Members Can Post Anonymously On This Site
-
Posts
5,938 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) In our modern wireless world, almost all radio frequency (RF) spectrum bands are shared among multiple users. In some domains, similar users technically coordinate to avoid interference. The spectrum management team, part of NASA’s SCaN (Space Communications and Navigation) Program, represents the collaborative efforts across U.S. agencies and the international community to protect and enable NASA’s current and future spectrum-dependent science, exploration, and innovation. Coordination with Other Spectrum Stakeholders NASA works to promote the collaborative use of the RF spectrum around Earth, and beyond. For example, NASA coordinates closely with other U.S. government agencies, international civil space agencies, and the private sector to ensure missions that overlap in time, location, and frequency do not cause or receive interference that could jeopardize their success. The spectrum management team protects NASA’s various uses of the spectrum by collaborating with U.S. and international spectrum users on technical matters that inform regulatory discussions. As a founding member of the Space Frequency Coordination Group, NASA works with members of governmental space- and science-focused agencies from more than 35 countries. The Space Frequency Coordination Group annual meetings provide a forum for multilateral discussion and consideration of international spectrum regulatory issues related to Earth, lunar, and deep space research and exploration. The Space Frequency Coordination Group also provides a forum for the exchange of technical information to facilitate coordination for specific missions and enable efficient use of limited spectrum resources in space. Domestic and International Spectrum Regulators Creating and maintaining the global spectrum regulations that govern spectrum sharing requires collaboration and negotiation among all its diverse users. The International Telecommunication Union manages the global spectrum regulatory framework to optimize the increasing, diverse uses of the RF spectrum and reduce the likelihood of RF systems experiencing interference. U.S. regulators at the National Telecommunications and Information Administration and the Federal Communications Commission are responsible for developing and administering domestic spectrum regulations. Organizations across the world cooperatively plan and regulate spectrum use. The spectrum management team participates on behalf of NASA at both national and international levels to ensure that the U.S. domestic and international spectrum regulatory framework supports and enables NASA’s current and future missions. NASA collaborates with domestic and international spectrum stakeholders to provide technical expertise on space spectrum topics to ensure regulations continue to enable space exploration, science, and innovation.NASA Share Details Last Updated Apr 23, 2025 Related TermsGeneral Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Spectrum is a shared resource. Since the discovery of radio waves and the invention of the telegraph, humanity has exponentially increased its use of the radio frequency (RF) spectrum. Consider how many wireless devices are around you right now. You’re probably reading this on a smartphone or laptop connected to the internet through Wi-Fi or 5G. You might be listening to music on Bluetooth headphones. If you are in a car or bus, the driver may be using signals from GPS satellites. To meet this increasing need, RF engineers and regulators continue to develop ways to enable users to share the same frequencies at the same time in the same place — think of modern cell phone technology. Avoiding or lessening interference between users requires regulators and users alike to maintain and enforce the ‘rules of the road’ that describe who can use which frequencies where, when, and how. NASA, like all other users, must comply with these regulations and collaborate with other users to ensure our use of the RF spectrum can continue and evolve. Just as architects design taller buildings to accommodate more residences on the same plot of land, radio frequency engineers design methods to allow more users on the same frequency, at the same place and time.NASA Supporting and Protecting NASA’s Spectrum Users NASA’s spectrum professionals work with users early in the project planning phase to understand the type, location, and duration of their data, and in turn determine what kind of antennas, transmitters, and receivers will be required. With that information, a spectrum manager helps to define the spectrum requirements, such as bandwidths, modulation, and other technical characteristics of the radio signals to be used. Understanding a project’s objectives helps define the appropriate service allocation and potential frequency ranges. Once these spectrum requirements are determined, NASA’s spectrum professionals work with other relevant spectrum users within and beyond NASA to coordinate the use of the spectrum. In the unfortunate event of harmful RF interference, working to identify, resolve, and report the interference is another critical function of NASA’s spectrum professionals. For example as Jeff Hayes — NASA’s current SCaN (Space Communications and Navigation) Program liaison to the Science Mission Directorate and the former program executive for operating missions in the Heliophysics and Astrophysics Divisions — recounts, “The NICER (Neutron Star Interior Composition Explorer) observatory did actually experience bouts of RF interference over certain parts of the world. As NICER uses GPS to understand where it is pointing to in the sky, interference can make the location information of the source imprecise, and that impacts the quality of the data collected. That data could potentially be attributed to the wrong star.” When NASA identifies interference to a mission like NICER or to a device at an agency center or facility, NASA center and facility spectrum managers work to identify, resolve, and report the interference. Identifying and reporting sources of interference helps to raise awareness of the impacts and causes of interference. When the sources of interference are international, which is especially common for space systems like NICER, SCaN’s spectrum management team works with U.S. regulators to report the incident to international regulators. These interference reports can be used to advocate for regulatory protections that help ensure the integrity of valuable science data and the safety of human spaceflight activities. Advocating for NASA’s Current and Future Spectrum Use NASA’s spectrum analysts and engineers perform analyses and simulations to support spectrum planning and management activities. For example, passive remote sensing instruments like the radiometer on the Soil Moisture Active Passive mission detect natural energy (radiation) emitted or reflected by an object or scene being observed. This energy is much fainter than human-generated radio signals and require highly sensitive radiometers that are susceptible to interference from more powerful signals. The spectrum management team works to ensure regulatory protections are in place and followed to ensure the integrity of NASA’s scientific missions. Sometimes NASA’s future missions envision new ways and places to use radio waves. For example, when NASA’s Artemis campaign began taking steps to return humans to the Moon, SCaN’s spectrum professionals began working with other stakeholders to develop a RF architecture that enables the use of radio waves for science data, communications, positioning, navigation, and timing while also limiting the risk of interference with systems on or orbiting Earth. NASA’s spectrum professionals further the agency’s spectrum management goals and objectives by analyzing potential changes in international or domestic regulations and proposing technical solutions that promote collaborative spectrum use with both foreign and domestic partners. NASA’s technical expertise is critical to ensuring domestic and international regulators are well informed as they develop new or revised regulations that effectively enable the exciting innovation and exploration central to NASA’s mission. Contact our Spectrum Team Share Details Last Updated Apr 23, 2025 Related TermsGeneral Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) As associate administrator for NASA’s Space Operations Mission Directorate Ken Bowersox puts it, “nothing happens without communications.” And effective communications require the use of radio waves. None of NASA’s exciting science and engineering endeavors would be possible without the use of radio waves to send data, communications, and commands between researchers or flight controllers and their flight platforms or instruments. Reflecting on his time as a pilot, commander, and mission specialist during the Space Shuttle Program, Bowersox says, “If you’re not there physically, you can’t be a part of the team. But if you’re getting the data, whether it’s video, telemetry data with states of switches, or individual parameters on temperatures or pressures, then you can act on it and provide information to the spacecraft team so they can do the right thing in their operation.” These vital data and communications functions, as well as the gathering of valuable scientific data through remote sensing applications, all use radio frequencies (RF) within the electromagnetic spectrum. NASA centers and facilities also use the RF spectrum to support their everyday operations, including the walkie-talkies used by security guards, air traffic control systems around airfields, and even office Wi-Fi routers and wireless keyboards. Nothing happens without communications. Ken Bowersox NASA Astronaut & Associate Administrator for NASA's Space Operations Mission Directorate All of NASA’s uses of the RF spectrum are shared, with different radio services supporting other kinds of uses. Service allocation is a fundamental concept in spectrum regulation and defines how the spectrum is shared between different types of applications. A service allocation defines ranges, or bands, of radio frequencies that can be used by a particular type of radio service. For example, a television broadcasting satellite operates in frequency bands allocated to the broadcasting satellite service, terrestrial cellular services operate in bands allocated for the mobile service, and the communications antennas on the International Space Station (ISS) operate in bands allocated to space operations service. However, an allocation is not a license to operate — it does not authorize a specific system or operator to use particular frequencies. Such authority is granted through domestic and international regulatory processes. Most frequency bands of the RF spectrum are shared, and each frequency band typically has two or more radio services allocated to it. Careful spectrum regulation, planning, and management aim to identify mutually compatible services to share frequency bands while limiting its negative impacts. NASA’s Most Notable Spectrum Uses Many of NASA’s most notable uses of spectrum rely on the following service allocations: Earth exploration-satellite service Space research service Space operations service Inter-satellite service Note that allocations in the Earth exploration-satellite service and the space research service are designated either for communications links in the Earth-to-space, space-to-Earth, or space-to-space directions or designated for active or passive sensing of Earth or celestial objects (respectively) to differentiate the types of uses within the service and afford the requisite protections. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Watch the video to learn more about how each kind of system uses the radio frequency spectrumNASA Learn how NASA manages its use of the RF spectrum. Learn about who NASA collaborates with to inform the spectrum regulations of the future. Learn about the scientific principles of the electromagnetic spectrum, including radio waves. Share Details Last Updated Apr 23, 2025 Related TermsGeneralCommunicating and Navigating with Missions Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
NASA astronaut and Expedition 72 Flight Engineer Don Pettit sets up camera hardware to photograph research activities inside the International Space Station’s Kibo laboratory module on March 15, 2025.Credit: NASA Media are invited to a news conference at 2 p.m. EDT Monday, April 28, at NASA’s Johnson Space Center in Houston where astronaut Don Pettit will share details of his recent mission aboard the International Space Station. The news conference will stream live on NASA’s website. Learn how to stream NASA content through a variety of platforms. To participate in person, U.S. media must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, April 24, at 281-483-5111 or jsccommu@mail.nasa.gov. Media wishing to participate by phone must contact the newsroom no later than two hours before the start of the event. To ask questions by phone, media must dial into the news conference no later than 10 minutes prior to the start of the call. NASA’s media accreditation policy is available online. Questions also may be submitted on social media during the news conference by using #AskNASA. Following the news conference, NASA will host a live question and answer session with Pettit on the agency’s Instagram. For more information, visit @NASA on social media. Pettit returned to Earth on April 19 (April 20, Kazakhstan time), along with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. Pettit celebrated his 70th birthday on April 20. He spent 220 days in space as an Expedition 71/72 flight engineer, bringing his career total to 590 days in space during four spaceflights. Pettit and his crewmates completed 3,520 orbits of Earth over the course of their 93-million-mile journey. They also saw the arrival of six visiting spacecraft and the departure of seven. During his time on orbit, Pettit conducted hundreds of hours of scientific investigations, including research to enhance on-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also spent time aboard the space station sharing his photography, often posting images to his X account. He took more than 670,000 photos during his stay. Learn more about International Space Station research and operations at: http://www.nasa.gov/station -end- Joshua Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Chelsey Ballarte Johnson Space Center, Houston 281-483-5111 chelsey.n.ballarte@nasa.gov Share Details Last Updated Apr 23, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)AstronautsHumans in SpaceISS ResearchJohnson Space Center View the full article
-
Explore Hubble Science Hubble Space Telescope Eye on Infinity: NASA… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Left to Right: Mars, a small portion of the Rosette Nebula, part of planetary nebula NGC 2899, barred spiral galaxy NGC 5335. Credits: NASA, ESA, STScI; Image Processing: Joseph DePasquale (STScI), Alyssa Pagan (STScI) In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing an assortment of compelling images recently taken by Hubble, stretching from the planet Mars to star-forming regions, and a neighboring galaxy. After more than three decades of perusing the universe, Hubble remains a household name — the most well-recognized and scientifically productive telescope in history. The Hubble mission is a glowing success story of America’s technological prowess, unyielding scientific curiosity, and a reiteration of our nation’s pioneering spirit. “Hubble opened a new window to the universe when it launched 35 years ago. Its stunning imagery inspired people across the globe, and the data behind those images revealed surprises about everything from early galaxies to planets in our own solar system,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “The fact that it is still operating today is a testament to the value of our flagship observatories, and provides critical lessons for the Habitable Worlds Observatory, which we plan to be serviceable in the spirit of Hubble.” Perched above Earth’s blurry atmosphere, Hubble’s crystal-clear views have been nothing less than transformative for the public’s perception of the cosmos. Through its evocative imagery, Hubble has made astronomy very relevant, engaging, and accessible for people of all ages. Hubble snapshots can portray the universe as awesome, mysterious, and beautiful — and at the same time chaotic, overwhelming, and foreboding. A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Upper left: Mars. Upper right: planetary nebula NGC 2899. Lower left: a small portion of the Rosette Nebula. Lower right: barred spiral galaxy NGC 5335. Image: NASA, ESA, STScI; Image Processing: Joseph DePasquale (STScI), Alyssa Pagan (STScI) The 24,000-pound observatory was tucked away inside the space shuttle Discovery’s cargo bay and lofted into low Earth orbit on April 24, 1990. As the shuttle Discovery thundered skyward, the NASA commentator described Hubble as a “new window on the universe.” The telescope turned out to be exactly as promised, and more. More scientific papers than ever are based on Hubble data, thanks to the dedication, perseverance, and skills of engineers, scientists, and mission operators. Astronauts chased and rendezvoused with Hubble on five servicing missions in which they upgraded Hubble’s cameras, computers, and other support systems. The servicing missions took place from 1993 to 2009. The telescope’s mission got off to a shaky start in 1990 when an unexpected flaw was found in the observatory’s nearly eight-foot diameter primary mirror. Astronauts gallantly came to the rescue on the first shuttle servicing mission in December 1993 to improve Hubble’s sharpness with corrective optics. To date, Hubble has made nearly 1.7 million observations, looking at approximately 55,000 astronomical targets. Hubble discoveries have resulted in over 22,000 papers and over 1.3 million citations as of February 2025. All the data collected by Hubble is archived and currently adds up to over 400 terabytes, representing the biggest dataset for a NASA astrophysics mission besides the James Webb Space Telescope. Hubble’s long operational life has allowed astronomers to return to the same cosmic scenes multiple times to observe changes that happened during more than three decades: seasonal variability on the planets in our solar system, black hole jets travelling at nearly the speed of light, stellar convulsions, asteroid collisions, expanding supernova bubbles, and much more. Hubble’s Senior Project Scientist, Dr. Jennifer Wiseman, takes you on a tour of all four Hubble 35th anniversary images. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris; Narrator: Dr. Jennifer Wiseman Before 1990, powerful optical telescopes on Earth could see only halfway across the cosmos. Estimates for the age of the universe disagreed by a big margin. Supermassive black holes were only suspected to be the powerhouses behind a rare zoo of energetic phenomena. Not a single planet had been seen around another star. Among its long list of breakthroughs: Hubble’s deep field images unveiled myriad galaxies dating back to the early universe. The telescope also allowed scientists to precisely measure the universe’s expansion, find that supermassive black holes are common among galaxies, and make the first measurement of the atmospheres of exoplanets. Hubble also contributed to the discovery of dark energy, the mysterious phenomenon accelerating the expansion of universe, leading to the 2011 Nobel Prize in Physics. The relentless pace of Hubble’s trailblazing discoveries kick-started a new generation of space telescopes for the 21st century. Hubble provided the first observational evidence that there were myriad distant galaxies for Webb to pursue in infrared wavelengths that reach even farther beyond Hubble’s gaze. Now, Hubble and Webb are often being used in complement to study everything from exoplanets to galaxy evolution. Hubble’s planned successor, the Habitable Worlds Observatory, will have a significantly larger mirror than Hubble’s to study the universe in visible and ultraviolet light. It will be significantly sharper than Hubble and up to 100 times more sensitive to starlight. The Habitable Worlds Observatory will advance science across all of astrophysics, as Hubble has done for over three decades. A major goal of the future mission is to identify terrestrial planets around neighboring stars that might be habitable. The Hubble Space Telescope continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Lee esta historia en español aquí Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos Mosaic of Hubble 35th Anniversary Targets A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Upper left: Mars. Upper right: planetary nebula NGC 2899. Lower left: a small portion of the Rosette Nebula. Lower right: barred spiral galaxy NGC 5335. Mars Near Opposition 2024 This is a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. Mars was approximately 61 million miles from Earth. Thin water-ice clouds that are apparent in ultraviolet light give the Red Planet a frosty appearance. Planetary Nebula NGC 2899 This Hubble Space Telescope image captures the beauty of the moth-like planetary nebula NGC 2899. This object has a diagonal, bipolar, cylindrical outflow of gas propelled by radiation and stellar winds. The colors are from glowing hydrogen and oxygen. Dark Clouds in Rosette Nebula This is a Hubble Space Telescope photo of a small portion of the Rosette Nebula, a huge star-forming region spanning 100 light-years across and located 5,200 light-years away. Dark clouds of hydrogen gas laced with dust are silhouetted across the image. Rosette Nebula Context Image The Rosette Nebula is a vast star-forming region, 100 light-years across, that lies at one end of a giant molecular cloud. The background image is from the Digitized Sky Survey, while the inset is a small portion of the nebula as photographed by the Hubble Space Telescope. NGC 5335 NASA’s Hubble Space Telescope captured in exquisite detail a face-on view of a remarkable-looking galaxy. NGC 5335 is categorized as a flocculent spiral galaxy with patchy streamers of star formation across its disk. Mars Near Opposition Compass Image These two images of Mars and its moon Phobos were captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3) on consecutive days in December 2024. Compass arrows and a color key are provided for reference. Planetary Nebula NGC 2899 Compass Image This image of planetary nebula NGC 2899 was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference. Dark Clouds in Rosette Nebula Compass Image This image of dark clouds in the Rosette Nebula was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference. NGC 5335 Compass Image This image of barred spiral galaxy NGC 5335 was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference. Mars Rotation This animation was assembled from a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. At the midpoint of the Hubble observations, Mars was approximately 61 million miles from Earth. The photos were then mapped onto a sphere, which is the… Planetary Nebula NGC 2899 This video zooms across 6,500 light-years through a star-studding field to visit the planetary nebula NGC 2899, as photographed by the Hubble Space Telescope. The nebula has a diagonal bipolar structure formed by a cylindrical-shaped outflow of hot gasses and radiation from the c… Rosette Nebula This video offers a close-up look at a small portion of the magnificent Rosette Nebula, as photographed by the Hubble Space Telescope. Though Hubble cannot take three-dimensional pictures, this video is a visualization treatment of the photo to give a sense of depth with foregrou… Share Details Last Updated Apr 23, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli NASA’s Goddard Space Flight Center Greenbelt, Maryland claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute Baltimore, Maryland Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Mars Nebulae Planetary Nebulae Planetary Science Planets Spiral Galaxies Stars The Solar System The Universe Additional Links Hubble’s 35th Anniversary page NASA Ciencia: Con la mirada en el infinito: La NASA celebra 35 años de la puesta en órbita del telescopio Hubble ESA Hubble’s Story Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble Science Highlights Hubble’s 35th Anniversary Hubble Images View the full article
-
How Are We Made of Star Stuff? We Asked a NASA Expert
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Syncom Space Services employees Kenneth Shipman, left, and Jesse Yarbrough perform final tubing install in early March to prepare the interstage simulator gas system on the Thad Cochran Test Stand at NASA’s Stennis Space Center for leak checks. Leak checks were performed prior to activation of the gas system this month. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Syncom Space Services employees Branson Cuevas, left, Kenneth Shipman, and Jesse Yarbrough install final tubing in early March before activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Crews at NASA’s Stennis Space Center recently completed activation of interstage gas systems needed for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. For Green Run, teams will activate and test all systems to ensure the stage is ready to fly. Green Run will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission. The interstage simulator component will function like the SLS interstage section that protects the upper stage during Artemis launches. The interstage simulator will do the same during Green Run testing of the stage at NASA Stennis. The interstage simulator gas system will provide helium, nitrogen, and hydrogen to the four RL10 engines for all wet dress and hot fire exercises and tests. During the activation process, NASA Stennis crews simulated the engines and flowed gases to mirror various conditions and collect data on pressures and temperatures. NASA Stennis teams conducted 80 different flow cases, calculating such items as flow rates, system pressure drop, and fill/vent times. The calculated parameters then were compared to models and analytics to certify the gas system meets performance requirements. NASA engineers Chad Tournillon, left, and Robert Smith verify the functionality of the control system in early March for activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Members of the engineering and operations team review data as it is collected in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. Pictured are NASA’s Mark Robinson, Robert Simmers, Jack Conley, and Nick Nugent. Activation of the gas systems marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin NASA engineers Pablo Gomez, left, and B.T. Wigley collect data in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the NASA Stennis stand.NASA/Danny Nowlin Syncom Space Services employees Brandon Fleming, Robert Sheaffer, and Logan Upton review paperwork in early March prior to activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Syncom Space Services engineering tech Brandon Fleming tightens a pressure transducer on the Thad Cochran Test Stand at NASA’s Stennis Space Center in early March. Various transducers were used to provide data during subsequent activation of the interstage simulator gas systems at the stand. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Crews now will work to activate the umbilical gases and liquid oxygen systems. The NASA Stennis team will then conduct water system activation, where it will flow the flame deflector, aspirator, diffuser cooling circuits, purge rings and water-cooled fairing. Afterward, the team will deploy the FireX system to check for total coverage, expected to be completed in the summer. Before the exploration upper stage, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series. Explore More 3 min read Lagniappe for April 2025 Article 3 weeks ago 4 min read Lagniappe for March 2025 Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel Article 2 months ago View the full article
-
Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge The logo for the 2024-2025 Radioisotope Power Systems Power to Explore student essay contest. Credits: NASA/David Lam NASA has named nine finalists out of the 45 semifinalist student essays in the Power to Explore Challenge, a national writing competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions, and to dream up how their personal “superpowers” would energize their success on their own radioisotope-powered science mission. I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge. Carl Sandifer II Program Manager, NASA Radioisotope Power Systems Program The competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to a “nuclear battery” that the agency uses to explore some of the most extreme destinations in our solar system and beyond. Long before the early days of Apollo, our Moon has inspired explorers of all ages to push beyond known limits to realize impossible dreams. These systems have enabled NASA to discover “moonquakes” on Earth’s Moon and study some of the most extreme moons of the solar system, which have active volcanoes, methane lakes, and ice glaciers. As of March 25, NASA has discovered over 891 moons, each with secrets ready to be unlocked. Students were challenged to pick any moon in our solar system’s exploration could be enabled by this space power systems. In 275 words or less, they dreamed up a unique exploration mission of this moon and described their own power to achieve their mission goals. The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas. “I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge.” said Carl Sandifer, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “I’m looking forward to welcoming the winners to NASA’s Glenn this summer.” Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21 that announced the semifinalists. Students learned about what powers the NASA workforce to dream big and work together to explore. Three national finalists in each grade category (nine finalists total) have been selected. In addition to receiving a NASA RPS prize pack, these participants will be invited to an exclusive virtual meeting with a NASA engineer or scientist to talk about their missions and have their space exploration questions answered. Winners will be announced on May 7. Grades K-4 Mini M, Ann Arbor, Michigan Zachary Tolchin, Guilford, Connecticut Terry Xu, Arcadia, California Grades 5-8 Lilah Coyan, Spokane, Washington Maggie Hou, Snohomish, Washington Sarabhesh Saravanakumar, Bothell, Washington Grades 9-12 Faiz Karim, Jericho, New York Kairat Otorov, Trumbull, Connecticut Saanvi Shah, Bothell, Washington About the Challenge The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate. Kristin Jansen NASA’s Glenn Research Center View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA was recognized today by the 29th Annual Webby Awards with six Webby Awards and six Webby People’s Voice Awards, the latter of which are awarded by the voting public. The Webbys honors excellence in eight major media types: websites and mobile sites; video and film; advertising, media and public relations; apps and software; social; podcasts; artificial intelligence, immersive and games; and creators. NASA has always been at the forefront of innovation, and that extends to our digital presence. These Webby Awards recognize the dedication and creativity of our teams in bringing the excitement of space exploration to a global audience. We're proud to be leaders in this digital frontier. Michelle R. Jones Acting Associate Administrator for Communications Since 1998, NASA has been nominated for more than 100 Webby Awards, winning 49 Webbys and 67 People’s Voice Awards. Full List of NASA’s 29th Annual Webby Award Wins NASA.gov Webby Winner, People’s Voice Winner Websites and Mobile Sites | Government and Associations This is the sixth Webby Award and the 13th People’s Voice Award for the agency’s website NASA Instagram Webby Winner Social | Education and Science NASA+ Webby Winner, People’s Voice Winner Websites and Mobile Sites | Television, Film and Streaming 2024 Total Solar Eclipse: Through the Eyes of NASA Webby Winner, People’s Voice Winner Video and Film | Events and Live NASA’s 2024 Total Solar Eclipse Campaign Webby Winner, People’s Voice Winner Social | Events and Live streams NASA’s Webb Telescope: Unfolding a Universe of Wonders Webby Winner, People’s Voice Winner Social | Education and Science (Campaigns) NASA Streams Historic Cat Video From Deep Space People’s Voice Winner Video and Film | Events and Live streams About the Webby Awards Established in 1996 during the web’s infancy, The Webbys is presented by the IADAS—a 3000+ member judging body. The Academy is comprised of Executive Members—leading Internet experts, business figures, luminaries, visionaries, and creative celebrities—and associate members who are former Webby winners, nominees and other internet professionals. The Webby Awards presents two honors in every category—the Webby Award and the Webby People’s Voice Award. Members of the International Academy of Digital Arts and Sciences (IADAS) select the nominees for both awards in each category, as well as the winners of the Webby Awards. In the spirit of the open web, the Webby People’s Voice is chosen by the voting public, and garners millions of votes from all over the world. View the full article
-
5 Min Read Planetary Alignment Provides NASA Rare Opportunity to Study Uranus Artist's illustration showing a distant star going out of sight as it is eclipsed by Uranus – an event known as a planetary stellar occultation. Credits: NASA/Advanced Concepts Laboratory When a planet’s orbit brings it between Earth and a distant star, it’s more than just a cosmic game of hide and seek. It’s an opportunity for NASA to improve its understanding of that planet’s atmosphere and rings. Planetary scientists call it a stellar occultation and that’s exactly what happened with Uranus on April 7. Observing the alignment allows NASA scientists to measure the temperatures and composition of Uranus’ stratosphere – the middle layer of a planet’s atmosphere – and determine how it has changed over the last 30 years since Uranus’ last significant occultation. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This rendering demonstrates what is happening during a stellar occultation and illustrates an example of the light curve data graph recorded by scientists that enables them to gather atmospheric measurements, like temperature and pressure, from Uranus as the amount of starlight changes when the planet eclipses the star.NASA/Advanced Concepts Laboratory “Uranus passed in front of a star that is about 400 light years from Earth,” said William Saunders, planetary scientist at NASA’s Langley Research Center in Hampton, Virginia, and science principal investigator and analysis lead, for what NASA’s team calls the Uranus Stellar Occultation Campaign 2025. “As Uranus began to occult the star, the planet’s atmosphere refracted the starlight, causing the star to appear to gradually dim before being blocked completely. The reverse happened at the end of the occultation, making what we call a light curve. By observing the occultation from many large telescopes, we are able to measure the light curve and determine Uranus’ atmospheric properties at many altitude layers.” We are able to measure the light curve and determine Uranus' atmospheric properties at many altitude layers. William Saunders Planetary Scientist at NASA's Langley Research Center This data mainly consists of temperature, density, and pressure of the stratosphere. Analyzing the data will help researchers understand how the middle atmosphere of Uranus works and could help enable future Uranus exploration efforts. To observe the rare event, which lasted about an hour and was only visible from Western North America, planetary scientists at NASA Langley led an international team of over 30 astronomers using 18 professional observatories. Kunio Sayanagi, NASA’s principal investigator for the Uranus Stellar Occultation Campaign 2025, meeting virtually with partners and observing data from the Flight Mission Support Center at NASA’s Langley Research Center in Hampton, Virginia during Uranus’ stellar occultation event on April 7, 2025.NASA/Dave MacDonnell “This was the first time we have collaborated on this scale for an occultation,” said Saunders. “I am extremely grateful to each member of the team and each observatory for taking part in this extraordinary event. NASA will use the observations of Uranus to determine how energy moves around the atmosphere and what causes the upper layers to be inexplicably hot. Others will use the data to measure Uranus’ rings, its atmospheric turbulence, and its precise orbit around the Sun.” Knowing the location and orbit of Uranus is not as simple as it sounds. In 1986, NASA’s Voyager 2 spacecraft became the first and only spacecraft to fly past the planet – 10 years before the last bright stellar occultation occured in 1996. And, Uranus’ exact position in space is only accurate to within about 100 miles, which makes analyzing this new atmospheric data crucial to future NASA exploration of the ice giant. These investigations were possible because the large number of partners provided many unique views of the stellar occultation from many different instruments. NASA planetary scientist William Saunders and Texas A&M University research assistant Erika Cook in the control room of the McDonald Observatory’s Otto Struve Telescope in Jeff Davis County, Texas, during the Uranus stellar occultation on April 7, 2025.Joshua Santana Emma Dahl, a postdoctoral scholar at Caltech in Pasadena, California, assisted in gathering observations from NASA’s Infrared Telescope Facility (IRTF) on the summit of Mauna Kea in Hawaii – an observatory first built to support NASA’s Voyager missions. “As scientists, we do our best work when we collaborate. This was a team effort between NASA scientists, academic researchers, and amateur astronomers,” said Dahl. “The atmospheres of the gas and ice giant planets [Jupiter, Saturn, Uranus, and Neptune] are exceptional atmospheric laboratories because they don’t have solid surfaces. This allows us to study cloud formation, storms, and wind patterns without the extra variables and effects a surface produces, which can complicate simulations very quickly.” On November 12, 2024, NASA Langley researchers and collaborators were able to do a test run to prepare for the April occultation. Langley coordinated two telescopes in Japan and one in Thailand to observe a dimmer Uranus stellar occultation only visible from Asia. As a result, these observers learned how to calibrate their instruments to observe stellar occultations, and NASA was able to test its theory that multiple observatories working together could capture Uranus’ big event in April. Researchers from the Paris Observatory and Space Science Institute, in contact with NASA, also coordinated observations of the November 2024 occultation from two telescopes in India. These observations of Uranus and its rings allowed the researchers, who were also members of the April 7 occultation team, to improve the predictions about the timing on April 7 down to the second and also improved modeling to update Uranus’ expected location during the occultation by 125 miles. This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope exquisitely captures Uranus’s seasonal north polar cap and dim inner and outer rings. This Webb image also shows 9 of the planet’s 27 moons – clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita.NASA, ESA, CSA, STScI Uranus is almost 2 billion miles away from Earth and has an atmosphere composed of primarily hydrogen and helium. It does not have a solid surface, but rather a soft surface made of water, ammonia, and methane. It’s called an ice giant because its interior contains an abundance of these swirling fluids that have relatively low freezing points. And, while Saturn is the most well-known planet for having rings, Uranus has 13 known rings composed of ice and dust. Over the next six years, Uranus will occult several dimmer stars. NASA hopes to gather airborne and possibly space-based measurements of the next bright Uranus occultation in 2031, which will be of an even brighter star than the one observed in April. For more information on NASA’s Uranus Stellar Occultation Campaign 2025: https://science.larc.nasa.gov/URANUS2025 Karen Fox / Molly Wasser Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov Charles Hatfield Langley Research Center, Hampton, Virginia 757-262-8289 charles.g.hatfield@nasa.gov About the AuthorCharles G. HatfieldScience Public Affairs Officer, NASA Langley Research Center Share Details Last Updated Apr 22, 2025 Related TermsGeneralIce GiantsLangley Research CenterPlanetary Science DivisionUranus Explore More 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace Article 7 hours ago 3 min read Celebrating Earth as Only NASA Can Article 1 day ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft Article 5 days ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
2 min read First Results from the Eclipse Soundscapes Project: Webinar on May 7 How do the sudden darkness and temperature changes of a solar eclipse impact life on Earth? The Eclipse Soundscapes project invited you to document changes in the environment during the week of the April 8, 2024 total solar eclipse, using your own senses or an audiomoth sound recorder. Thanks to your participation, the Eclipse Soundscapes team collected 25 terabytes of audio data during the 2023 and 2024 solar eclipses. “It was really empowering for me to participate in a scientific research study with my son beside me so he could see how scientific data can be (collected),” said one Eclipse Soundscapes volunteer. More than 500 volunteers collected data using AudioMoth recorders during the April 8, 2024 eclipse for the Eclipse Soundscapes project. Credit: Eclipse Soundscapes Since the eclipse, the Eclipse Soundscapes team has been turning the submitted data into a new, carefully validated data set. They have been assessing recording quality, verifying timestamps, and logging other kinds of information that support the submitted data. With the newly validated data, they are now using machine learning to study wildlife behavior and compare regional differences. They do some of this work using spectrographic analysis—spreading out the sound into different frequency ranges like a prism spreads light into a rainbow. The team is also working to make the validated data freely available to the public on the Zenodo website—a free, open-source research data repository developed by CERN (the European Organization for Nuclear Research) that allows researchers to share and preserve their work, regardless of discipline or format. The team’s first inspection of the data suggests that some species may mimic dusk-like behavior during totality. Want to hear more early results? You can join the team’s live webinar on May 7, 2025, at 2:00 p.m. EST with Dr. Brent Pease. Register now at EclipseSoundscapes.org. You can also explore this interactive map of data analysis sites, with details about each site, including partner organizations. Register for the May 7 Preliminary Results WEBINAR Read the Preliminary Results Blog Share Details Last Updated Apr 22, 2025 Related Terms Citizen Science Heliophysics Explore More 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe Article 1 week ago 7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights Article 2 weeks ago 1 min read Join our Virtual Do NASA Science LIVE Event on April 10! Article 3 weeks ago View the full article
-
NASA The Sun’s glint beams off a partly cloudy Atlantic Ocean just after sunrise as the International Space Station orbited 263 miles above on March 5, 2025. The space station serves as a unique platform for observing Earth with both hands-on and automated equipment. Station crew members have produced hundreds of thousands of images, recording phenomena such as storms in real time, observing natural events such as volcanic eruptions as they happen, and providing input to ground personnel for programming automated Earth-sensing systems. NASA has been observing Earth from space for more than 60 years, with cutting-edge scientific technology that can revolutionize our understanding of our home planet and provide benefits to all humanity. Image credit: NASA View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A researcher inspects the interior of a male American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem.NASA They’re known as “living fossils”. For over 450 million years, horseshoe crabs have been an ecologically vital part of our planet. They’re one of the few surviving species on Earth dating back to the dinosaurs. At NASA’s Kennedy Space Center in Florida, the American horseshoe crab (Limulus polyphemus) is one of more than 1,500 types of animals and plants you can find living on its over 144,000 acres, the majority of which is managed by the U.S. Fish and Wildlife Service and National Park Service. Sharing a boundary with the Merritt Island National Wildlife Refuge and Canaveral National Seashore, NASA Kennedy is one of the most biologically diverse places in the United States. The center’s land, water, and air species live alongside the symbols of America’s space program: the vital facilities and infrastructure that support the many launches at NASA Kennedy and Cape Canaveral Space Force Station as well as the rockets enabling humanity’s exploration of the cosmos. Researchers measure the shell of a male and female American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. Preserving NASA Kennedy’s wildlife while also fulfilling the agency’s mission requires a balanced approach. The American horseshoe crab exemplifies that balance. Horseshoe crabs are keystone species in coastal and estuary systems like the ones surrounding Earth’s premier spaceport. By themselves, these resilient arthropods are a strong indicator of how an ecosystem is doing to support the migratory birds, sea turtles, alligators and other wildlife who rely on it for their survival. “The presence and abundance of horseshoe crabs influence the structure and functioning of the entire ecosystem,” said James T. Brooks, an environmental protection specialist at NASA Kennedy. “Their eggs provide a vital food source for many shorebirds in coastal habitats, and their feeding activities help shape the composition of plants and animals that live at the bottom of the ocean or in rivers and lakes. Changes in horseshoe crab populations can signal broader ecological issues, such as pollution or habitat loss.” As featured recently on NASA+, biologists survey NASA Kennedy’s beaches regularly for horseshoe crabs, counting each one they spot and tagging them with devices that lets researchers study their migration patterns and survival rates. The devices also track the crabs’ spawning activity, habitat health, and population trends, especially during peak breeding seasons in spring and summer. All this data helps in assessing the overall health of NASA Kennedy’s ecosystem, but horseshoe crabs also play a vital role in humanity’s health. Their blue, copper-based blood contains a substance called Limulus Amebocyte Lysate, critical for detecting bacterial contamination in medical equipment, pharmaceuticals, and vaccines. Their unique value in ensuring biomedical safety underscores why NASA Kennedy emphasizes ecological monitoring in addition to its roles in the global space economy, national defense, and space exploration. A male and female American horseshoe crab meet during mating season at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. NASA At NASA Kennedy, horseshoe crabs are protected and monitored through habitat restoration projects like rebuilding shorelines eroded by storms and minimizing human impact on nesting sites. These initiatives ensure that the spaceport’s operations coexist harmoniously with nature and deepen our understanding of Earth’s interconnected ecosystems. On this Earth Day, NASA Kennedy celebrates the important role these ancient mariners play as we launch humanity’s future. About the AuthorMessod C. Bendayan Share Details Last Updated Apr 22, 2025 Related TermsKennedy Space CenterSustainability at Kennedy Space Center Explore More 2 min read NASA Invites Virtual Guests to Launch of SpaceX 32nd Resupply Mission Article 6 days ago 2 min read NASA Invites You to Share Excitement of Agency’s SpaceX Crew-10 Launch Article 2 months ago 4 min read Five Facts About NASA’s Moon Bound Technology Article 2 months ago Keep Exploring Discover More Topics From NASA Earth Day Toolkit NASA’s fleet of satellites see the whole Earth, every day. This year, you can celebrate Earth Day with NASA wherever… Geostationary Operational Environmental Satellites (GOES) This placeholder has been created to be used in the Topic Cards block. PLEASE DO NOT DELETE IT. This post’s… Extreme Weather As Earth’s climate changes, it is impacting extreme weather across the planet. Record-breaking heat waves on land and in the… Why Have a Telescope in Space? Hubble was designed as a general purpose observatory, meant to explore the universe in visible, ultraviolet, and infrared wavelengths. To… View the full article
-
4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data PRISM’s platform uses AI segmentation to identify and highlight residential structures in a neighborhood. NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups to showcase innovative ideas and technologies with the potential to advance the agency’s science goals. To potentially leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Challenge winners were awarded prize money, and in 2023 the total Entrepreneurs Challenge prize value was $1M. Numerous challenge winners have subsequently refined their products and/or received funding from NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies. One 2023 Entrepreneurs Challenge winner, PRISM Intelligence (formerly known as Pegasus Intelligence and Space), is using artificial intelligence (AI) and other advances in computer vision to create a new platform that could provide geospatial insights to a broad community. Every day, vast amounts of remote sensing data are collected through satellites, drones, and aerial imagery, but for most businesses and individuals, accessing and extracting meaningful insights from this data is nearly impossible. The company’s product—Personal Real-time Insight from Spatial Maps, a.k.a. PRISM—is transforming geospatial data into an easy-to-navigate, queryable world. By leveraging 3D computer vision, geospatial analytics, and AI-driven insights, PRISM creates photorealistic, up-to-date digital environments that anyone can interact with. Users can simply log in and ask natural-language questions to instantly retrieve insights—no advanced Geographic Information System (GIS) expertise is required. For example, a pool cleaner looking for business could use PRISM to search for all residential pools in a five-mile radius. A gardener could identify overgrown trees in a community. City officials could search for potholes in their jurisdiction to prioritize repairs, enhance public safety, and mitigate liability risks. This broad level of accessibility brings geospatial intelligence out of the hands of a few and into everyday decision making. The core of PRISM’s platform uses radiance fields to convert raw 2D imagery into high-fidelity, dynamic 3D visualizations. These models are then enhanced with AI-powered segmentation, which autonomously identifies and labels objects in the environment—such as roads, vehicles, buildings, and natural features—allowing for seamless search and analysis. The integration of machine learning enables PRISM to refine its reconstructions continuously, improving precision with each dataset. This advanced processing ensures that the platform remains scalable, efficient, and adaptable to various data sources, making it possible to produce large-scale, real-time digital twins of the physical world. The PRISM platform’s interface showcasing a 3D digital twin of California State Polytechnic University, Pomona, with AI-powered search and insights. “It’s great being able to push the state of the art in this relatively new domain of radiance fields, evolving it from research to applications that can impact common tasks. From large sets of images, PRISM creates detailed 3D captures that embed more information than the source pictures.” — Maximum Wilder-Smith, Chief Technology Officer, PRISM Intelligence Currently the PRISM platform uses proprietary data gathered from aerial imagery over selected areas. PRISM then generates high-resolution digital twins of cities in select regions. The team is aiming to eventually expand the platform to use NASA Earth science data and commercial data, which will enable high-resolution data capture over larger areas, significantly increasing efficiency, coverage, and update frequency. PRISM aims to use the detailed multiband imagery that NASA provides and the high-frequency data that commercial companies provide to make geospatial intelligence more accessible by providing fast, reliable, and up-to-date insights that can be used across multiple industries. What sets PRISM apart is its focus on usability. While traditional GIS platforms require specialized training to use, PRISM eliminates these barriers by allowing users to interact with geospatial data through a frictionless, conversational interface. The impact of this technology could extend across multiple industries. Professionals in the insurance and appraisal industries have informed the company how the ability to generate precise, 3D assessments of properties could streamline risk evaluations, reduce costs, and improve accuracy—replacing outdated or manual site visits. Similarly, local governments have indicated they could potentially use PRISM to better manage infrastructure, track zoning compliance, and allocate resources based on real-time, high-resolution urban insights. Additionally, scientists could use the consistent updates and layers of three-dimensional data that PRISM can provide to better understand changes to ecosystems and vegetation. As PRISM moves forward, the team’s focus remains on scaling its capabilities and expanding its applications. Currently, the team is working to enhance the technical performance of the platform while also adding data sources to enable coverage of more regions. Future iterations will further improve automation of data processing, increasing the speed and efficiency of real-time 3D reconstructions. The team’s goal is to expand access to geospatial insights, ensuring that anyone—from city planners to business owners—can make informed decisions using the best possible data. PRISM Intelligence founders Zachary Gaines, Hugo Delgado, and Maximum Wilder-Smith in their California State Polytechnic University, Pomona lab, where the company was first formed. Share Details Last Updated Apr 21, 2025 Related Terms Earth Science Division Earth Science Science-enabling Technology Technology Highlights Explore More 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements Article 7 days ago 4 min read GLOBE Mission Earth Supports Career Technical Education Article 2 weeks ago 4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE Article 2 weeks ago View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers use a flat aerogel array antenna to communicate with a geostationary satellite above the Earth during tests at NASA’s Glenn Research Center in Cleveland.Credit: NASA/Jordan Cochran NASA engineers are using one of the world’s lightest solid materials to construct an antenna that could be embedded into the skin of an aircraft, creating a more aerodynamic and reliable communication solution for drones and other future air transportation options. Developed by NASA, this ultra-lightweight aerogel antenna is designed to enable satellite communications where power and space are limited. The aerogel is made up of flexible, high-performance plastics known as polymers. The design features high air content (95%) and offers a combination of light weight and strength. Researchers can adjust its properties to achieve either the flexibility of plastic wrap or the rigidity of plexiglass. “By removing the liquid portion of a gel, you’re left with this incredibly porous structure,” said Stephanie Vivod, a chemical engineer at NASA’s Glenn Research Center in Cleveland. “If you’ve ever made Jell-O, you’ve performed chemistry that’s similar to the first step of making an aerogel.” NASA sandwiched a layer of aerogel between a small circuit board and an array of thin, circular copper cells, then topped the design off with a type of film known for its electrical insulation properties. This innovation is known at NASA and in the aviation community as an active phased array aerogel antenna. A sample of aerogel is folded to demonstrate its flexibility during testing at NASA’s Glenn Research Center in Cleveland.Credit: NASA In addition to decreasing drag by conforming to the shape of aircraft, aerogel antennas save weight and space and come with the ability to adjust their individual array elements to reduce signal interference. They are also less visually intrusive compared to other types of antennas, such as spikes and blades. The finished product looks like a honeycomb but lays flat on an aircraft’s surface. In the summer of 2024, researchers tested a rigid version of the antenna on a Britten-Norman Defender aircraft during an in-flight demonstration with the U.S. Navy at Naval Air Station Patuxent River in Maryland. A Britten-Norman Defender aircraft outfitted with an advanced phased array antenna prototype for a flight test in summer 2024. The aircraft was used to verify data transmission quality and communications link resiliency with a low Earth orbit satellite.Credit: U.S. Navy Then, last October, researchers at NASA Glenn and the satellite communications firm Eutelsat America Corp., of Houston, began ground testing a version of the antenna mounted to a platform. The team successfully connected with a Eutelsat satellite in geostationary orbit, which bounced a signal back down to a satellite dish on a building at Glenn. Other demonstrations of the system at Glenn connected with a constellation of communications satellites operated in low Earth orbit by the data relay company Kepler. NASA researchers will design, build, and test a flexible version of the antenna later this year. “This is significant because we are able to use the same antenna to connect with two very different satellite systems,” said Glenn researcher Bryan Schoenholz. Low Earth orbit satellites are relatively close – at 1,200 miles from the surface – and move quickly around the planet. Geostationary satellites are much farther – more than 22,000 miles from the surface – but orbit at speeds matching the Earth’s rotation, so they appear to remain in a fixed position above the equator. NASA Glenn Research Center’s Sarah Dever and Mick Koch, electrical engineers, command an active phased array antenna to point toward a geostationary satellite. They used a flat version of an aerogel antenna during tests in October 2024.Credit: NASA/Jordan Cochran The satellite testing was crucial for analyzing the aerogel antenna concept’s potential real-world applications. When modern aircraft communicate with stations on the ground, those signals are often transmitted through satellite relays, which can come with delays and loss of communication. This NASA-developed technology will make sure these satellite links are not disrupted during flight as the aerogel antenna’s beam is a concentrated flow of radio waves that can be electronically steered with precision to maintain the connection. As new types of air transportation options are brought to the market and U.S airspace – from the small, piloted aircraft of today to the autonomous air taxis and delivery drones of tomorrow – these kinds of steady connections will become increasingly important. That’s why NASA’s Advanced Air Mobility mission and Transformative Aeronautics Concepts program are supporting research like the aerogel antennas that can boost industry efforts to safely expand the emerging marketplace for these transportation systems. “If an autonomous air taxi or drone flight loses its communications link, we have a very unsafe situation,” Schoenholz said. “We can’t afford a ‘dropped call’ up there because that connection is critical to the safety of the flight.” Schoenholz, Vivod, and others work on NASA’s Antenna Deployment and Optimization Technologies activity within the Transformational Tools and Technologies project. The activity aims to develop technologies that reduce the risk of radio frequency interference from air taxis, drones, commercial passenger jets, and other aircraft in increasingly crowded airspace. Explore More 2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California Article 4 days ago 4 min read NASA Glenn to Test Air Quality Monitors Aboard Space Station Article 4 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft Article 5 days ago View the full article
-
NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), a space telescope, is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California on Jan. 16, 2025.Credit: BAE Systems/Benjamin Fry Members of the team behind NASA’s newest space telescope will ring the New York Stock Exchange closing bell in New York City at 4 p.m. EDT on Tuesday, April 22. The team helped build, launch, and operates NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. The New York Stock Exchange will share a recording of the closing bell ceremony on YouTube after the event. After launching March 11 from Vandenberg Space Force Base in California on a SpaceX Falcon 9 rocket, SPHEREx will soon begin collecting data on more than 450 million galaxies and 100 million stars in the Milky Way, to improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy. The observatory’s first images confirmed all of the telescope’s systems are working as expected, as the team prepares SPHEREx to begin mapping the entire sky. Bell ringers from NASA’s Jet Propulsion Laboratory, which manages the mission, will be joined by team members from BAE Systems Inc., Space & Mission Systems, which built the telescope and spacecraft’s main structure, known as a bus, for NASA. For more information on SPHEREx, visit: https://www.nasa.gov/spherex -end- Alise Fisher Headquarters, Washington 202-358-1100 alise.m.fisher@nasa.gov Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov Share Details Last Updated Apr 21, 2025 EditorJessica TaveauLocationNASA Headquarters Related TermsSPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer)Jet Propulsion LaboratoryNASA HeadquartersScience Mission Directorate View the full article
-
4 min read NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson In its second asteroid encounter, NASA’s Lucy spacecraft obtained a close look at a uniquely shaped fragment of an asteroid that formed about 150 million years ago. The spacecraft has begun returning images that were collected as it flew approximately 600 miles (960 km) from the asteroid Donaldjohanson on April 20, 2025. The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI) on NASA’s Lucy spacecraft during its flyby. This timelapse shows images captured approximately every 2 seconds beginning at 1:50 p.m. EDT (17:50 UTC), April 20, 2025. The asteroid rotates very slowly; its apparent rotation here is due to the spacecraft’s motion as it flies by Donaldjohanson at a distance of 1,000 to 660 miles (1,600 to 1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the images shown were taken approximately 40 seconds beforehand, the nearest ones at a distance of 660 miles (1100 km). NASA/Goddard/SwRI/Johns Hopkins APL The asteroid was previously observed to have large brightness variations over a 10-day period, so some of Lucy team members’ expectations were confirmed when the first images showed what appeared to be an elongated contact binary (an object formed when two smaller bodies collide). However, the team was surprised by the odd shape of the narrow neck connecting the two lobes, which looks like two nested ice cream cones. “Asteroid Donaldjohanson has strikingly complicated geology,” says Hal Levison, principal investigator for Lucy at Southwest Research Institute, Boulder, Colorado. “As we study the complex structures in detail, they will reveal important information about the building blocks and collisional processes that formed the planets in our Solar System.” From a preliminary analysis of the first available images collected by the spacecraft’s L’LORRI imager, the asteroid appears to be larger than originally estimated, about 5 miles (8 km) long and 2 miles (3.5 km) wide at the widest point. In this first set of high-resolution images returned from the spacecraft, the full asteroid is not visible as the asteroid is larger than the imager’s field of view. It will take up to a week for the team to downlink the remainder of the encounter data from the spacecraft; this dataset will give a more complete picture of the asteroid’s overall shape. Like Lucy’s first asteroid flyby target, Dinkinesh, Donaldjohanson is not a primary science target of the Lucy mission. As planned, the Dinkinesh flyby was a system’s test for the mission, while this encounter was a full dress rehearsal, in which the team conducted a series of dense observations to maximize data collection. Data collected by Lucy’s other scientific instruments, the L’Ralph color imager and infrared spectrometer and the L’TES thermal infrared spectrometer, will be retrieved and analyzed over the next few weeks. The Lucy spacecraft will spend most of the remainder of 2025 travelling through the main asteroid belt. Lucy will encounter the mission’s first main target, the Jupiter Trojan asteroid Eurybates, in August 2027. “These early images of Donaldjohanson are again showing the tremendous capabilities of the Lucy spacecraft as an engine of discovery,” said Tom Statler, program scientist for the Lucy mission at NASA Headquarters in Washington. “The potential to really open a new window into the history of our solar system when Lucy gets to the Trojan asteroids is immense.” The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI). This is one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby. This image was taken at 1:51 p.m. EDT (17:51 UTC), April 20, 2025, near closest approach, from a range of approximately 660 miles (1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the image shown was taken approximately 40 seconds beforehand. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for Lucy, as well as the designing and building the L’Ralph instrument. Hal Levison of the Boulder, Colorado, office of SwRI is the principal investigator. SwRI is headquartered in San Antonio and also leads the mission’s science team, science observation planning, and data processing. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for Lucy, as well as the L’Ralph instrument. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the orbital trajectory, and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University designed and built the L’TES (Lucy Thermal Emission Spectrometer). Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. By Katherine Kretke Southwest Research Institute Media Contact: Karen Fox / Molly Wasser Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov Nancy N. Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Apr 21, 2025 Editor Jamie Adkins Contact Molly Wasser molly.l.wasser@nasa.gov Related Terms Lucy Asteroids Goddard Space Flight Center View the full article
-
NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) In this photo released on April 14, 2025, NASA’s James Webb Space Telescope revealed the gas and dust ejected by a dying star at the heart of NGC 1514. Using mid-infrared data showed the “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through. This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange. One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017. Learn more about planetary nebula NGC 1514. Image credit: NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) View the full article
-
NASA's SpaceX 32nd Commercial Resupply Services Rendezvous and Docking
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Earth Day Poster for 2025 uses imagery from the Landsat mission — a joint mission with USGS — to celebrate our home planet. NASA/USGS/Landsat From the iconic image of Earthrise taken by Apollo 8 crew, to the famous Pale Blue Dot image of Earth snapped by Voyager I spacecraft, to state-of-the-art observations of our planet by new satellites such as PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), NASA has given us novel ways to see our home. This Earth Day, NASA is sharing how — by building on decades of innovation—we use the unique vantage point of space to observe and understand our dynamic planet in ways that we cannot from the ground. NASA has been observing Earth from space for more than 60 years, with cutting-edge scientific technology that can revolutionize our understanding of our home planet and provide benefits to all humanity. NASA observations include land data that helps farmers improve crop production, research on the air we breathe, and studies of atmospheric layers high above us that protect every living thing on the planet. “NASA Science delivers every second of every day for the benefit all, and it begins with how we observe our home planet from the unique vantage point of space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Our satellites, Mars rovers, astronauts and other NASA Science missions send back beautiful images of our planet, from the smallest of plankton to the pale blue dot, to help give us a comprehensive, detailed view of our home that we especially celebrate each Earth Day.” NASA data and tools are vital to federal, state, local, and international governments to monitor and manage land, air, and water resources. From mapping the ocean floor to finding critical mineral deposits to alerting land managers when fire risk is high, NASA’s data and information informs nearly every aspect of our economy and our lives. “Another way NASA celebrates Earth Day is by sharing information about how our science benefits the entire nation, such as by providing U.S. farmers and ranchers with ongoing measurements of water, crop health, wildfire predictions, and knowledge of what is being grown around the world,” said Karen St. Germain, director of NASA’s Earth Science Division at the agency’s headquarters in Washington. “This data informs field level farming and ranching decisions with impact felt as far as the commodity-trading floor and our grocery stores.” Next up for NASA’s work to help mitigate natural disasters is a mission called NISAR (NASA-ISRO Synthetic Aperture Radar) which is a partnership between NASA and ISRO (India Space Research Organization). NISAR, which is targeted to launch later this year, will measure land changes from earthquakes, landslides, and volcanos, producing more NASA science data to aid in disaster response. The mission’s radar will detect movements of the planet’s surface as small as 0.4 inches over areas about the size of half a tennis court. By tracking subtle changes in Earth’s surface, it will spot warning signs of imminent volcanic eruptions, help to monitor groundwater supplies, track the melt rate of ice sheets tied to sea level rise, and observe shifts in the distribution of vegetation around the world. From our oceans to our skies, to our ice caps, to our mountains, and to our rivers and streams, NASA’s Earth observations enhance our understanding of the world around us and celebrate the incredible planet we call home. To download NASA’s 2025 Earth Day poster, visit: https://nasa.gov/earthdayposters Share Details Last Updated Apr 21, 2025 Related TermsEarth DayEarthGeneralLandsatNISAR (NASA-ISRO Synthetic Aperture Radar)PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery Article 4 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data Article 5 days ago 7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,… Article 5 days ago Keep Exploring Discover Related Topics Earth Science at Work NASA Earth Science helps Americans respond to challenges and societal needs — such as wildland fires, hurricanes, and water supplies… NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission Science in the News Featured News Stories Earth Science to Action Within a decade, NASA will advance and integrate Earth science knowledge to empower humanity to create a more resilient world. View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read Sols 4515-4517: Silver Linings This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4514 NASA/JPL-Caltech Written by Lucy Thompson, Planetary Geologist at University of New Brunswick Earth planning date: Friday, April 18, 2025 As the APXS operations person today, I was hopeful that we could plan a compositional measurement after brushing one of the bedrock blocks in front of the rover. However, it soon became clear that the rover was not on stable enough ground to safely unstow the arm and place APXS and MAHLI. Silver linings though; by not having any arm movement in this plan, which requires significant energy, we were able to conserve power for what we hope will be a busy week of upcoming science activities as we drive towards our next high priority area of interest – the so-called boxwork formations. These are large resistant ridges identified from orbit, which may be the result of fracturing, fluid flow and alteration within the sulfate unit that we are traversing through. We plan to image them on approach to gain insights into their context. Despite the loss of arm activities, we still have plenty of interesting observations planned for this 3-sol weekend. ChemCam will fire its laser at two separate rock targets, “Santa Ynez” and “Cahuilla”, which will also be captured with Mastcam documentation images. The targets are on two different bedrock blocks with the “Cahuilla” raster focused on a thin resistant layer. ChemCam will also use its remote imaging capabilities to obtain mosaics of the “Texoli” butte and another interesting feature, “Torote Bowl”. Mastcam will capture mosaics of “San Gabriel River” (an apparent angular contact) and of some sand troughs surrounding many of the bedrock blocks in this region. An image will also be acquired of a small, grey float pebble, “Piru Creek.” The environmental science group was also able to plan a number of activities to catch up on their regular cadence, which has been impacted by the recent power constraints. We are acquiring Navcam line of sight observations (x2), suprahorizon movies (x2), a zenith movie and a 360 degree sky survey, as well as a Mastcam sky survey. Coordinated ChemCam passive sky and APXS atmospheric observations are also planned. There is a ~19 m drive planned through this tricky terrain that will hopefully set us up for arm activities (APXS and MAHLI) in our new workspace next week. The plan is completed with standard RAD, DAN and REMS activities, as well as two MARDI images to record the terrain beneath the rover in the current and new workspace. Explore More 2 min read Origins Uncertain: ‘Skull Hill’ Rock Article 4 days ago 2 min read Sols 4511-4512: Low energy after a big weekend? Article 5 days ago 3 min read Sols 4509-4510: A weekend of long drives Article 5 days ago Keep Exploring Discover More Topics From NASA Mars Resources Explore this page for a curated collection of Mars resources. Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… The Mars Report The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you… View the full article
-
A SpaceX Falcon 9 rocket carrying a Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 4:15 a.m. EDT on April 21 2025, on the company’s 32nd commercial resupply services mission for the agency to the International Space Station.Credit: NASA Following the successful launch of NASA’s SpaceX 32nd Commercial Resupply Services mission, new scientific experiments and supplies are bound for the International Space Station. The SpaceX Dragon spacecraft, carrying approximately 6,700 pounds of cargo to the orbiting laboratory for NASA, lifted off at 4:15 a.m. EDT Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Live coverage of the spacecraft’s arrival will begin at 6:45 a.m., Tuesday, April 22, on NASA+. Learn how to watch NASA content through a variety of platforms. The spacecraft is scheduled to autonomously dock at approximately 8:20 a.m. to the zenith, or space-facing, port of the space station’s Harmony module. The resupply mission will support dozens of research experiments during Expedition 73. Along with food and essential equipment for the crew, Dragon is delivering a variety of science experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could help protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test global synchronization of precision timepieces. These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory each year in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and helps lay the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future missions to Mars. The Dragon spacecraft is scheduled to remain at the orbiting laboratory until May, when it will depart and return to Earth with time-sensitive research and cargo, splashing down off the coast of California. Learn more about the commercial resupply mission at: https://www.nasa.gov/mission/nasas-spacex-crs-32/ -end- Julian Coltre / Josh Finch Headquarters, Washington 202-358-1100 julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov Stephanie Plucinsky / Steven Siceloff Kennedy Space Center, Florida 321-876-2468 stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Apr 21, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Commercial ResupplyISS ResearchJohnson Space CenterKennedy Space CenterSpaceX Commercial Resupply View the full article
-
The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station. The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20. Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024. During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography. This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights. NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth. For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars. Learn more about International Space Station research and operations at: https://www.nasa.gov/station -end- Joshua Finch Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related TermsInternational Space Station (ISS)Expedition 72Humans in SpaceISS Research View the full article