIT Autonomous Pathfinding for Lunar Exploration) team Massachusetts Institute of Technology, Cambridge, MA Third Place Moonlight team Carnegie Mellon University, Pittsburgh, PA OTHER COMPETING TEAMS Lunar ExplorersArizona State UniversityTempe, ArizonaAIWVU West Virginia University Morgantown, West VirginiaStellar Sparks California Polytechnic Institute Pomona Pomona, California LunatiX Johns Hopkins University Whiting School of EngineeringBaltimore CARLA CSU California State University, Stanislaus Turlock, CaliforniaRose-Hulman Rose-Hulman Institute of Technology Terre Haute, IndianaLunar PathfindersAmerican Public University SystemCharles Town, West Virginia Lunar Autonomy Challenge digital simulation of lunar surface activity using a digital twin of NASA’s ISRU Pilot ExcavatorJohns Hopkins Applied Physics Laboratory Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate NASA’s Lunar Surface Innovation Initiative Game Changing Development Projects Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space. ISRU Pilot Excavator View the full article
-
Credit: NASA Following an international signing ceremony Thursday, NASA congratulated Norway on becoming the latest country to join the Artemis Accords, committing to the peaceful, transparent, and responsible exploration of space. “We’re grateful for the strong and meaningful collaboration we’ve already had with the Norwegian Space Agency,” said acting NASA Administrator Janet Petro. “Now, by signing the Artemis Accords, Norway is not only supporting the future of exploration, but also helping us define it with all our partners for the Moon, Mars, and beyond.” Norway’s Minster of Trade and Industry Cecilie Myrseth signed the Artemis Accords on behalf of the country during an event at the Norwegian Space Agency (NOSA) in Oslo. Christian Hauglie-Hanssen, director general of NOSA, and Robert Needham, U.S. Embassy Chargé d’Affaires for Norway, participated in the event. Petro contributed remarks in a pre-recorded video message. “We are pleased to be a part of the Artemis Accords,” said Myrseth. “This is an important step for enabling Norway to contribute to broader international cooperation to ensure the peaceful exploration and use of outer space.” In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, the first set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords -end- Amber Jacobson / Elizabeth Shaw Headquarters, Washington 202-358-1600 amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated May 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related TermsArtemis AccordsOffice of International and Interagency Relations (OIIR) View the full article