Jump to content

NASA

Publishers
  • Posts

    5,938
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop, also known as the Veil Nebula, is a supernova remnant – the remains of the explosive death of a massive star. Studying images like these leads to discovery, but NASA’s Chandra X-ray Observatory provides another way to experience this data: three-dimensional (3D) models that allow people to explore – and print – examples of stars in the early and end stages of their lives. The 3D model of the Cygnus Loop is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time. See more 3D printable models of cosmic objects. Image credit: X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk View the full article
  2. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) On April 16, 2025, the Earth Science Division at NASA’s Ames Research Center in Silicon Valley held an Earth Science Showcase to share its work with the center and their families. As part of this event, kids were invited to share something they like about the Earth. These are their masterpieces. Sora U. Age 9. “Wildlife” Sora U. Age 9. “Wildlife” Wesley P. Age 2.5. “Pale Blue” Wesley P. Age 2.5. “Pale Blue” Kira U. Age 5. “Hawaii” Kira U. Age 5. “Hawaii” Anonymous. “eARTh” Anonymous. “eARTh” Brooks P. Age 8mo. “Squiggles” Brooks P. Age 8mo. “Squiggles” About the AuthorMilan LoiaconoScience Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center. Share Details Last Updated Apr 25, 2025 Related TermsEarth ScienceAmes Research CenterAmes Research Center's Science DirectorateEarth Science Division Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  3. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing. HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation. Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities. Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft. Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space. In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft. The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year. Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share Details Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related TermsArtemisArtemis 4Earth's MoonExploration Systems Development Mission DirectorateGateway Space StationGeneralHumans in Space Explore More 2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US From Italy to Arizona: Gateway’s first habitation module takes a major step on its path… Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the… Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing… Article 3 months ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  4. Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read Searching for the Dark in the Light The Perseverance rover acquired this image of the “Hare Bay” abrasion patch using its SHERLOC WATSON camera (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals, and the Wide Angle Topographic Sensor for Operations and eNgineering), located on the turret at the end of the rover’s robotic arm. This image was acquired on April 18, 2025 (Sol 1479, or Martian day 1,479 of the Mars 2020 mission) at the local mean solar time of 12:53:57. NASA/JPL-Caltech Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University Perseverance has been busy exploring lower “Witch Hazel Hill,” an outcrop exposed on the edge of the Jezero crater rim. The outcrop is composed of alternating light and dark layers, and naturally, the team has been trying to understand the makeup of and relationships between the light and dark layers. A few weeks ago, we sampled one of the light-toned layers, which we discovered was made up of very small clasts, or fragments of rocks or minerals, at “Main River.” Since then, we have learned that the dark layers tend to be composed of larger clasts compared to the light layers, and we’ve been searching for a place to sample this coarser-grained rock type. Sometimes, these coarser-grained rocks also contain spherules, which are of great interest to the science team because they provide clues about the process that formed these layered rocks. Perseverance first looked at a dark layer at “Puncheon Rock” with an abrasion. We then examined a dark layer at “Wreck Apple,” near “Sally’s Cove,” but we could not identify a suitable surface to abrade. So, while team members searched for other locations to study the coarse-grained units and spherules, Perseverance drove south to “Port Anson.” Perseverance acquired this image of the “Strong Island” workspace near Port Anson using its onboard Front Left Hazard Avoidance Camera A (https://science.nasa.gov/mission/mars-2020-perseverance/rover-components/#eyes). This image was acquired on April 12, 2025 (Sol 1473, or Martian day 1,473 of the Mars 2020 mission) at the local mean solar time of 12:50:32. NASA/JPL-Caltech Port Anson was intriguing because, from orbit, it showed a clear contact between the light layers of Witch Hazel Hill and a distinct unit below it. And, although the rocks below the Port Anson contact do show interesting compositional differences with those of Witch Hazel Hill, they weren’t the coarse-grained rocks we were looking for. We still performed an abrasion there, at Strong Island, before driving back up north for another attempt at investigating the coarser-grained rocks. We aimed for “Pine Pond,” which neighbors “Dennis Pond,” to abrade at “Hare Bay.” With the data just coming down over the weekend, the team will be hard at work to figure out if we captured the coarse grains and spherules, and if it is representative of rocks we have seen before or not. The image below is a close-up of this most recent abrasion patch at Hare Bay — what do you think? Stay tuned to find out! Share Details Last Updated Apr 25, 2025 Related Terms Blogs Explore More 3 min read Sols 4520-4521: Prinzregententorte Article 6 hours ago 5 min read Sols 4518-4519: Thumbs up from Mars Article 2 days ago 3 min read Sols 4515-4517: Silver Linings Article 4 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  5. This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72).ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques. ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72). M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy. The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed. Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog. View the full article
  6. Students take a tour of the Glenn International Space Station Payload Operations Center at NASA’s Glenn Research Center in Cleveland, where researchers operate International Space Station experiments, during 4-H Day on June 14, 2024.Credit: NASA/Jef Janis Ohio middle school students will step into the shoes of real-world NASA professionals for a day of career exploration and hands-on activities at NASA’s Glenn Research Center in Cleveland. Nearly 200 students are slated to participate in TECH Day at NASA Glenn on May 1, from 10 a.m. to 1 p.m. Media are invited to attend. TECH Day is designed to inspire and inform the next generation of innovators by introducing them to clear and attainable career pathways into the aerospace industry. Students will tour NASA Glenn facilities, participate in an interactive engineering challenge, and engage with professionals to learn about the wide range of careers in STEM fields. Student tours will include the following Glenn facilities: Graphics and Visualization Lab, where researchers create engaging projects using virtual and augmented reality Glenn International Space Station Payload Operations Center, where researchers remotely operate experiments aboard the International Space Station Simulated Lunar Operations Laboratory, a unique indoor space designed to mimic the surface of the Moon and Mars 10×10 Supersonic Wind Tunnel, NASA Glenn’s largest and fastest wind tunnel facility Creating Clear Pathways Developing early and accessible entry points into STEM careers is essential to meeting the growing demand for a skilled technical workforce. NASA STEM engagement events help students visualize their future and better understand the technical experience needed for a career in the aerospace sector. Opportunities like this equip students with the skills to further technological advancement and become the STEM professionals of tomorrow. Media interested in attending should contact Jacqueline Minerd at jacqueline.minerd@nasa.gov no later than 5 p.m. Wednesday, April 30. Interviews with experts will take place from 9 to 10 a.m. For more information on NASA Glenn, visit: https://www.nasa.gov/glenn -end- Jacqueline Minerd Glenn Research Center, Cleveland 216-433- 6036 jacqueline.minerd@nasa.gov View the full article
  7. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read Sols 4520-4521: Prinzregententorte NASA’s Mars rover Curiosity acquired this image of its target area — including the layered rocks “Hale Telescope” and “Fan Palm” — using its Front Hazard Avoidance Camera on April 22, 2025 (Sol 4518, or Martian day 4,518 of the Mars Science Laboratory mission) at 11:03:37 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University Earth planning date: Wednesday, April 23, 2025 I will start this blog with an apology, an apology because I suspect, by the end of this post, you, the reader, may have a craving for chocolate, or cake, or both. While we saw hints of it in the previous workspace, as captured by Susanne’s blog, today’s workspace featured prominent laminations throughout Curiosity’s sightlines, which presented the science team with the challenge of finding a safe place to utilize APXS (and MAHLI). Perhaps it was because of Easter last weekend, perhaps I needed an early lunch — whatever the cause, I could not shake the visual parallels between the rocks in our workspace, as captured in this blog’s image, and a many-layered-cake such as a Prinzregententorte. The rover planners rose to the technical challenge, as they always do, and were ultimately able to find a safe area to place APXS on the top of the rock that is prominent just above and left of the center of today’s image. Combined with a green-light from SRAP, Curiosity now had its (cakey) target and could APXS it too. Tosol’s APXS and MAHLI target, “Hale Telescope,” is named after the famous landmark located north-northwest of San Diego, California. I, for one, was not familiar with the history of this landmark, including how groundbreaking it was at the time of its development and commissioning through the 1920s, ‘30s, and ‘40s. Curiosity’s plan tosol started with APXS and MAHLI of Hale Telescope. These activities were complemented by Mastcam images of “Puerto Suelo” and “Potrero Seco,” as well as long-distance imaging by ChemCam of “Torote Bowl,” nearly 1 kilometer (about 0.6 miles) away. Curiosity also imaged and conducted compositional analyses of the layered target “Fan Palm,” slightly offset from Hale Telescope, with LIBS. Our intrepid rover then completed a drive of about 23 meters (about 75 feet) in preparation for the three-sol weekend plan. On the second sol of the current plan, Curiosity acquired Navcam images and a suprahorizon movie. The highlight of the second sol, however, arguably was an upgraded version of the AEGIS (Autonomous Exploration for Gathering Increased Science) activity where the rover will autonomously determine its own target to analyze with ChemCam while awaiting further instructions from Earth. The software upgrade will allow Curiosity’s team to know what target the rover chose to observe in time for us to make the weekend plan, even though the observation itself won’t happen on Mars until later. Mars continues to offer stories written in stone, and like all good stories, the richness lies in the voices layered within. Or chocolate. The data aren’t down yet. Share Details Last Updated Apr 25, 2025 Related Terms Blogs Explore More 5 min read Sols 4518-4519: Thumbs up from Mars Article 2 days ago 3 min read Sols 4515-4517: Silver Linings Article 4 days ago 2 min read Origins Uncertain: ‘Skull Hill’ Rock Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  8. 4 Min Read Navigation Technology ESA astronaut Matthias Maurer sets up an Astrobee for the ReSWARM experiment. Credits: NASA Science in Space April 2025 Humans have always been explorers, venturing by land and sea into unknown and uncharted places on Earth and, more recently, in space. Early adventurers often navigated by the Sun and stars, creating maps that made it easier for others to follow. Today, travelers on Earth have sophisticated technology to guide them. Navigation in space, including for missions to explore the Moon and Mars, remains more of a challenge. Research on the International Space Station is helping NASA scientists improve navigation tools and processes for crewed spacecraft and remotely controlled or autonomous robots to help people boldly venture farther into space, successfully explore there, and safely return home. NASA astronaut Nichole Ayers talks to students on the ground using ham radio equipment.NASA A current investigation, NAVCOM, uses the space station’s ISS Ham Radio program hardware to test software for a system that could shape future lunar navigation. The technology processes signals in the same way as global navigation satellite systems such as GPS, but while those rely on constellations of satellites, the NAVCOM radio equipment receives position and time information from ground stations and reference clocks. The old made new ESA astronaut Alexander Gerst operates the Sextant Navigation device.NASA Sextant Navigation tested star-sighting from space using a hand-held sextant. These mechanical devices measure the angle between two objects, typically the Sun or other stars at night and the horizon. Sextants guided navigators on Earth for centuries and NASA’s Gemini and Apollo missions demonstrated that they were useful in space as well, meaning they could provide emergency backup navigation for lunar missions. Researchers report that with minimal training and practice, crew members of different skill levels produced quality sightings through a station window and measurements improved with more use. The investigation identified several techniques for improving sightings, including refocusing between readings and adjusting the sight to the center of the window. Navigating by neutron stars The station’s NICER instrument studies the nature and behavior of neutron stars, the densest objects in the universe. Some neutron stars, known as pulsars, emit beams of light that appear to pulse, sweeping across the sky as the stars rotate. Some of them pulse at rates as accurate as atomic clocks. As part of the NICER investigation, the Station Explorer for X-ray Timing and Navigation Technology or SEXTANT tested technology for using pulsars in GPS-like systems to navigate anywhere in the solar system. SEXTANT successfully completed a first in-space demonstration of this technology in 2017. In 2018, researchers reported that real-time, autonomous X-ray pulsar navigation is clearly feasible and they plan further experiments to fine tune and modify the technology. Robot navigation Crews on future space exploration missions need efficient and safe ways to handle cargo and to move and assemble structures on the surface of the Moon or Mars. Robots are promising tools for these functions but must be able to navigate their surroundings, whether autonomously or via remote control, often in proximity with other robots and within the confines of a spacecraft. Several investigations have focused on improving navigation by robotic helpers. NASA astronaut Michael Barratt (left) and JAXA astronaut Koichi Wakata perform a check of the SPHERES robots.NASA The SPHERES investigation tested autonomous rendezvous and docking maneuvers with three spherical free-flying robots on the station. Researchers reported development of an approach to control how the robots navigate around obstacles and along a designated path, which could support their use in the future for satellite servicing, vehicle assembly, and spacecraft formation flying. NASA astronaut Megan McArthur with the three Astrobee robots.NASA The station later gained three cube-shaped robots known as Astrobees. The ReSWARM experiments used them to test coordination of multiple robots with each other, cargo, and their environment. Results provide a base set of planning and control tools for robotic navigation in close proximity and outline important considerations for the design of future autonomous free-flyers. Researchers also used the Astrobees to show that models to predict the robots’ behavior could make it possible to maneuver one or two of them for carrying cargo. This finding suggests that robots can navigate around each other to perform tasks without a human present, which would increase their usefulness on future missions. ESA astronaut Samantha Cristoforetti working on the Surface Avatar experiment.ESA An investigation from ESA (European Space Agency), Surface Avatar evaluated orbit-to-ground remote control of multiple robots. Crew members successfully navigated a four-legged robot, Bert, through a simulated Mars environment. Robots with legs rather than wheels could explore uneven lunar and planetary surfaces that are inaccessible to wheeled rovers. The German Aerospace Center is developing Bert. View the full article
  9. Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air. As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.” This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety. Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions. Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military. “I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.” By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all. Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.” Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California. Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below. Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt. “I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.” Explore More 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge NASA has named nine finalists out of the 45 semifinalist student essays in the Power… Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace Article 3 days ago View the full article
  10. Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72). ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques. ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72). M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy. The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed. Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog. Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated Apr 25, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Globular Clusters Goddard Space Flight Center Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Star Clusters Hubble’s 35th Anniversary Hubble’s Night Sky Challenge View the full article
  11. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The C-20A aircraft, based at NASA’s Armstrong Flight Research Center in Edwards, California, flies over the Sierra Nevada Mountains in California for the Dense UAVSAR Snow Time (DUST) mission on Feb. 28, 2025. The DUST mission collected airborne data about snow water to help improve water management and reservoir systems on the ground.NASA/Starr Ginn As part of a science mission tracking one of Earth’s most precious resources – water – NASA’s C-20A aircraft conducted a series of seven research flights in March that can help researchers track the process and timeline as snow melts and transforms into a freshwater resource. The agency’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) installed on the aircraft collected measurements of seasonal snow cover and estimate the freshwater contained in it. “Seasonal snow is a critical resource for drinking water, power generation, supporting multi-billion dollar agricultural and recreation industries,” said Starr Ginn, C-20A project manager at NASA’s Armstrong Flight Research Center in Edwards, California. “Consequently, understanding the distribution of seasonal snow storage and subsequent runoff is essential.” The Dense UAVSAR Snow Time (DUST) mission mapped snow accumulation over the Sierra Nevada mountains in California and the Rocky Mountains in Idaho. Mission scientists can use these observations to estimate the amount of water stored in that snow. Peter Wu, radar operator from NASA’s Jet Propulsion Laboratory in Southern California, observes data collected during the Dense UAVSAR Snow Time (DUST) mission onboard NASA’s C-20A aircraft on Feb. 28, 2025. The C-20A flew from NASA’s Armstrong Flight Research Center in Edwards, California, over the Sierra Nevada Mountains to collect data about snow water.NASA/Starr Ginn “Until recently, defining the best method for accurately measuring snow water equivalent (SWE) – or how much and when fresh water is converted from snow – has been a challenge,” said Shadi Oveisgharan, principal investigator of DUST and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “The UAVSAR has been shown to be a good instrument to retrieve SWE data.” Recent research has shown that snow properties, weather patterns, and seasonal conditions in the American West have been shifting in recent decades. These changes have fundamentally altered previous expectations about snowpack monitoring and forecasts of snow runoff. The DUST mission aims to better track and understand those changes to develop more accurate estimates of snow-to-water conversions and their timelines. “We are trying to find the optimum window during which to retrieve snow data,” Oveisgharan said. “This estimation will help us better estimate available fresh snow and manage our reservoirs better.” The Dense UAVSAR Snow Time (DUST) mission team assembles next to the C-20A aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 28, 2025. From left, radar operator Adam Vaccaro, avionics lead Kelly Jellison, C-20A project manager Starr Ginn, pilot Carrie Worth, pilot Troy Asher, aircraft mechanic Eric Apikian, and operations engineer Ian Elkin.NASA/Starr Ginn The DUST mission achieved a new level of snow data accuracy, which is partly due to the specialized flight paths flown by the C-20A. The aircraft’s Platform Precision Autopilot (PPA) enables the team to fly very specific routes at exact altitudes, speeds, and angles so the UAVSAR can more precisely measure terrain changes. “Imagine the rows made on grass by a lawn mower,” said Joe Piotrowski Jr., operations engineer for NASA Armstrong’s airborne science program. “The PPA system enables the C-20A to make those paths while measuring terrain changes down to the diameter of a centimeter.” Share Details Last Updated Apr 24, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterAirborne ScienceC-20AEarth ScienceEarth's AtmosphereJet Propulsion LaboratoryScience Mission Directorate Explore More 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber Article 5 hours ago 2 min read 2025 EGU Hyperwall Schedule EGU General Assembly, April 27 – May 2, 2025 Join NASA in the Exhibit Hall… Article 7 hours ago 5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action Article 1 day ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Humans in Space Climate Change Solar System View the full article
  12. 4 Min Read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings NASA’s Artemis campaign will use human landing systems, provided by SpaceX and Blue Origin, to safely transport crew to and from the surface of the Moon, in preparation for future crewed missions to Mars. As the landers touch down and lift off from the Moon, rocket exhaust plumes will affect the top layer of lunar “soil,” called regolith, on the Moon. When the lander’s engines ignite to decelerate prior to touchdown, they could create craters and instability in the area under the lander and send regolith particles flying at high speeds in various directions. To better understand the physics behind the interaction of exhaust from the commercial human landing systems and the Moon’s surface, engineers and scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently test-fired a 14-inch hybrid rocket motor more than 30 times. The 3D-printed hybrid rocket motor, developed at Utah State University in Logan, Utah, ignites both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust. “Artemis builds on what we learned from the Apollo missions to the Moon. NASA still has more to learn more about how the regolith and surface will be affected when a spacecraft much larger than the Apollo lunar excursion module lands, whether it’s on the Moon for Artemis or Mars for future missions,” said Manish Mehta, Human Landing System Plume & Aero Environments discipline lead engineer. “Firing a hybrid rocket motor into a simulated lunar regolith field in a vacuum chamber hasn’t been achieved in decades. NASA will be able to take the data from the test and scale it up to correspond to flight conditions to help us better understand the physics, and anchor our data models, and ultimately make landing on the Moon safer for Artemis astronauts.” Fast Facts Over billions of years, asteroid and micrometeoroid impacts have ground up the surface of the Moon into fragments ranging from huge boulders to powder, called regolith. Regolith can be made of different minerals based on its location on the Moon. The varying mineral compositions mean regolith in certain locations could be denser and better able to support structures like landers. Of the 30 test fires performed in NASA Marshall’s Component Development Area, 28 were conducted under vacuum conditions and two were conducted under ambient pressure. The testing at Marshall ensures the motor will reliably ignite during plume-surface interaction testing in the 60-ft. vacuum sphere at NASA’s Langley Research Center in Hampton, Virginia, later this year. Once the testing at NASA Marshall is complete, the motor will be shipped to NASA Langley. Test teams at NASA Langley will fire the hybrid motor again but this time into simulated lunar regolith, called Black Point-1, in the 60-foot vacuum sphere. Firing the motor from various heights, engineers will measure the size and shape of craters the rocket exhaust creates as well as the speed and direction the simulated lunar regolith particles travel when the rocket motor exhaust hits them. “We’re bringing back the capability to characterize the effects of rocket engines interacting with the lunar surface through ground testing in a large vacuum chamber — last done in this facility for the Apollo and Viking programs. The landers going to the Moon through Artemis are much larger and more powerful, so we need new data to understand the complex physics of landing and ascent,” said Ashley Korzun, principal investigator for the plume-surface interaction tests at NASA Langley. “We’ll use the hybrid motor in the second phase of testing to capture data with conditions closely simulating those from a real rocket engine. Our research will reduce risk to the crew, lander, payloads, and surface assets.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Credit: NASA Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. For more information about Artemis, visit: https://www.nasa.gov/artemis News Media Contact Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 corinne.m.beckinger@nasa.gov View the full article
  13. The New York Stock Exchange welcomed team members from NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to celebrate the launch of the agency’s newest astrophysics observatory to understand the origins and structure of the universe. Image courtesy of NYSE Group Members of NASA’s recently launched SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission team participated in the New York Stock Exchange’s closing bell ceremony in New York City on April 22. Michael Thelen, SPHEREx flight system manager at NASA’s Jet Propulsion Laboratory in Southern California, is seen here ringing the closing bell. Additional SPHEREx team members from NASA JPL, which manages the mission, and BAE Systems Inc., Space & Mission Systems, which built the telescope and spacecraft bus for NASA, participated. The SPHEREx observatory, which launched March 11 from Vandenberg Space Force Base in California on a SpaceX Falcon 9 rocket, will soon begin mapping the universe like none before it. Using 102 color filters to scan the entire sky quickly, SPHEREx will gather data on hundreds of millions of galaxies that will complement the work of more targeted telescopes, like NASA’s Hubble and James Webb space telescopes. Its surveys will help answer some of the biggest questions in astrophysics: what happened in the first second after the big bang, how galaxies form and evolve, and the origins and abundance of water and other key ingredients for life in our galaxy. Michael P. Thelen, SPHEREx Observatory Flight System Manager, rings the bell alongside NASA SPHEREx team members at the New York Stock Exchange Tuesday, April 25, 2025. Image courtesy of NYSE Group More About SPHEREx SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available. For more information on SPHEREx, visit: https://www.nasa.gov/spherex News Media Contacts Alise Fisher NASA Headquarters, Washington 202-358-2546 alise.m.fisher@nasa.gov Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov View the full article
  14. NASA/JPL-Caltech A NASA spacesuit glove designed for use during spacewalks on the International Space Station is prepared for thermal vacuum testing inside a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California on Nov. 1, 2023. Part of a NASA spacesuit design called the Extravehicular Mobility Unit, the glove was tested at vacuum and minus 352 degrees Fahrenheit (minus 213 degrees Celsius) — temperatures as frigid as those Artemis III astronauts could experience on the Moon’s South Pole. A team from NASA JPL, NASA’s Johnson Space Center in Houston, and the NASA Engineering and Safety Center have collaborated on testing gloves and boots in CITADEL. Elbow joints are slated for testing next. In addition to spotting vulnerabilities with existing NASA suit designs, the experiments will help the agency prepare criteria for test methods for the next-generation lunar suit — being built by Axiom Space — which NASA astronauts will wear during the Artemis III mission. Read more about the testing needed for Artemis III. Text credit: Melissa Pamer Image credit: NASA/JPL-Caltech View the full article
  15. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A Boeing-built X-66 full-span model underwent testing in the 11-Foot Transonic Unitary Plan Facility at NASA’s Ames Research Center in California’s Silicon Valley between January and March 2025.NASA / Brandon Torres NASA and Boeing are currently evaluating an updated approach to the agency’s Sustainable Flight Demonstrator project that would focus on demonstrating thin-wing technology with broad applications for multiple aircraft configurations. Boeing’s proposed focus centers on a ground-based testbed to demonstrate the potential for long, thin-wing technology. Work on the X-66 flight demonstrator – which currently incorporates a more complex transonic truss braced wing concept that uses the same thin wing technology as well as aerodynamic, structural braces — would pause for later consideration based on the thin-wing testbed results and further truss-braced configuration studies. Under this proposal, all aspects of the X-66 flight demonstrator’s design, as well as hardware acquired or modified for it, would be retained while the long, thin-wing technology is being investigated with more focus. NASA and Boeing would also continue to collaborate on research into the transonic truss-braced wing concept. The proposal is based on knowledge gained through research conducted under the Sustainable Flight Demonstrator project so far. Since NASA issued the Sustainable Flight Demonstrator award in 2023, the project has made significant progress toward its goal of informing future generations of more sustainable commercial airliners. Boeing and NASA have collaborated on wind tunnel tests, computational fluid dynamics modeling, and structural design and analysis aimed at exploring how best to approach fuel-efficient, sustainable designs. This research has built confidence in the substantial potential energy-savings benefits that technologies investigated through the Sustainable Flight Demonstrator project and other NASA research can make possible. The Boeing proposal identifies the thin-wing concept as having broad applications for potential incorporation into aircraft with and without truss braces. NASA and Boeing are discussing potential options for advancing these sustainable flight technologies. NASA’s ultimate goal for this sustainable aircraft research is to achieve substantial improvements for next-generation airliner efficiency, lower costs for travelers, reduced fuel costs and consumption, and increase U.S. aviation’s technological leadership. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace Article 2 days ago 2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California Article 6 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft Article 7 days ago Keep Exploring Discover More Topics From NASA Missions Sustainable Flight Demonstrator Project Aeronautics STEM Explore NASA’s History Share Details Last Updated Apr 24, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related TermsAeronauticsAeronautics Research Mission DirectorateGreen Aviation TechIntegrated Aviation Systems ProgramSustainable Flight Demonstrator View the full article
  16. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits. When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping. Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025. An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time. “We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.” Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures. Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing. Keeping Cool Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside. An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests. Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations. Testing Extremities The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety. In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission. “This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.” In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing. To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots. “By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.” Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars. Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact Melissa Pamer Jet Propulsion Laboratory, Pasadena, Calif. 626-314-4928 melissa.pamer@jpl.nasa.gov 2025-060 Share Details Last Updated Apr 24, 2025 Related TermsArtemis 3Earth's MoonExploration Systems Development Mission DirectorateJet Propulsion LaboratoryNASA Engineering & Safety Center AcademySpacesuitsxEVA & Human Surface Mobility Explore More 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are… Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  17. NASA’s Nancy Grace Roman Space Telescope team shared Thursday the designs for the three core surveys the mission will conduct after launch. These observation programs are designed to investigate some of the most profound mysteries in astrophysics while enabling expansive cosmic exploration that will revolutionize our understanding of the universe. “Roman’s setting out to do wide, deep surveys of the universe in a way that will help us answer questions about how dark energy and dark matter govern cosmic evolution, and the demographics of worlds beyond our solar system,” said Gail Zasowski, an associate professor at the University of Utah and co-chair of the ROTAC (Roman Observations Time Allocation Committee). “But the overarching goal is that the surveys have broad appeal and numerous science applications. They were designed by and for the astronomical community to maximize the science they’ll enable.” NASA’s Nancy Grace Roman Space Telescope’s three main observing programs, highlighted in this infographic, can enable astronomers to view the universe as never before, revealing billions of cosmic objects strewn across enormous swaths of space-time.Credit: NASA’s Goddard Space Flight Center Roman’s crisp, panoramic view of space and fast survey speeds provide the opportunity for astronomers to study the universe as never before. The Roman team asked the science community to detail the topics they’d like to study through each of Roman’s surveys and selected committees of scientists across many organizations to evaluate the range of possibilities and formulate three compelling options for each. In April, the Roman team received the recommendations and has now determined the survey designs. These observations account for no more than 75 percent of Roman’s surveys during its five-year primary mission, with the remainder allocated to additional observations that will be proposed and developed by the science community in later opportunities. “These survey designs are the culmination of two years of input from more than 1,000 scientists from over 350 institutions across the globe,” said Julie McEnery, Roman’s senior project scientist at NASA Goddard. “We’re thrilled that we’ve been able to hear from so many of the people who’ll use the data after launch to investigate everything from objects in our outer solar system, planets across our galaxy, dark matter and dark energy, to exploding stars, growing black holes, galaxies by the billions, and so much more.” With all major hardware now delivered, Roman has entered its final phase of preparation for launch, undergoing integration and key environmental testing at NASA Goddard. Roman is targeted to launch by May 2027, with the team working toward a potential launch window that opens in October 2026. This infographic describes the High-Latitude Wide-Area Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. This observation program has three components, covering more than 5,000 square degrees (about 12 percent of the sky) altogether in just under a year and a half. The main part covers about 2,500 square degrees, doing both spectroscopy (splitting light into individual colors to study patterns that reveal detailed information) and imaging in multiple filters (which allow astronomers to select specific wavelengths of light) to provide the rich dataset needed for precise studies of our universe. A wider component spans more than twice the area using a single filter, specifically covering a large area that can be viewed by ground-based telescopes located in both the northern and southern hemispheres. The final component focuses on a smaller region to provide a deeper view that will help astronomers study faint, distant galaxies.Credit: NASA’s Goddard Space Flight Center High-Latitude Wide-Area Survey Roman’s largest survey, the High-Latitude Wide-Area Survey, combines the powers of imaging and spectroscopy to unveil more than a billion galaxies strewn across a wide swath of cosmic time. Roman can look far from the dusty plane of our Milky Way galaxy (that’s what the “high-latitude” part of the survey name means), looking up and out of the galaxy rather than through it to get the clearest view of the distant cosmos. The distribution and shapes of galaxies in Roman’s enormous, deep images can help us understand the nature of dark energy — a pressure that seems to be speeding up the universe’s expansion — and how invisible dark matter, which Roman will detect by its gravitational effects, influences the evolution of structure in our universe. For the last two years, researchers have been discussing ways to expand the range of scientific topics that can be studied using the same dataset. That includes studying galaxy evolution, star formation, cosmic voids, the matter between galaxies, and much more. This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component covers over 18 square degrees — a region of sky as large as 90 full moons — and sees supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey can pierce even farther, potentially back to when the universe was around a billion years old. The survey is split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey consists of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center High-Latitude Time-Domain Survey Roman’s High-Latitude Time-Domain Survey can probe our dynamic universe by observing the same region of the cosmos repeatedly. Stitching these observations together to create movies can allow scientists to study how celestial objects and phenomena change over time periods of days to years. This survey can probe dark energy by finding and studying many thousands of a special type of exploding star called type Ia supernovae. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion. “Staring at a large volume of the sky for so long will also reveal black holes being born as neutron stars merge, and tidal disruption events –– flares released by stars falling into black holes,” said Saurabh Jha, a professor at Rutgers University in New Brunswick, New Jersey, and ROTAC co-chair. “It will also allow astronomers to explore variable objects, like active galaxies and binary systems. And it enables more open-ended cosmic exploration than most other space telescopes can do, offering a chance to answer questions we haven’t yet thought to ask.” This infographic describes the Galactic Bulge Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The smallest of Roman’s core surveys, this observation program consists of repeat visits to six fields covering 1.7 square degrees total. One field pierces the very center of the galaxy, and the others are nearby — all in a region of the sky that will be visible to Roman for two 72-day stretches each spring and fall. The survey mainly consists of six seasons (three early on, and three toward the end of Roman’s primary mission), during which Roman views each field every 12 minutes. Roman also views the six fields with less intensity at other times throughout the mission, allowing astronomers to detect microlensing events that can last for years, signaling the presence of isolated, stellar-mass black holes.Credit: NASA’s Goddard Space Flight Center Galactic Bulge Time-Domain Survey Unlike the high-latitude surveys, Roman’s Galactic Bulge Time-Domain Survey will look inward to provide one of the deepest views ever of the heart of our Milky Way galaxy. Roman’s crisp resolution and infrared view can allow astronomers to watch hundreds of millions of stars in search of microlensing signals — gravitational boosts of a background star’s light that occur when an intervening object passes nearly in front of it. While astronomers have mainly discovered star-hugging worlds, Roman’s microlensing observations can find planets in the habitable zone of their star and farther out, including analogs of every planet in our solar system except Mercury. The same set of observations can reveal “rogue” planets that drift through the galaxy unbound to any star, brown dwarfs (“failed stars” too lightweight to power themselves by fusion the way stars do), and stellar corpses like neutron stars and white dwarfs. And scientists could discover 100,000 new worlds by seeing stars periodically get dimmer as an orbiting planet passes in front of them, events called transits. Scientists can also study the stars themselves, detecting “starquakes” on a million giant stars, the result of sound waves reverberating through their interiors that can reveal information about their structures, ages, and other properties. Data from all of Roman’s surveys will be made public as soon as it is processed, with no periods of exclusive access. “Roman’s unprecedented data will offer practically limitless opportunities for astronomers to explore all kinds of cosmic topics,” McEnery said. “We stand to learn a tremendous amount of new information about the universe very rapidly after the mission launches.” Download high-resolution video and images from NASA’s Scientific Visualization Studio By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. Media contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, Md. 301-286-1940 Share Details Last Updated Apr 24, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related TermsNancy Grace Roman Space TelescopeBlack HolesDark EnergyDark MatterEarth-like ExoplanetsExoplanetsGalaxiesGas Giant ExoplanetsNeptune-Like ExoplanetsNeutron StarsStarsStellar-mass Black HolesSuper-Earth ExoplanetsSupernovaeTerrestrial ExoplanetsThe Milky WayThe Solar SystemThe Universe Explore More 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos Article 1 year ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights Article 2 years ago View the full article
  18. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving. NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet. Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago. How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek. “By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL. Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image. In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so. More About Curiosity and MRO NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado. For more about the missions, visit: science.nasa.gov/mission/msl-curiosity science.nasa.gov/mission/mars-reconnaissance-orbiter News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-059 Share Details Last Updated Apr 24, 2025 Related TermsMars Science Laboratory (MSL)Curiosity (Rover)MarsMars Reconnaissance Orbiter (MRO) Explore More 5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing… Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  19. Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives Conference Schedules Style Guide 2 min read 2025 EGU Hyperwall Schedule EGU General Assembly, April 27 – May 2, 2025 Join NASA in the Exhibit Hall (Booth #204) for Hyperwall Storytelling by NASA experts. Full Hyperwall Agenda below. MONDAY, APRIL 28 10:15 – 10:30 AM —— PACE —— Ivona Cetinic 3:45 – 4:00 PM —— Science Explorer (SciX): Accelerating the Discovery of NASA Science —— Mike Kurtz 4:00 – 4:15 PM —— Juno’s Extended Vision in its Extended Mission —— Glenn Orton 6:05 – 6:20 PM —— Getting the Big Picture with Global Precipitation —— George Huffman 6:20 – 6:35 PM —— Exploring Europa with Europa Clipper —— Jonathan Lunine TUESDAY, APRIL 29 10:15 – 10:30 AM —— Science Explorer (SciX): Accelerating the Discovery of NASA Science —— Jennifer Lynn Bartlett 10:30 – 10:45 AM —— From ESTO to PACE, A CubeSat’s Journey to Space —— Brent McBride 12:30 – 2:00 PM —— Ask Me Anything with NASA Scientists —— Informal Office Hours 3:45 – 4:00 PM —— Exoplanets (Virtual) —— Jonathan H. Jiang 4:00 – 4:15 PM —— Scattering of Realistic Hydrometeors for Precipitation Remote Sensing ——Kwo-Sen Kuo 6:05 – 6:20 PM —— Space Weather Center of Excellence CLEAR: All-CLEAR SEP Forecast —— Lulu Zhao WEDNESDAY, APRIL 30 10:15 – 10:30 AM —— SPEXone on PACE: First year in Orbit —— Otto Hasekamp 12:30 – 2:00 PM —— Ask Me Anything with NASA Scientists —— Informal Office Hours 3:45 – 4:00 PM —— Science Explorer (SciX): Accelerating the Discovery of NASA Science —— Jennifer Lynn Bartlett 4:00 – 4:15 PM —— Scattering of Realistic Hydrometeors for Precipitation Remote Sensing ——Kwo-Sen Kuo 6:05 – 6:20 PM —— Ship Tracks Tell the Story of Climate Forcing by Aerosols through Clouds —Tianle Yuan 6:20 – 6:35 PM —— The Excitement of Mars Exploration —— Jonathan Lunine 6:35 – 6:50 PM —— Using NASA Earth Observations for Disaster Response —— Kristen Okorn THURSDAY, MAY 1 10:15 – 10:30 AM —— Getting the Big Picture with Global Precipitation —— George Huffman 3:45 – 4:00 PM —— PACE —— Morgaine McKibben 4:00 – 4:15 PM —— Using AI to Model Global Clouds Better Than Current GCRMs —— Tianle Yuan 6:05 – 6:20 PM —— Science Explorer (SciX): Accelerating the Discovery of NASA Science —— Mike Kurtz Share Details Last Updated Apr 24, 2025 Related Terms Earth Science View the full article
  20. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) EnerVenue’s batteries don’t require energy-consuming temperature control or maintenance and can be stored anywhere, including in the company’s “EnerStation” battery station, pictured here.Credit: EnerVenue, Inc. Battery technology that has powered the International Space Station, the Hubble Space Telescope, and numerous satellites is now storing energy on Earth, enabling intermittent renewable energy sources to provide steady power. These extremely durable batteries were made more affordable for the average consumer by California-based EnerVenue Inc., which was able to bring down the cost of the technology by removing the need for expensive platinum, making terrestrial applications more feasible. With the cost-saving innovations, the batteries could be used for power plants, businesses, and homes. NASA first used nickel-hydrogen batteries in 1990 for the Hubble Space Telescope — the technology’s debut in low-Earth orbit on a major project. It was the primary power system for the International Space Station for more than 18 years before eventually being replaced by lithium-ion batteries. Each nickel-hydrogen cell consists of a nickel cathode — the positive electrode — and a hydrogen-catalyzed anode, which typically uses expensive platinum. Charging the battery generates hydrogen inside the highly pressurized vessel, which then gets reabsorbed on discharge. Dr. Yi Cui , EnerVenue Chief Technology Advisor, developed a technique to remove platinum from these batteries, dramatically reducing costs of technology that had grown more sophisticated over decades of NASA adapting it to high-level missions. Much of the groundwork for EnerVenue’s batteries was laid by NASA. Having laid the foundation and tested it in space, NASA paved the way for a durable power source that is now available for several applications on Earth. Read More Share Details Last Updated Apr 24, 2025 Related TermsTechnology Transfer & SpinoffsSpinoffsTechnology Transfer Explore More 2 min read NASA Tech Developed for Home Health Monitoring Article 2 weeks ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space Article 4 weeks ago 2 min read NASA Expertise Helps Record all the Buzz Article 1 month ago Keep Exploring Discover Related Topics Missions Technology Transfer & Spinoffs Hubble’s Cultural Impact Solar System View the full article
  21. NASA astronaut and Expedition 73 Flight Engineer Jonny KimCredit: Gagarin Cosmonaut Training Center Students from Santa Monica, California, will connect with NASA astronaut Jonny Kim as he answers prerecorded science, technology, engineering, and mathematics-related questions aboard the International Space Station. Watch the 20-minute space-to-Earth call at 12:10 p.m. EDT on Tuesday, April 29, on the NASA STEM YouTube Channel. Media interested in covering the event must RSVP by 5 p.m., Friday, April 25, to Esmi Careaga at: ecareaga@smmusd.org or 805-651-3204 x71582. The event is hosted by Santa Monica High School, Kim’s alma mater, and includes students from Roosevelt Elementary School and Lincoln Middle School in Santa Monica. The schools hope to inspire students to follow their dreams and explore their passions through curiosity, service, and interest in learning. For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network. Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery. See videos highlighting space station research at: https://www.nasa.gov/stemonstation -end- Gerelle Dodson Headquarters, Washington 202-358-1600 gerelle.q.dodson@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Apr 23, 2025 LocationNASA Headquarters Related TermsNASA HeadquartersHumans in SpaceInternational Space Station (ISS)Johnson Space Center View the full article
  22. The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI). This is one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby. This image was taken at 1:51 p.m. EDT (17:51 UTC), April 20, 2025, near closest approach, from a range of approximately 660 miles (1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the image shown was taken approximately 40 seconds beforehand. The image has been sharpened and processed to enhance contrast.NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab NASA’s Lucy spacecraft took this image of the main belt asteroid Donaldjohanson during its flyby on April 20, 2025, showing the elongated contact binary (an object formed when two smaller bodies collide). This was Lucy’s second flyby in the spacecraft’s 12-year mission. Launched on Oct. 16, 2021, Lucy is the first space mission sent to explore a diverse population of small bodies known as the Jupiter Trojan asteroids. These remnants of our early solar system are trapped on stable orbits associated with – but not close to – the giant planet Jupiter. Lucy will explore a record-breaking number of asteroids, flying by three asteroids in the solar system’s main asteroid belt, and by eight Trojan asteroids that share an orbit around the Sun with Jupiter. April 20, 2025 marked Lucy’s second flyby. The spacecraft’s next target is Trojan asteroid Eurybates and its satellite Queta in Aug. 2027. Lucy is named for a fossilized skeleton of a prehuman ancestor. This flyby marked the first time NASA sent a spacecraft to a planetary body named after a living person. Asteroid Donaldjohanson was unnamed before becoming a target. The name Donaldjohanson was chosen in honor of the paleoanthropologist who discovered the Lucy fossil, Dr. Donald Johanson. Learn more about Lucy’s flyby of asteroid Donaldjohanson. Image credit: NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab View the full article
  23. NASA Astronaut Don Pettit Post-Flight News Conference
  24. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 5 min read Sols 4518-4519: Thumbs up from Mars This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4516. NASA/JPL-Caltech Written by Susanne Schwenzer, Planetary Geologist at The Open University Earth planning date: Monday, 21st April 2025 It is Easter Monday, a bank holiday here in the United Kingdom. I am Science Operations Working Group Chair today, a role that is mainly focused on coordinating all the different planning activities on a given day, and ensuring all the numbers are communicated to everyone. And with that I mean making sure that everyone knows how much power we have and other housekeeping details. It’s a fun role, but on the more technical side of the mission, which means I don’t get to look at the rocks in the workspace as closely as my colleagues who are planning the activities of the instruments directly investigating the rocks. It’s a lot of fun to see how planning day after planning day things come together. But why am I doing this on a bank holiday, when I could well be on my sofa? I just was reminded in the hours before planning how much fun it actually is to spend a little more time looking at all the images – and not the usual hectic rush coming out of an almost complete work day (we start at 8 am PDT, which is 4 pm here in the UK!). So, I enjoyed the views of Mars, and I think Mars gave me a thumbs up for it, or better to say a little pointy ‘rock up’ in the middle of a sandy area, as you can see in the image above! I am sure you noticed that our team has a lot to celebrate! Less than a month after the publication about alkanes made headlines in many news outlets, we have another big discovery from our rover, now 4518 sols on Mars: in three drill holes, the rover instruments detected the mineral siderite, a carbonate. That allowed a group of scientists from our team to piece together the carbon cycle of Mars. If you want to know more, the full story is here. I am looking forward to our next big discovery. Who knows that that is? Well, it would not be exploration, if we knew! But today’s workspace looks intriguing with all its little laminae (the very fine layers) and its weathering patterns that look like a layered cake that little fingers have picked the icing off! (Maybe I had too many treats of the season this weekend? That’s for you to decide!) But then Mars did what it did so many times lately: we did not pass our slip risk assessment and therefore had to keep the arm stowed. I think there is a direct link between geologists getting exciting about all the many rocks, and a wheel ending up on one of them, making it unsafe to unstow the arm. There was a collective sigh of disappointment – and then we moved on to what we actually can do. And that is a lot of imaging. As exciting as getting an APXS measurement and MAHLI images would be, Mastcam images, ChemCam chemistry and RMI images are exciting, too. The plan starts with three Mastcam activities to document the small troughs that form around some of the rocks. Those amount to 15 frames already, then we have a ten-frame mosaic on a target called “West Fork,” which is looking at rocks in the middle ground of the scenery and display interesting layering. Finally, a 84 frame mosaic will image Texoli, one of the large buttes in our neighbourhood, in all its beauty. It shows a series of interesting layers and structures, including some that might be akin to what we expect the boxwork structures to look like. Now, did you keep count? Yes, that’s 109 frames from Mastcam – and add the one for the documentation of the LIBS target, too, and Mastcam takes exactly 110 frames! ChemCam is busy with a target called “Lake Poway,” which represents the bedrock around us. Also in the ChemCam activities is a long distance RMI upwards Mt Sharp to the Yardang unit. After the drive – more of that later – ChemCam as an automated observation, we call it AEGIS, where ChemCam uses a clever algorithm to pick its own target. The drive will be very special today. As you may have seen, we are imaging our wheels in regular intervals to make sure that we are keeping track of the wear and tear that over 34 km of offroad driving on Mars have caused. For that, we need a very flat area and our rover drivers did locate one due West of the current rover positions. So, that’s where we will drive first, do the full MAHLI wheel imaging and then return to the originally planned path. That’s where we’ll do a MARDI image, post drive imaging to prepare the planning for the next sols, and the above mentioned AEGIS. In addition to all the geologic investigations, there is continuous environmental monitoring ongoing. Curiosity will look at opacity and dust devils, and REMS will switch on regularly to measure wind speeds, humidity, temperature, ultraviolet radiation and pressure throughout the plan. Let’s not forget DAN, which monitors water and chlorine in the subsurface as we are driving along. It’s so easy to forget the ones that sit quietly in the back – but in this case, they have important data to contribute! Explore More 3 min read Sols 4515-4517: Silver Linings Article 2 days ago 2 min read Origins Uncertain: ‘Skull Hill’ Rock Article 6 days ago 2 min read Sols 4511-4512: Low energy after a big weekend? Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Resources Explore this page for a curated collection of Mars resources. Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… The Mars Report The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you… View the full article
  25. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s AVIRIS-3 airborne imaging spectrometer was used to map a wildfire near Cas-tleberry, Alabama, on March 19. Within minutes, the image was transmitted to firefighters on the ground, who used it to contain the blaze. NASA/JPL-Caltech, NASA Earth Observatory The map visualizes three wavelengths of infrared light, which are invisible to the human eye. Orange and red areas show cooler-burning areas, while yellow indicates the most intense flames. Burned areas show up as dark red or brown.NASA/JPL-Caltech, NASA Earth Observatory Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes, enabling firefighters in Alabama to limit the spread of wildfires and save buildings. A NASA sensor recently brought a new approach to battling wildfire, providing real-time data that helped firefighters in the field contain a blaze in Alabama. Called AVIRIS-3, which is short for Airborne Visible Infrared Imaging Spectrometer 3, the instrument detected a 120-acre fire on March 19 that had not yet been reported to officials. As AVIRIS-3 flew aboard a King Air B200 research plane over the fire about 3 miles (5 kilometers) east of Castleberry, Alabama, a scientist on the plane analyzed the data in real time and identified where the blaze was burning most intensely. The information was then sent via satellite internet to fire officials and researchers on the ground, who distributed images showing the fire’s perimeter to firefighters’ phones in the field. All told, the process from detection during the flyover to alert on handheld devices took a few minutes. In addition to pinpointing the location and extent of the fire, the data showed firefighters its perimeter, helping them gauge whether it was likely to spread and decide where to add personnel and equipment. As firefighters worked to prevent a wildfire near Perdido, Alabama, from reaching nearby buildings, they saw in an infrared fire map from NASA’s AVIRIS-3 sensor that showed the fire’s hot spot was inside its perimeter. With that intelligence, they shifted some resources to fires in nearby Mount Vernon.NASA/JPL-Caltech, NASA Earth Observatory “This is very agile science,” said Robert Green, the AVIRIS program’s principal investigator and a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California, noting AVIRIS-3 mapped the burn scar left near JPL by the Eaton Fire in January. Observing the ground from about 9,000 feet (3,000 meters) in altitude, AVIRIS-3 flew aboard several test flights over Alabama, Mississippi, Florida, and Texas for a NASA 2025 FireSense Airborne Campaign. Researchers flew in the second half of March to prepare for prescribed burn experiments that took place in the Geneva State Forest in Alabama on March 28 and at Fort Stewart-Hunter Army Airfield in Georgia from April 14 to 20. During the March span, the AVIRIS-3 team mapped at least 13 wildfires and prescribed burns, as well as dozens of small hot spots (places where heat is especially intense) — all in real time. At one of the Mount Vernon, Alabama, fires, firefighters used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings.NASA/JPL-Caltech, NASA Earth Observatory Data from imaging spectrometers like AVIRIS-3 typically takes days or weeks to be processed into highly detailed, multilayer image products used for research. By simplifying the calibration algorithms, researchers were able to process data on a computer aboard the plane in a fraction of the time it otherwise would have taken. Airborne satellite internet connectivity enabled the images to be distributed almost immediately, while the plane was still in flight, rather than after it landed. The AVIRIS team generated its first real-time products during a February campaign covering parts of Panama and Costa Rica, and they have continued to improve the process, automating the mapping steps aboard the plane. ‘Fan Favorite’ The AVIRIS-3 sensor belongs to a line of imaging spectrometers built at JPL since 1986. The instruments have been used to study a wide range of phenomena — including fire — by measuring sunlight reflecting from the planet’s surface. During the March flights, researchers created three types of maps. One, called the Fire Quicklook, combines brightness measurements at three wavelengths of infrared light, which is invisible to the human eye, to identify the relative intensity of burning. Orange and red areas on the Fire Quicklook map show cooler-burning areas, while yellow indicates the most intense flames. Previously burned areas show up as dark red or brown. Another map type, the Fire 2400 nm Quicklook, looks solely at infrared light at a wavelength of 2,400 nanometers. The images are particularly useful for seeing hot spots and the perimeters of fires, which show brightly against a red background. A third type of map, called just Quicklook, shows burned areas and smoke. The Fire 2400 nm Quicklook was the “fan favorite” among the fire crews, said Ethan Barrett, fire analyst for the Forest Protection Division of the Alabama Forestry Commission. Seeing the outline of a wildfire from above helped Alabama Forestry Commission firefighters determine where to send bulldozers to stop the spread. Additionally, FireSense personnel analyzed the AVIRIS-3 imagery to create digitized perimeters of the fires. This provided firefighters fast, comprehensive intelligence of the situation on the ground. That’s what happened with the Castleberry Fire. Having a clear picture of where it was burning most intensely enabled firefighters to focus on where they could make a difference — on the northeastern edge. Then, two days after identifying Castleberry Fire hot spots, the sensor spotted a fire about 4 miles (2.5 kilometers) southwest of Perdido, Alabama. As forestry officials worked to prevent flames from reaching six nearby buildings, they noticed that the fire’s main hot spot was inside the perimeter and contained. With that intelligence, they decided to shift some resources to fires 25 miles (40 kilometers) away near Mount Vernon, Alabama. To combat one of the Mount Vernon fires, crews used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings. “Fire moves a lot faster than a bulldozer, so we have to try to get around it before it overtakes us. These maps show us the hot spots,” Barrett said. “When I get out of the truck, I can say, ‘OK, here’s the perimeter.’ That puts me light-years ahead.” AVIRIS and the Firesense Airborne Campaign are part of NASA’s work to leverage its expertise to combat wildfires using solutions including airborne technologies. The agency also recently demonstrated a prototype from its Advanced Capabilities for Emergency Response Operations project that will provide reliable airspace management for drones and other aircraft operating in the air above wildfires. NASA Helps Spot Wine Grape Disease From Skies Above California News Media Contacts Andrew Wang / Jane J. Lee Jet Propulsion Laboratory, Pasadena, Calif. 626-379-6874 / 818-354-0307 andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov 2025-058 Share Details Last Updated Apr 23, 2025 Related TermsEarth ScienceAirborne ScienceEarthEarth Science DivisionElectromagnetic SpectrumWildfires Explore More 4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups… Article 1 day ago 3 min read Celebrating Earth as Only NASA Can Article 2 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data Article 7 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
×
×
  • Create New...