Members Can Post Anonymously On This Site
-
Posts
7,813 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 13 min read The Earth Observer Editor’s Corner: July–September 2025 NOTE TO READERS: After more than three decades associated with or directly employed by NASA, Steve Platnick [GSFC—Deputy Director for Atmospheres, Earth Sciences Division] stepped down effective August 8, 2025. Steve began his civil servant career at GSFC in 2002, but his GSFC association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET). During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. He was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, where he helped advance several key components of the MODIS instrument. He was also the NASA Lead/co-Lead for the Suomi National Polar-orbiting Partnership (Suomi NPP), Atmosphere Discipline from 2012–2020 where he focused on operational cloud optical and microphysical products. In 2008, Steve became the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office that supported airborne sensors, ground networks, and calibration labs. The Kudos article titled “Steve Platnick Steps Down from NASA After 34 Years of Service” includes a more detailed account of Steve’s career and includes a list of awards he has received. Steve’s departure leaves a vacancy in the author’s chair for “The Editor’s Corner” – another role Steve filled as EOS Senior Project Scientist. Barry Lefer [NASA Headquarters—Associate Director of Research, Earth Science Division] graciously agreed to serve as guest author of the editorial in the current compilation. I want to thank Steve for all his support for The Earth Observer over the years and thank Barry for stepping in as the author of “The Editor’s Corner” for the time being. –Alan Ward, Executive Editor, The Earth Observer I begin this editorial with news of a successful Earth science launch. At 5:40 PM Indian Standard Time (IST), or 8:10 AM Eastern Daylight Time (EDT), on July 30, 2025, the joint NASA–Indian Space Research Organization (ISRO) Synthetic Aperture Radar, or NISAR, mission launched from the Satish Dhawan Space Centre on India’s southeastern coast aboard an ISRO Geosynchronous Satellite Launch Vehicle (GSLV) rocket 5. The ISRO ground controllers began communicating with NISAR about 20 minutes after launch, at just after 8:29 AM EDT, and confirmed it is operating as expected. NISAR will use two different radar frequencies (L-band SAR and S-band SAR) to penetrate clouds and forest canopies. Including L-band and S-band radars on one satellite is an evolution in SAR airborne and space-based missions that, for NASA, started in 1978 with the launch of Seasat. In 2012, ISRO began launching SAR missions starting with Radar Imaging Satellite (RISAT-1), followed by RISAT-1A in 2022, to support a wide range of applications in India. Combining the data from these two radars will allow researchers to systematically and globally map Earth – measuring changes of our planet’s surface down to a centimeter (~0.4 inches). With this detailed view, researchers will have an unprecedented ability to observe and measure complex processes from ecosystem disturbances to natural hazards to groundwater issues. All NISAR science data will be freely available and open to the public. Following the successful launch, NISAR entered an approximately 90-day commissioning phase to test out systems before science operations begin. A key milestone of that phase was the completion of the deployment of the 39-ft (12-m) radar antenna reflector on August 15 – see Video. The process began on August 9, when the satellite’s boom, which had been tucked close to its main body, started unfolding one joint at a time until it was fully extended about four days later. The reflector assembly is mounted at the end of the boom. On August 15, small explosive bolts that held the reflector assembly in place were fired, enabling the antenna to begin a process called the bloom – its unfurling by the release of tension stored in its flexible frame while stowed like an umbrella. Subsequent activation of motors and cables pulled the antenna into its final, locked position. Video: NISAR mission team members at NASA JPL, working with colleagues in India, executed the deployment of the satellite’s radar antenna reflector on Aug. 15, 2025. About 39 feet (12 meters) in diameter, the reflector directs microwave pulses from NISAR’s two radars toward Earth and receives the return signals. Credit: NASA/JPL-Caltech The radar reflector will be used to direct and receive microwave signals from the two radars. By interpreting the differences between the L-band and S-band measurements, researchers will be able to discern characteristics about the surface below. As NISAR passes over the same locations twice every 12 days, scientists can evaluate how those characteristics have changed over time to reveal new insights about Earth’s dynamic surfaces. With the radar reflector now in full bloom, scientists have turned their attention to tuning and testing the radar and preparing NISAR for Science Operations, which are anticipated to start around the beginning of November. Congratulations to the NISAR team on a successful launch and deployment of the radar reflector. Along with the science community, I am excited to see what new discoveries will result from the data collected by the first Earth System Observatory mission. Turning now to news from active missions, the Soil Moisture Active Passive (SMAP) mission has collected over 10 years of global L-band radiometry observations that have resulted in surface soil moisture, vegetation optical depth (VOD), and freeze/thaw state estimates that outperform past and current products. A decade of SMAP soil moisture observations has led to scientific achievements, including quantifying the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. The data have been widely used by the Earth system science community to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction models. SMAP’s Early Adopter program has helped connect SMAP data with people and organizations that need it. The program has increased the awareness of SMAP mission products, broadened the user community, increased collaboration with potential users, improved knowledge of SMAP data product capabilities, and expedited the distribution and uses of mission products for a suite of 16 products available. For example, the L-band VOD, which is related to water content in vegetation, is being used to better understand water exchanges in the soil–vegetation–atmosphere continuum. The SMAP Active–Passive (AP) algorithm – based on data from SMAP and the European Copernicus Program Sentinel-1 C-band synthetic aperture radar (SAR) – will be adapted to work with L-band data from the newly launched NISAR mission. The result will be estimates of global soil moisture at a spatial resolution of 1 km (0.62 mi) or better approximately once per week. In addition, the data collected during the SMAP mission would be continued and further enhanced by the European Union’s Copernicus Imaging Microwave Radiometer (CIMR) mission if it launches. This proposed multichannel microwave radiometry observatory includes L-band and four other microwave channels sharing a large mesh reflector – like the one used with SMAP. The plan calls for CIMR to follow a similar approach as SMAP for RFI detection and meet the instrument thermal noise and data latency of SMAP for next-mission desired characteristics. To learn more about what SMAP has accomplished see “A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission.” NASA’s Orbiting Carbon Observatory-2 (OCO-2) has been the “gold standard” for atmospheric carbon dioxide (CO2) observations from space for over a decade. The data returned from OCO-2 provide insights into plant health, forest management, forecasting crop yields, fire-risk models, and anticipating droughts. OCO-3, constructed from spare parts left after OCO-2, was launched to the International Space Station (ISS) in 2019, where it has operated for over five years. OCO-3 extends the global CO2 measurement record while adding new capabilities made possible by being on ISS (e.g., detailed views of urban and tropical regions). The overarching OCO mission hasn’t just about been about data and hardware. Although both those elements are parts of the story, the human stories woven through the mission’s successes and setbacks are really what holds the mission together. The feature, “A Tapestry of Tales: 10th Anniversary Reflections from NASA’s OCO-2 Mission,” sheds light on some of these personal stories from the OCO-2 and OCO-3 missions. The individual tales contained in this article reveal the grit and determination behind the scenes of the success of OCO-2 and OCO-3, from the anxiety and excitement surrounding the launch of OCO-2, to moments of fieldwork in the Nevada desert, to internships where wildfire responders turned to OCO-2 data to improve fire-risk models. Taken together, these stories form a “tapestry” that reveals how the OCO-2 and OCO-3 missions continue to illuminate the dynamics of Earth’s atmosphere – one breath at a time. These personal perspectives underscore that science is not just numbers; it’s people pushing boundaries, navigating failure, and inspiring ways to make our planet safer and healthier. In a time such as this, this is an important reminder. The joint NASA–U.S. Geological Survey (USGS) Landsat program has been a cornerstone of Earth observation for over 50 years. On July 13, Landsat 9 collected its millionth image: a stunning shot of the Arctic National Wildlife Refuge in Alaska – see Figure. Landsat 9, the most recent satellite in the Landsat series, orbits Earth alongside Landsat 8. Together, these satellites collect invaluable data about Earth’s changing land surface every eight days. Figure: This Landsat 9 image showing the Beaufort Sea shoreline off Alaska and Canada is just one of the scenes captured and processed on July 13, 2025— the same day the USGS EROS archive reached a milestone of one million Landsat 9 Level-1 products. This false color image was made with bands 6, 5, and 4 from the Operational Land Imager. This remote area allows the pristine wilderness environment to support a diverse wildlife and unique ecosystem that includes various species of mammals, birds, and fish. Landsat Level-1 products from Landsat 1 through Landsat 9 can be downloaded at no charge from a number of systems – visit the Landsat Data Access webpage to learn more. Credit: Public Domain After collecting more than 3.3 million images over the course of more than 26 years in orbit, Landsat 7 was decommissioned on June 4, 2025. A YouTube video released at the time of decommissioning provides a concise visual summary of the Landsat 7 mission’s achievements – and the technical challenges overcome. In addition, The Earth Observer did a feature for the 20th anniversary of Landsat 7 in the July–August 2019 issue, called “The Living Legacy of Landsat 7: Still Going Strong After 20 Years in Orbit” [Volume 31, Issue 4, pp. 4–14] that is a useful resource to learn more about the history and achievements (through 20 years) of the mission. One of the strengths of the Landsat program is its potential for data integration with other satellites. The Harmonized Landsat and Sentinel-2 (HLS) product exemplifies this collaborative approach by combining data from Landsat 8 and 9 with data from the European Space Agency’s Copernicus Sentinel-2 A, B, and C missions. Whereas Landsat alone has a repeat time of eight days (i.e., combining Landsat 8 and 9 data); the combined HLS dataset provides imagery for the same location on Earth every 1.6 days – enabling researchers to monitor short-term changes in Earth’s land surface much more effectively than using Landsat or Sentinel-2 data alone. HLS became one of the most-downloaded NASA data products in fiscal year 2024, with continued growth on the horizon. In February 2025, the program expanded with nine new vegetation indices based on HLS data, with historical processing back to 2013 scheduled for completion by early 2026. Low-latency HLS products will also be available in late 2026. For the full story of how HLS came to be – see the feature: “Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation.” Following a 13-month hibernation, the Global Ecosystem Dynamics Investigation (GEDI) mission was reinstalled to its original location aboard the ISS and resumed operations on April 22, 2024. Since this storage period, GEDI’s lasers have been operating nominally and the mission has continued to produce high-quality observations of the Earth’s three-dimensional structure, amassing 33 billion land surface returns as of November 27, 2024. The mission team has been actively processing and releasing post-storage data to the public, with Version 2.1 – GEDI L1B, L2A, L2B, and L4A data products, which include data through November 2024, all available for download. The new L4C footprint-level Waveform Structural Complexity Index (WSCI) product using pre-storage data has also been released. Looking ahead, the team is preparing Version 3.0 (V3) of all data products, which will incorporate post-storage data while improving quality filtering, geolocation accuracy, and algorithm performance. The 2025 GEDI Science Team Meeting (STM) brought together the mission science team, competed science team, representatives from the distributed active archive centers (DAACs), collaborators, stakeholders, and data users. Notably, it marked the first in-person gathering of the second competed science team, who shared updates on their research projects. The STM held an important space for brainstorming, knowledge-sharing, and discussion as the GEDI mission continues to flourish in its second epoch. To learn more, see “Summary of the 2025 GEDI Science Team Meeting.” Shifting focus to the boreal forests of North America, the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is now in its final year, marking the end of a decade-long scientific endeavor that has transformed our understanding of environmental change in Alaska and western Canada. This ambitious campaign, funded primarily by NASA’s Terrestrial Ecology Program, has successfully progressed through three distinct phases: ecosystem dynamics (2015–2018), ecosystem services (2017–2022), and the current analysis and synthesis phase (2023–present). As ABoVE approaches its conclusion, the program has grown to encompass 67 NASA-funded projects with over 1000 participating researchers – a testament to the collaborative scale required to address complex Arctic–boreal ecosystem questions. The program’s integrated approach, combining field research, airborne campaigns, and satellite remote sensing, has generated unprecedented insights into how environmental changes in these northern regions affect both vulnerable ecosystems and society. The recent 11th – and final – ABoVE Science Team Meeting was an opportunity to showcase the program’s evolution from data collection to synthesis, highlighting successful community engagement initiatives, cutting-edge research on carbon dynamics and ecosystem responses, and innovative science communication strategies that have made this complex research accessible to diverse audiences. With synthesis activities now underway, ABoVE is positioned to deliver comprehensive insights that will inform Arctic and boreal research for years to come. To learn more, see “Summary of the 11th and Final ABoVE Science Team Meeting.” Last but certainly not least, I want to both recognize and congratulate Compton J. Tucker [GSFC—Senior Researcher]. Compton retired from NASA in March 2025 after 48 years of public service, and then in April, was among 149 newly elected members to the National Academy of Sciences (NAS) – which is one of the highest honors in American science. This recognition from NAS brings Compton’s career full circle. He came to GSFC as a NAS postdoc before joining NASA as a civil servant. Compton is a pioneer in the field of satellite-based environmental analysis, using data from various Landsat missions and from the National Oceanographic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument. His research has focused on global photosynthesis on land, determining land cover, monitoring droughts and food security, and evaluating ecologically coupled disease outbreaks. The Kudos, “Compton J. Tucker Retires from NASA and is Named NAS Fellow,” provides more details about Compton’s research achievements and all of the other scientific awards and honors received throughout his career. Barry Lefer Associate Director of Research, Earth Science Division Share Details Last Updated Sep 10, 2025 Related Terms Earth Science View the full article
-
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 21 min read Summary of the 11th ABoVE Science Team Meeting Introduction The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern regions of North America (Alaska and western Canada) that was developed to understand environmental changes in the region and the implications of those changes for society. Funded primarily by the NASA Terrestrial Ecology Program, this 10-year campaign has included field, airborne, and satellite remote sensing research to address its overarching scientific question of how environmental change in the Arctic and boreal region of western North America will affect vulnerable ecosystems and society. ABoVE deployed in three phases: 1) ecosystem dynamics (2015–2018); 2) ecosystem services (2017–2022); and 3) analysis and synthesis (2023–present). Now in the last year of the third phase, the Science Team (ST) consists of 67 active NASA-funded projects with more than 1000 individuals participating. The ABoVE ST has met yearly to discuss the progress of individual teams, plan joint field work, and discuss synthesis activities. ABoVE was featured in a 2019 The Earth Observer article, titled “Summary of the 2019 ABoVE Science Team Meeting” [July–August 2019, Volume 31, Issue 4, pp. 19–22], as well as a 2022 The Earth Observer article, titled “Summary of the Eighth ABoVE Science Team Meeting” [September–October 2022, Volume 34, Issue 5, pp. 28–33]. Meeting Overview The 11th – and final – ABoVE Science Team Meeting (ASTM11) was held May 12–15, 2025, with 96 registered in-person attendees meeting at the University of Alaska, Fairbanks (UAF) and 67 registered virtual attendees – see Photo 1. The meeting included presentations from Phase 3 projects and synthesis reports from thematic working groups (WGs). ABoVE partners, including collaborators [e.g., the Department of Energy’s Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic), Polar Knowledge Canada (POLAR), the Canadian Forest Service (CFS), and the Government of the Northwest Territories (GNWT)] and representatives from upcoming NASA campaigns focusing on the Arctic, shared updates on their activities. Additionally, the meeting featured sessions highlighting cross-project activities, e.g., ABoVE’s participation in regional fire workshops. The meeting also focused on collaborations with the Scotty Creek Research Station in Canada, the many types of science communication activities during ABoVE, and projects conducting collaborative research with community or regional partners. Photo 1.The 11th Arctic–Boreal Vulnerability Experiment Science Team (ABoVE) meeting group photo of in-person and virtual participants. Photo credit: Peter Griffith, Leane Kending, and David Stroud The meeting included additional team activities designed to encourage collaboration and understanding between team members. There were opportunities for multiple field trips for in-person attendees, including visits to the Alaska Satellite Facility (ASF) at the Geophysical Institute, the Permafrost Tunnel operated by the Cold Regions Research and Engineering Laboratory (CRREL), the Yankovich Road Fire Interpretive Trail, and the Arctic Research Open House at UAF – see ABove Field Trips section to learn more. The meeting offered early career researchers a chance to receive feedback on their posters and participate in an Early Career lunch event. The meeting even hosted an ABoVE bingo competition, which encouraged attendees to make new scientific and social connections – see Photo 2. Photo 2. Scott Goetz [University of Northern Arizona—ABoVE Science Team Lead] poses with ABoVE BINGO winner Wanwan Liang [University of Utah]. Photo credit: Wanwan Liang Meeting Opening The first day of the meeting began with a series of opening remarks from the ABoVE leadership team. Peter Griffith [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications, Inc. (SSAI)—Chief Scientist, Carbon Cycle and Ecosystems Office (CCEO)], Scott Goetz [Northern Arizona University (NAU)—ABoVE ST Lead], and Ryan Pavlick [NASA Headquarters (HQ)—ABoVE Program Manager] all noted the significance of this final meeting and discussed the major scientific advances of ABoVE made possible through the dedication of ST members, WG leads, planning committees, and contributors who have made ABoVE a success. Goetz reviewed the meeting goals and objectives: receive updates about currently funded projects; receive reports on Thematic WG advances with an emphasis on multiple WG and cross-phase synthesis activities; receive updates on research connections with partners and collaborators; discuss, reflect, and document the history of ABoVE, including major advances, lessons learned, and items to accomplish in the time remaining; and celebrate ABoVE success stories, with advice for potential future NASA large-scale coordinated campaigns. Working Group Presentations and Breakouts Throughout the first few days of the meeting, leads for the thematic working groups (WG) presented synthetic overviews of the research efforts of their group members, identified current gaps in planned or completed research, and discussed potential future work. Following these presentations, breakout groups convened to discuss future activities of the WGs. Short summaries of each presentation are available below. Together, these presentations demonstrate the highly interconnected nature of carbon cycles, hydrology, permafrost dynamics, and disturbance regimes in Arctic–boreal ecosystems. The presentations also showcase the substantial ongoing WG efforts to synthesize findings and identify critical knowledge gaps for future research priorities. Vegetation Dynamics Working Group WG Leads: Matthew Macander [Alaska Biological Research, Inc. (ABR)] and Paul Montesano [GSFC/ADNET Systems Inc.] The Vegetation Dynamics WG discussed new advances in understanding Arctic–boreal vegetation structure and function that have been made over the past 10 years through comprehensive biomass maps and multidecadal trend analyses. ABoVE research revealed a critical boreal forest biome shift with greening in nitrogen-rich northern forests and browning in drought-stressed southern forests. The group has identified key knowledge gaps in predicting post-fire vegetation recovery and detecting pervasive declines in vegetation resilience across southern boreal forests. The results suggest higher vulnerability to abrupt forest loss that could dampen the expected increase in carbon sequestration under future climate scenarios. Spectral Imaging Working Group WG Leads: Fred Huemmrich [GSFC/University of Maryland Baltimore County] and Peter Nelson [Laboratory of Ecological Spectroscopy (LECOSPEC)] Over the past year, the Spectral Imaging WG focused on the fundamental scale problem in Arctic ecology, which refers to the mismatch between observation scales and ecological process scales, which span spatial scales from leaf level to larger study areas and temporal scales from minutes to decades. The Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) and AVIRIS-3 datasets provide the first broad-area and high-spatial and spectral resolution coverage of high-latitude terrestrial ecosystems. The WG is now completing a scaling synthesis paper and preparing for the new era of data-rich spectral imaging with improved capabilities in data management, machine learning, and modeling applications for high-latitude research. Modeling Working Group WG Lead: Josh Fisher [Chapman University] The Modeling WG aims to reduce model uncertainties in simulations and projections in the Arctic–boreal region across all ABoVE ecosystem indicators. The WG had polled the ST to determine the variables most needed for their Earth system models and is now using the field, airborne, and satellite datasets to better constrain these models. This WG discussed the benefits to the modeling community of transforming the more than 100 ABoVE datasets into a common grid and projection format used by modelers. Carbon Dynamics Working Group WG Leads: Jonathan Wang [University of Utah] and Jennifer Watts [Woodwell Climate Research Center (WCRC)] The Carbon Dynamics WG has focused its recent work on three areas: decadal syntheses of carbon dioxide (CO2) fluxes from eddy covariance towers, machine learning approaches to upscaling wetland and lake methane (CH4) emissions, and carbon flux modeling across the Arctic–boreal zone. The research integrated atmospheric CO2 observations to improve carbon flux estimates and examined wildfire impacts on both carbon emissions and albedo changes. A significant component of the work involved comparing top-down versus bottom-up carbon flux models, with particular attention to permafrost and peatland regions. Hydrology-Permafrost-Wetlands Working Group WG Leads: Laura Bourgeau-Chavez [Michigan Technological University], David Butman [University of Washington], John Kimball [University of Montana], and Melissa Schwab [University of California, Irvine] The Hydrology–Permafrost–Wetlands WG focused on the processes controlling changes in permafrost distribution and properties and their impacts. There was discussion about the nature, causes, and consequences of hydrologic change (e.g. water storage, mobility, and distribution) and about ecosystem water, energy, and carbon cycle linkages. The presenters mentioned integration of ABoVE datasets with NASA satellite missions [e.g., NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) and Surface Water and Ocean Topography (SWOT) missions]. WG members discussed the connections between ABoVE research and several crosscutting initiatives, including two NASA Arctic coastlines efforts [e.g., Frontlines Of Rapidly Transforming Ecosystems Earth Venture Suborbital (FORTE EVS) campaign and NASA’s Arctic-COastal Land Ocean InteRactionS (COLORS)] and the WCRC’s Permafrost Pathways. Disturbance Working Group WG Leads: Dong Chen [University of Maryland, College Park] and Jinhyuk Kim [University of California, Irvine] The Disturbance WG leads presented their decade-long perspective on disturbance-related research in the ABoVE domain. The presentation incorporated artificial intelligence (AI)-generated summaries of ABoVE-affiliated research across multiple disturbance types, including boreal wildfires, tundra wildfires, and thermokarst/permafrost degradation processes. Chen and Kim acknowledged the extensive contributions from researchers and WG members while outlining future directions for disturbance research. Success Stories Four “Success Story” presentations and panels took place during ASTM11, which showcased efforts of ABoVE ST members and the leadership team to create and coordinate engagement efforts that spanned individual projects. Success Story 1: ABoVE Participation in Regional Fire Workshops A substantial portion of ABoVE research has focused on wildfire, and many members of the ST have participated in domestic and international wildfire efforts, connecting researchers with land managers across Alaska and Canada. Randi Jandt [UAF] discussed the Alaska Fire Science Consortium workshops (held in 2017 and 2022). Jenn Baltzer [Wilfred Laurier University (WLU), Canada] discussed Northwest Territories workshops (held in 2014 and 2025), both of which occurred in response to extreme fire seasons in the region. Laura Bourgeau-Chavez outlined ABoVE’s participation in all of these workshops. The workshops facilitated knowledge exchange and collaboration on critical wildfire management priorities, including fire risk assessment, real-time modeling, post-fire effects, and climate change impacts on fire regimes. Key features included small focus groups, field trips to command centers and fire-affected areas, and integration of Indigenous knowledge with new technologies to inform management practices and climate preparedness strategies. Success Story 2: Collaborations with Scotty Creek Research Station (SCRS) ASTM11 participants watched the film, “Scotty Creek Research Community – The Spirit of Collaboration,” about the SCRS, Canada’s first and only Indigenous-led research station. Following the film, station team members participated in a panel discussion. Ramona Pearson [Ramona Pearson Consulting, Canada], Maude Auclair [WLU], Mason Dominico [WLU], Michael McPhee [Sambaa K’e First Nation, Canada], and William “Bill” Quinton [WLU] discussed their decade-long collaboration with ABoVE. The partnership involved ABoVE collecting airborne hyperspectral, lidar, and radar imagery, while SCRS researchers provided field data for calibration and validation. In 2022, management of the station transitioned to Łı́ı́dlı̨ı̨ Kų́ę́ First Nation (LKFN, Canada), and ABoVE continued collaborating through knowledge exchange, including with early-career researchers and interns. When a 2022 fire destroyed the field station and surrounding area, ABoVE flew additional flights to capture airborne imagery observations to allow comparison of pre- and post-fire conditions. Success Story 3: Science Communication During the ABoVE field campaign, ST members and CCEO staff engaged in multiple strategies to communicate research results to the public. The activities included interactive engagement through airborne open houses and guest flights, ST member narratives in the “Notes from the Field” blog posts on the NASA Earth Observatory website, and professional multimedia production, including Earth Observatory content and award-winning videos. This multifaceted strategy demonstrates effective scientific communication through direct public engagement and high-quality, multimedia storytelling, making complex research accessible to diverse audiences. Success Story 4: Engagement Activities This session highlighted several examples of community engagement across the ABoVE domain. Gerald “J.J.” Frost [ABR] discussed synthesizing ecosystem responses and elder observations in western Alaska for his ABoVE project. In another example, ABoVE researchers from Michigan Tech Research Institute (MTRI) partnered with Ducks Unlimited Canada (DUC) and local organizations. Dana Redhuis [MTRI] and Rebecca Edwards [DUC] described their on-the-land camps that provide hands-on training for Northwest Territories youth in wetlands education and ecological monitoring. Kevin Turner [Brock University, Canada] showcased his work with members of the Vuntut Gwitchin First Nation in Old Crow Flats, Yukon, evaluating how climate and land cover change influence water dynamics and carbon balance. These activities demonstrate collaborative research that integrates Indigenous and Western knowledge approaches to address climate change impacts. ABoVE Phase 3 Project Presentations Project leads of the 20 NASA-funded ABoVE Phase 3 projects presented updates that were organized by scientific theme. The presentations spanned multiple days of the meeting. Table 1 below provides all the project titles, presenter names, and links to each project and presentation. Science results from four of the presentations are shown in Figures 1–4 below as indicated in the table. Table 1. An overview ofABoVE Phase 3 projects and presenters. The Project name includes the last name of the Principal Investigator, NASA funding program (TE for Terrestrial Ecology), the year of the NASA solicitation funding the research, and provides a hyperlink to the Project Profile. A hyperlink to each presentation is provided as either PowerPoint (PPT) file or PDF. Project Carbon Presenter(s) Bloom (TE 2021): Using CO2, CH4 and land-surface constraints to resolve sign and magnitude of northern high latitude carbon-climate feedbacks [PDF] Eren Bilir [NASA/Jet Propulsion Laboratory (JPL)]; Principal Investigator (PI): Alexis (Anthony) Bloom [NASA/Jet Propulsion Laboratory (JPL)] Butman (TE 2021): Do changing terrestrial-aquatic interfaces in Arctic-boreal landscapes control the form, processing, and fluxes of carbon? [PPT] David Butman [University of Washington] – see Figure 1 Watts (TE 2021): Contributions of tundra and boreal systems to radiative forcing in North America and Russia under contemporary and future conditions [PPT] Jennifer Watts [Woodwell Climate Research Center] Miller-S (TE 2021): A synthesis and reconciliation of greenhouse gas flux estimates across the ABoVE domain [PDF] Scot Miller [Johns Hopkins University] Michalak (TE 2021): Quantifying climate sensitivities of photosynthesis and respiration in Arctic and boreal ecosystems from top-down observational constraints [PDF] Wu Sun and Jiaming Wen [both Carnegie Institution for Science, CI]; PI: Anna Michalak, [Carnegie Institution for Science] Fire Presenter(s) Bourgeau-Chavez (TE 2021): Integrating remote sensing and modeling to better understand the vulnerability of boreal-taiga ecosystems to wildfire [PPT] Laura Bourgeau-Chavez [Michigan Technological University (MTU)] Walker (TE 2021): Drivers and Impacts of Reburning in boreal forest Ecosystems (DIRE) [PDF] Jeremy Forsythe [Northern Arizona University (NAU)]; PI: Xanthe Walker [NAU] Wang (TE 2021): Quantifying disturbance and global change impacts on multi-decadal trends in aboveground biomass and land cover across Arctic-boreal North America [PPT] Jonathan Wang [University of Utah]– see Figure 2 Wildlife Presenter(s) Boelman (TE 2021): The future of the Forest-Tundra Ecotone: A synthesis that adds interactions among snow, vegetation, and wildlife to the equation [PPT] Natalie Boelman [Lamont-Doherty Earth Observatory, Columbia University] French (TE 2021): Informing wetland policy and management for waterfowl habitat and other ecosystem services using multi-frequency synthetic aperture radar [PPT] Nancy French [MTU] – see Figure 3 Hydrology / Permafrost Presenter(s) Du (TE 2021): High resolution mapping of surface soil freeze thaw status and active layer thickness for improving the understanding of permafrost dynamics and vulnerability [PPT] Jinyang Du [University of Montana] Miller (TE 2021): Enhanced methane emissions in transitional permafrost environments: An ABoVE phase 3 synthesis investigation [PPT] Charles “Chip” Miller [NASA/JPL] Tape (TE 2021): Characterizing a widespread disturbance regime in the ABoVE domain: Beaver engineering [PPT] Kenneth Tape [University of Alaska, Fairbanks] Zhuang (TE 2021): Role of linked hydrological, permafrost, ground ice, and land cover changes in regional carbon balance across boreal and Arctic landscapes [PDF] Qianlai Zhuang [Purdue University] Vegetation Structure Presenter(s) Duncanson (TE 2021): Mapping boreal forest biomass recovery rates across gradients of vegetation structure and environmental change [PPT] Paul Montesano [GSFC/ADNET Systems Inc]; PI: Laura Duncanson [University of Maryland]—see Figure 4 Lara (TE 2021): ABoVE-Ground characterization of plant species succession in retrogressive thaw slumps using imaging spectroscopy [PPT] Mark Lara [University of Illinois, Urbana-Champaign] Vegetation Dynamics Presenter(s) Frost (TE 2021): Towards a warmer, less frozen future Arctic: Synthesis of drivers, ecosystem responses, and elder observations along bioclimatic gradients in western Alaska [PPT] Gerald “J.J.” Frost [ABR] Goetz (TE 2021): Mapping and modeling attributes of an Arctic-boreal biome shift: Phase-3 applications within the ABoVE domain [PPT] Scott Goetz [NAU] Liu (TE 2021): Characterizing Arctic-boreal vegetation resilience under climate change and disturbances [PPT] Yanlan Liu [The Ohio State University] Townsend (TE 2021): Functional diversity as a driver of gross primary productivity variation across the ABoVE domain [PPT] Philip Townsend [University of Wisconsin] Determining Aboveground Biomass Density Using ICESat-2 Data and Modeling Figure 1. Despite their relatively small coverage, surface water extent across boreal and arctic lowlands significantly impacts landscape-scale estimates of carbon emissions. The red points on the map in the figure indicates locations of available lake chemistry data derived from ABoVE-supported research, from collaborators, and from a preliminary literature search. Figure credit. David Butman Figure 2. The Arctic-boreal carbon cycle is inextricably linked to vegetation composition and demography, both of which are being altered by climate change, rising levels of atmospheric carbon dioxide, and climate-induced changes in disturbance regimes. The map in the figure shows above-ground biomass (AGB) change across Arctic-boreal North America (2022–1984) created using a machine learning model of AGB trained on from more than 45,000 field plots and 200,000 km2 of airborne lidar data. Figure credit: Wanwan Liang Figure 3. Wetlands provide many ecosystem services, including waterfowl habitat, carbon sequestration, and water quality. Northern wetlands Iin the ABovE study area) are threatened from both land use expansion and climate change disruptions, prompting the need for informed management strategies. Copernicus Sentinel 1 synthetic aperture radar (SAR) data have been used to create this map of flooding (hydroperiod) in wetland areas around the Great Slave Lake in Canada The color code on the map corresponds to the number of times the SAR imagery indicated a place was flooded (inundated). Such information is helpful for predicting within-season changes in wetland extent. Figure credit: Nancy French Figure 4. Advances have been made in mapping aboveground biomass density (AGBD). Shown here as an example is an AGBD map created using stata from the ICESat-2 pan-Boreal 30-m (98-ft) tree height and biomass data product [left] and the ensemble mean of the standard deviation of AGBD, aggregated to modelling tiles [right]. Current research aims to expand these maps and understand regional vegetation changes. Figure credit. Laura Duncanson/data from ORNL DAAC ASTM11 Poster Sessions ASTM11 featured 41 research posters across three sessions, organized by thematic area – see Table 3 and Photo 3. The Poster Session agenda details the range of topics that spanned airborne synthetic aperture radar (SAR) and satellite imagery to northern ecosystem fieldwork. Key research topics that emerged included CO2 and CH4 emissions from terrestrial and aquatic systems, ongoing permafrost thaw, fire impacts on carbon cycling, vegetation mapping and biomass estimation, and the impacts of wildlife on the landscape. Table 2. A breakdown of ASTM11 poster presentations by science theme. Poster Theme Poster Count Carbon Dynamics 5 Crosscutting, Modeling, or Other 6 Fire Disturbance 5 Permafrost, Hydrology, and Wetlands 13 Vegetation Dynamics and Distribution 7 Vegetation Structure and Function 4 Wildlife and Ecosystem Services 1 Photo 3. Poster presentations and sessions during ASTM11 offered opportunities for presenters to share their latest research findings with meeting participants. Photo credit: Elizabeth Hoy ABoVE Field Trips ASTM11 offered multiple field trip options across the Fairbanks region of Alaska. The fieldtrips provided ST members an opportunity to interact with the research community – see Photo 4. Trip to Alaska Satellite Facility (ASF) and Geophysical Institute ASF is a data archive for many SAR datasets from a variety of sensors and has multiple ground station facilities. During the tour, participants visited the ASF operations room and ASF rooftop antenna. The Geophysical Institute tour also featured the Alaska Earthquake Center, Wilson Alaska Technical Center, and Alaska Center for Unmanned Aircraft Systems Integration. Trip to Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel The U.S. Army Core of Engineers CRREL Permafrost Tunnel is located in Fox, AK – about 15 km (9 mi) north of Fairbanks. Over 300 m (984 ft) of tunnel have been excavated, exposing Pleistocene ice and carbon-rich yedoma permafrost that ranges in age from 18,000 to 43,000 years old. The tunnel exposes mammoth and bison bones and a variety of permafrost soils. Ongoing projects in the tunnel cover a range of topics, including engineering and geophysical work, Mars analog studies, and biogeochemistry and microbiology of permafrost soils. Wildfire Walk: Yankovich Road Fire Interpretive Trail On July 11, 2021, a wildfire burned 3.5 acres (14,164 m2) of UAF land. In 2024, the UAF Alaska Fire Science Consortium, Bureau of Land Management Alaska Fire Service, and local artist Klara Maisch collaborated with others to develop the Wildfire Walk at the site. The interpretive trail is an outdoor learning experience with interpretive wayside markers that describe the fire incident, the relationship between wildfire and the boreal forest, fire science and environmental change, and wildfire prevention – see Figure 1. UAF Arctic Research Open House The UAF Arctic Research Open House was an opportunity for ST members and the public to explore the wide range of research happening at UAF and meet other scientists. ABoVE hosted an information table at the event. Photo 4: Collage of images collected during a series of field trips, including [top] the Wildfire Walk along the Alaska Fire Science Consortium, [middle] the Permafrost Tunnel with Tom Douglas [Cold Regions Research and Engineering Laboratory], [bottom left] UAF Arctic Open House ABoVE Table with Margaret “Maggie” Wooton [NASA’s Goddard Space Flight Center (GSFC)/Science System and Applications, Inc. (GSFC/SSAI)], Elizabeth Hoy [GSFC/Global Science & Technology Inc.], and Qiang Zhou [GSFC/SSAI], talking with Logan Berner [Northern Arizona University], [bottom right] the Alaska Satellite Facility ground receiving antenna. Photo credit: Elizabeth Hoy Research Connections The success of ABoVE as a large-scale research study over the Arctic and boreal regions within and outside the United States depended on collaboration with multiple organizations. Many of the ABoVE collaborators were able to present at ASTM11. Andrew Applejohn [Polar Knowledge Canada (POLAR)] provided details about the scope, mandate, and facilities available through POLAR, a Canadian government agency that has partnered with the ABoVE ST for the duration of the campaign. Ryan Connon [Government of the Northwest Territories (GNWT)] discussed the decade-long collaboration between ABoVE and the GNWT, including knowledge sharing of wildlife collar data, field-data ground measurements, and remote sensing analyses. Gabrielle Gascon [Canadian Forest Service (CFS), Natural Resources Canada] explained the scope of Canada’s National Forest Inventory and the current CFS focus on wildfire and the CFS’s other areas of research related to the northern regions. Another presentation featured information about various vegetation mapping initiatives where Matthew Macander discussed an Alaska-based effort called AKVEG Map, a vegetation plot database, and Logan Berner [NAU] detailed a pan-Arctic plant aboveground biomass synthesis dataset. Brendan Rogers [WCRC] showcased research from Permafrost Pathways, designed to bring together permafrost-related science experts with local communities to inform Arctic policy and develop adaptation and mitigation strategies to address permafrost thaw. NGEE-Arctic is another U.S. government effort that partnered specifically with ABoVE for the duration of the two efforts, and Bob Bolton [Oak Ridge National Laboratory (ORNL)] provided updates on the project. Tomoko Tanabe [Japan’s National Institute of Polar Research (JNIPR)] gave a presentation about NIPR to better inform ABoVE scientists about other international Arctic efforts, including a new Japanese Arctic research initiative called the Arctic Challenge for Sustainability III (ArCS III), designed to address social issues related to environmental and social changes in the Arctic. Additional Presentations An additional presentation aimed to keep the ABoVE ST informed of future NASA Arctic research efforts. Kelsey Bisson [NASA HQ—Program Scientist for the Ocean Biology and Biogeochemistry Program] discussed NASA Arctic-COLORS and Maria Tzortziou [City University of New York/Columbia University, LDEO] discussed the FORTE EVS campaign. The proposed Arctic-COLORS field campaign would quantify the biogeochemical and ecological response of Arctic nearshore systems to rapid changes in terrestrial fluxes and ice conditions. The NASA FORTE EVS campaign will fill a critical gap in understanding Alaska’s northernmost ecosystems by investigating eroding coastlines, rivers, deltas, and estuaries that connect land and sea systems, using airborne platforms. Scott Goetz continued with a presentation on U.S. efforts to plan the International Polar Year, scheduled for 2032–2033. Ryan Pavlick provided details on the NISAR mission, which launched after the meeting on July 30, 2025, and discussed other possible future NASA missions. A Career Trajectory panel featured Jennifer Watts, Jonathan Wang, Brendan Rogers, and Xiaoran “Seamore” Zhu [Boston University]. The panelists discussed opportunities for researchers from different academic backgrounds and at different career stages, and they provided details about how ABoVE has impacted their careers. They also discussed how NASA campaigns offer opportunities for early career scientists to join a team of peers to grow their abilities throughout the duration of the decade-long research. Klara Maisch, a local artist, discussed her work creating science-informed artwork through interdisciplinary collaborations with scientists and other creators – see Figure 5. Maisch described the benefits of partnering with artists to share science with a broad audience and showcased artwork she has created. Figure 5. Lower Tanana Homelands – 2022 Yankovich Fire – Plot Painting [left], with original plot reference photograph [right]. Image Credit: Klara Maisch Overarching Presentations A series of presentations on the overall structure and outcomes of ABoVE were held during ASTM11. Charles “Chip” Miller [NASA/JPL—Deputy ABoVE ST Lead, ABoVE Airborne Lead] provided details about SAR, hyperspectral, and lidar airborne measurements collected between 2017 and 2024 for the ABoVE Airborne Campaign. ABoVE Logistics Office members Daniel Hodkinson [GSFC/SSAI], Sarah Dutton [GSFC/SSAI], and Leanne Kendig [GSFC/Global Science & Technology, Inc. (GST, Inc.)] discussed the many field teams and activities supported during ABoVE. Overall, more than 50 teams were trained in field safety topics, with more than 1,200 training certificates awarded. Elizabeth Hoy [NASA GSFC/GST, Inc.] and Debjani Singh [ORNL] discussed the more than 250 data products developed during the ABoVE program and how to access them through NASA Earthdata. Example visualizations of ABoVE data products can be found in Figure 6. Figure 6. ABoVE logo created with different data products from the campaign used to compose each letter.A: Active Layer Thickness from Remote Sensing Permafrost Model, Alaska, 2001-2015;. Tree (inside A): Normalized Difference Vegetation Index (NDVI) Trends across Alaska and Canada from Landsat, 1984-2012;. B: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014;; O: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016;; V: AVHRR-Derived Forest Fire Burned Area-Hot Spots, Alaska and Canada, 1989-2000;; E: Lake Bathymetry Maps derived from Landsat and Random Forest Modeling, North Slope, AK; and Underline (under O): Plot lines from the ABoVE Planning Tool visualizer. Figure credit: Caitlin LaNeve The Collaborations and Engagement WG held a plenary discussion to highlight the many activities that ABoVE researchers have been involved in over the past decade. The discussion highlighted the need for individual projects and campaign leadership to work together to ensure participation and understanding of planned research at local and regional levels. A highlight of the meeting was the “Legacy of ABoVE” panel discussion moderated by Nancy French [MTU]. Panelists included Eric Kasischke [MTU], Scott Goetz, Chip Miller, Peter Griffith, Libby Larson [NASA GSFC/SSAI], and Elizabeth Hoy. Each panelist reflected on their journey to develop ABoVE, which included an initial scoping study developed more than 15 years ago. Members of the panel – all a part of the ABoVE leadership team – joined the campaign at different stages of their career. Each panelist arrived with different backgrounds, bringing their unique perspective to the group that helped to frame the overall campaign development. Following the panel, all ST members who have been a part of ABoVE since its start over a decade ago came to the front for a group photo – see Photo 5. Following the panel, the ABoVE ST leads presented their overall thoughts on the meeting and facilitated a discussion with all participants at the meeting. Participants noted the important scientific discoveries made during ABoVE and enjoyed the collegial atmosphere during ASTM11. Photo 5. A group photo of participants who have been with ABoVE since its inception: [left to right] Ryan Pavlick, Chip Miller, Elizabeth Hoy, Libby Larson, Peter Griffith, Fred Huemmrich, Nancy French, Scott Goetz, Laura Bourgeau-Chavez, Eric Kasischke, and Larry Hinzman. Photo credit: Peter Griffith Conclusion Overall, ASTM11 brought together an interdisciplinary team for a final team meeting that showcased the many accomplishments made over the past decade. The group outlined current gaps and needs in Arctic and boreal research and discussed possibilities for future NASA terrestrial ecology campaigns. The synthesis science presentations at ASTM11 highlighted the advances ABoVE has made in understanding carbon and ecosystem dynamics in Arctic and boreal regions. It also highlighted the need for further study of cold season and subsurface processes. While this was the last meeting of this ST, research for some projects will continue into 2026, and more publications and data products are expected from ST members in the near term. Elizabeth Hoy NASA’s Goddard Space Flight Center/Global Science & Technology Inc. (GSFC/GST,Inc.) elizabeth.hoy@nasa.gov Libby Larson NASA’s Goddard Space Flight Center/Science System and Applications, Inc. (GSFC/SSAI) libby.larson@nasa.gov Annabelle Sokolowski NASA GSFC Office of STEM Engagement (OSTEM) Intern Caitlin LaNeve NASA GSFC Office of STEM Engagement (OSTEM) Intern Share Details Last Updated Sep 10, 2025 Related Terms Earth Science View the full article
-
The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year. The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews. Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows: International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at: https://media.ksc.nasa.gov Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468. Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test. Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars. To learn more about the Artemis II mission, visit: https://www.nasa.gov/mission/artemis-ii -end- Rachel Kraft / Lauren Low Headquarters, Washington 202-358-1100 rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov Tiffany Fairley Kennedy Space Center, Fla. 321-867-2468 tiffany.l.fairley@nasa.gov Share Details Last Updated Sep 10, 2025 LocationNASA Headquarters Related TermsArtemis 2ArtemisOrion Multi-Purpose Crew VehicleSpace Launch System (SLS) View the full article
-
Earth (ESD) Earth Explore Explore Earth Home Agriculture Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 5 Min Read NASA Data, Trainings Help Uruguay Navigate Drought Uruguay’s Paso Severino Reservoir, the primary water source for Montevideo, on June 13, 2023, captured by Landsat 9. Credits: NASA Earth Observatory/ Wanmei Liang Lee esta historia en español aquí. NASA satellite data and trainings helped Uruguay create a drought-response tool that its National Water Authority now uses to monitor reservoirs and guide emergency decisions. A similar approach could be applied in the United States and other countries around the world. From 2018 to 2023, Uruguay experienced its worst drought in nearly a century. The capital city of Montevideo, home to nearly 2 million people, was especially hard hit. By mid-2023, Paso Severino, the largest reservoir and primary water source for Montevideo, had dropped to just 1.7% of its capacity. As water levels declined, government leaders declared an emergency. They began identifying backup supplies and asked: Was there water left in other upstream reservoirs — mainly used for livestock and irrigation — that could help? That’s when environmental engineer Tiago Pohren and his colleagues at the National Water Authority (DINAGUA – Ministry of Environment) turned to NASA data and trainings to build an online tool that could help answer that question and improve monitoring of the nation’s reservoirs. “Satellite data can inform everything from irrigation scheduling in the Great Plains to water quality management in the Chesapeake Bay,” said Erin Urquhart, manager of the water resources program at NASA Headquarters in Washington. “NASA provides the reliable data needed to respond to water crises anywhere in the world.” Learning to Detect Water from Space The DINAGUA team learned about NASA resources during a 2022 workshop in Buenos Aires, organized by the Interagency Science and Applications Team (ISAT). Led by NASA, the U.S. Army Corps of Engineers, and the U.S. Department of State, the workshop focused on developing tools to help manage water in the La Plata River Basin, which spans multiple South American countries including Uruguay. At the workshop, researchers from NASA introduced participants to methods for measuring water resources from space. NASA’s Applied Remote Sensing (ARSET) program also provided a primer on remote sensing principles. DINAGUA team supervisor Jose Rodolfo Valles León asks a question during a 2022 workshop in Buenos Aires. Other members of the Uruguay delegation — Florencia Hastings, Vanessa Erasun Rodríguez de Líma, Vanessa Ferreira, and Teresa Sastre (current Director of DINAGUA) — sit in the row behind. Organization of American States “NASA doesn’t just deliver data,” said John Bolten, NASA’s lead scientist for ISAT and chief of the Hydrological Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We collaborate with our partners and local experts to translate the data into information that is useful, usable, and relevant. That kind of coordination is what makes NASA’s water programs so effective on the ground, at home and around the world.” The DINAGUA team brought ideas and provided guidelines to Pohren for a tool that applies Landsat and Sentinel satellite imagery to detect changes in Uruguay’s reservoirs. Landsat, a joint NASA-U.S. Geological Survey mission, provides decades of satellite imagery to track changes in land and water. The Sentinel missions, a part of the European Commission managed Copernicus Earth Observation program and operated by ESA (the European Space Agency), provide complementary visible, infrared, and microwave imagery for surface water assessments. From a young age, Pohren was familiar with water-related challenges, as floods repeatedly inundated his relatives’ homes in his hometown of Montenegro, Brazil. It was extra motivation for him as he scoured ARSET tutorials and taught himself to write computer code. The result was a monitoring tool capable of estimating the surface area of Uruguay’s reservoirs over time. A screenshot of the reservoir monitoring tool shows the Paso Severino’s surface water coverage alongside time-series data tracking its variations. Tiago Pohren The tool draws on several techniques to differentiate the surface water extent of reservoirs. These techniques include three optical indicators derived from the Landsat 8 and Sentinel-2 satellites: Normalized Difference Water Index, which highlights water by comparing how much green and near-infrared light is reflected. Water absorbs infrared light, so it stands out clearly from land. Modified Normalized Difference Water Index, which swaps near-infrared with shortwave infrared to improve the contrast and reduce errors when differentiating between water and built-up or vegetated areas. Automated Water Extraction Index, which combines four types of reflected light — green, near-infrared, and two shortwave infrared bands — to help separate water from shadows and other dark features. From Emergency Tool to Everyday Asset In 2023, the DINAGUA team used Pohren’s tool to examine reservoirs located upstream from Montevideo’s drinking water intake. But the data told a tough story. “There was water available in other reservoirs, but it was a very small amount compared to the water demand of the Montevideo metropolitan region,” Pohren said. Simulations showed that even if all of the water were released, most of it would not reach the water intake for Montevideo or the Paso Severino reservoir. Despite this news, the analysis prevented actions that might have wasted important resources for maintaining productive activities in the upper basin, Pohren said. Then, in August 2023, rain began to refill Uruguay’s reservoirs, allowing the country to declare an end to the water crisis. From right to left: Tiago Pohren, Vanessa Erasun, and Florencia Hastings at the second ISAT workshop in March 2024. Organization of American States Though the immediate water crisis has passed, the tool Pohren created will be useful in the future in Uruguay and around the world. During an ISAT workshop in 2024, he shared his tool with international water resources managers with the hope it could aid their own drought response efforts. And DINAGUA officials still use it to identify and monitor dams, irrigation reservoirs, and other water bodies in Uruguay. Pohren continues to use NASA training and data to advance reservoir management. He’s currently exploring an ARSET training on how the Surface Water and Ocean Topography (SWOT) mission will further improve the system by allowing DINAGUA to directly measure the height of water in reservoirs. He is also following NASA’s new joint mission with ISRO (the Indian Space Research Organization) called NISAR, which launched on July 30. The NISAR satellite will provide radar data that detects changes in water extent, regardless of cloud cover or time of day. “If a drought happens again,” Pohren said, “with the tools that we have now, we will be much more prepared to understand what the conditions of the basin are and then make predictions.” Environmental engineer Tiago Pohren conducts a field inspection on the Canelón Grande reservoir, the second-largest reservoir serving Montevideo, during the drought. Tiago Pohren By Melody Pederson, Rachel Jiang The authors would like to thank Noelia Gonzalez, Perry Oddo, Denise Hill, and Delfina Iervolino for interview support as well as Jerry Weigel for connecting with Tiago about the tool’s development. Share Details Last Updated Sep 10, 2025 Related Terms Droughts Earth Life on Earth Natural Disasters Water on Earth Explore More 1 min read NASA’s Black Marble: Stories from the Night Sky Studying the glowing patterns of Earth’s surface helps us understand human activity, respond to disasters,… Article 1 month ago 4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play Article 1 month ago 6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield Article 2 months ago Keep Exploring Discover More Topics From NASA Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Explore Earth Science Earth Science in Action NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet. Earth Multimedia & Galleries View the full article
-
This animation depicts water disappearing over time in the Martian river valley Neretva Vallis, where NASA’s Perseverance Mars takes the rock sample named “Sapphire Canyon” from a rock called “Cheyava Falls,” which was found in the “Bright Angel” formation. Credit: NASA Lee este comunicado de prensa en español aquí. A sample collected by NASA’s Perseverance Mars rover from an ancient dry riverbed in Jezero Crater could preserve evidence of ancient microbial life. Taken from a rock named “Cheyava Falls” last year, the sample, called “Sapphire Canyon,” contains potential biosignatures, according to a paper published Wednesday in the journal Nature. A potential biosignature is a substance or structure that might have a biological origin but requires more data or further study before a conclusion can be reached about the absence or presence of life. “This finding by Perseverance, launched under President Trump in his first term, is the closest we have ever come to discovering life on Mars. The identification of a potential biosignature on the Red Planet is a groundbreaking discovery, and one that will advance our understanding of Mars,” said acting NASA Administrator Sean Duffy. “NASA’s commitment to conducting Gold Standard Science will continue as we pursue our goal of putting American boots on Mars’ rocky soil.” NASA’s Perseverance rover discovered leopard spots on a reddish rock nicknamed “Cheyava Falls” in Mars’ Jezero Crater in July 2024. Scientists think the spots may indicate that, billions of years ago, the chemical reactions in this rock could have supported microbial life; other explanations are being considered.Credit: NASA/JPL-Caltech/MSSS NASA’s Perseverance Mars rover took this selfie, made up of 62 individual images, on July 23, 2024. A rock nicknamed “Cheyava Falls,” which has features that may bear on the question of whether the Red Planet was long ago home to microscopic life, is to the left of the rover near the center of the image.Credit: NASA/JPL-Caltech/MSSS Perseverance came upon Cheyava Falls in July 2024 while exploring the “Bright Angel” formation, a set of rocky outcrops on the northern and southern edges of Neretva Vallis, an ancient river valley measuring a quarter-mile (400 meters) wide that was carved by water rushing into Jezero Crater long ago. “This finding is the direct result of NASA’s effort to strategically plan, develop, and execute a mission able to deliver exactly this type of science — the identification of a potential biosignature on Mars,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With the publication of this peer-reviewed result, NASA makes this data available to the wider science community for further study to confirm or refute its biological potential.” The rover’s science instruments found that the formation’s sedimentary rocks are composed of clay and silt, which, on Earth, are excellent preservers of past microbial life. They also are rich in organic carbon, sulfur, oxidized iron (rust), and phosphorous. “The combination of chemical compounds we found in the Bright Angel formation could have been a rich source of energy for microbial metabolisms,” said Perseverance scientist Joel Hurowitz of Stony Brook University, New York and lead author of the paper. “But just because we saw all these compelling chemical signatures in the data didn’t mean we had a potential biosignature. We needed to analyze what that data could mean.” First to collect data on this rock were Perseverance’s PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instruments. While investigating Cheyava Falls, an arrowhead-shaped rock measuring 3.2 feet by 2 feet (1 meter by 0.6 meters), they found what appeared to be colorful spots. The spots on the rock could have been left behind by microbial life if it had used the raw ingredients, the organic carbon, sulfur, and phosphorus, in the rock as an energy source. In higher-resolution images, the instruments found a distinct pattern of minerals arranged into reaction fronts (points of contact where chemical and physical reactions occur) the team called leopard spots. The spots carried the signature of two iron-rich minerals: vivianite (hydrated iron phosphate) and greigite (iron sulfide). Vivianite is frequently found on Earth in sediments, peat bogs, and around decaying organic matter. Similarly, certain forms of microbial life on Earth can produce greigite. The combination of these minerals, which appear to have formed by electron-transfer reactions between the sediment and organic matter, is a potential fingerprint for microbial life, which would use these reactions to produce energy for growth. The minerals also can be generated abiotically, or without the presence of life. Hence, there are ways to produce them without biological reactions, including sustained high temperatures, acidic conditions, and binding by organic compounds. However, the rocks at Bright Angel do not show evidence that they experienced high temperatures or acidic conditions, and it is unknown whether the organic compounds present would’ve been capable of catalyzing the reaction at low temperatures. The discovery was particularly surprising because it involves some of the youngest sedimentary rocks the mission has investigated. An earlier hypothesis assumed signs of ancient life would be confined to older rock formations. This finding suggests that Mars could have been habitable for a longer period or later in the planet’s history than previously thought, and that older rocks also might hold signs of life that are simply harder to detect. “Astrobiological claims, particularly those related to the potential discovery of past extraterrestrial life, require extraordinary evidence,” said Katie Stack Morgan, Perseverance’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “Getting such a significant finding as a potential biosignature on Mars into a peer-reviewed publication is a crucial step in the scientific process because it ensures the rigor, validity, and significance of our results. And while abiotic explanations for what we see at Bright Angel are less likely given the paper’s findings, we cannot rule them out.” The scientific community uses tools and frameworks like the CoLD scale and Standards of Evidence to assess whether data related to the search for life actually answers the question, Are we alone? Such tools help improve understanding of how much confidence to place in data suggesting a possible signal of life found outside our own planet. Marked by seven benchmarks, the Confidence of Life Detection, or CoLD, scale outlines a progression in confidence that a set of observations stands as evidence of life. Credit: NASA Sapphire Canyon is one of 27 rock cores the rover has collected since landing at Jezero Crater in February 2021. Among the suite of science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars. Managed for NASA by Caltech, NASA JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio. To learn more about Perseverance visit: https://science.nasa.gov/mission/mars-2020-perseverance -end- Bethany Stevens / Karen Fox Headquarters, Washington 202-358-1600 bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Share Details Last Updated Sep 10, 2025 EditorJessica TaveauLocationNASA Headquarters Related TermsPerseverance (Rover)AstrobiologyMarsMars 2020Planetary ScienceScience Mission Directorate View the full article
-
Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module on the International Space Station, setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. Joe Acaba Space missions rely on cryogenic fluids — extremely cold liquids like liquid hydrogen and oxygen — for both propulsion and life support systems. These fuels must be kept at ultra-low cryogenic temperatures to remain in liquid form; however, solar heating and other sources of heat increase the rate of evaporation of the liquid and cause the pressure in the storage tank to increase. Current storage methods require venting the cryogenic propellant to space to control the pressure in fuel tanks. NASA’s Zero Boil-Off Tank Noncondensables (ZBOT-NC) experiment is the continuation of Zero Boil-Off studies gathering crucial data to optimize fuel storage systems for space missions. The experiment will launch aboard Northrop Grumman’s 23rd resupply mission to the International Space Station. When Cold Fuel Gets Too Warm Even with multilayer insulation, heat unavoidably seeps into cryogenic fuel tanks from surrounding structures and the space environment, causing an increase in the liquid temperature and an associated increase in the evaporation rate. In turn, the pressure inside the tank increases. This process is called “boil-off” and the increase in tank pressure is referred to as “self-pressurization.” Venting excess gas to the environment or space when this process occurs is highly undesirable and becomes mission-critical on extended journeys. If crew members used current fuel storage methods for a years-long Mars expedition, all propellant might be lost to boil-off before the trip ends. NASA’s ZBOT experiments are investigating active pressure control methods to eliminate wasteful fuel venting. Specifically, active control through the use of jet mixing and other techniques are being evaluated and tested in the ZBOT series of experiments. The Pressure Control Problem ZBOT-NC further studies how noncondensable gases (NCGs) affect fuel tank behavior when present in spacecraft systems. NCGs don’t turn into liquid under the tank’s operating conditions and can affect tank pressure. The investigation, which is led out of Glenn Research Center, will operate inside the Microgravity Science Glovebox aboard the space station to gather data on how NCGs affect volatile liquid behavior in microgravity. It’s part of an effort to advance cryogenic fluid management technologies and help NASA better understand low-gravity fluid behavior. Researchers will measure pressure and temperature as they study how these gases change evaporation and condensation rates. Previous studies indicate the gases create barriers that could reduce a tank’s ability to maintain proper pressure control — a potentially serious issue for extended space missions. How this benefits space exploration The research directly supports Mars missions and other long-duration space travel by helping engineers design more efficient fuel storage systems and future space depots. The findings may also benefit scientific instruments on space telescopes and probes that rely on cryogenic fluids to maintain the extremely low temperatures needed for operation. How this benefits humanity The investigation could improve tank design models for medical, industrial, and energy production applications that depend on long-term cryogenic storage on Earth. Latest Content Stay up-to-date with the latest content from NASA as we explore the universe and discover more about our home planet. Zero Boil-Off Tank Noncondensables (ZBOT-NC) 2 min read Principal Investigator(s): Overview: Zero Boil-Off Tank Noncondensables (ZBOT-NC) investigates how noncondensable gases interfere with fuel storage systems in microgravity. The… Topic What Are Quasicrystals, and Why Does NASA Study Them? 3 min read For 40 years, finding new quasicrystals has been like searching for four-leaf clovers in a field. You’re lucky if you… Topic Growing Beyond Earth® 2 min read Learn More Growing Beyond Earth student teams have helped select 5 of the 20 species that have been tested as… Topic 1 2 3 Next Biological & Physical Sciences Division NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. View the full article
-
NASA/Jonny Kim Dinnertime fare on the International Space Station takes center stage in this Aug. 15, 2025, photo. One tray features shrimp cocktail on whole grain wheat crackers, while the other holds sushi made with seaweed, Spam, tuna, and rice. Both trays are secured with Velcro strips to keep them stable inside the Unity module’s galley. The shrimp and crackers are held in place by condiments, while the sushi stays put thanks to surface tension from its moisture. Activity aboard the space station will inform long-duration missions like Artemis and future human expeditions to Mars. Image credit: NASA/Jonny Kim View the full article
-
Explore Webb Science James Webb Space Telescope (JWST) NASA’s Webb Observes Immense… Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Full image shown below. Credits: Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured by NASA’s James Webb Space Telescope. Stretching across 8 light-years, the length of the stellar eruption is approximately twice the distance between our Sun and the next nearest stars, the Alpha Centauri system. The size and strength of this particular stellar jet, located in a nebula known as Sharpless 2-284 (Sh2-284 for short), qualifies it as rare, say researchers. Streaking across space at hundreds of thousands of miles per hour, the outflow resembles a double-bladed dueling lightsaber from the Star Wars films. The central protostar, weighing as much as ten of our Suns, is located 15,000 light-years away in the outer reaches of our galaxy. The Webb discovery was serendipitous. “We didn’t really know there was a massive star with this kind of super-jet out there before the observation. Such a spectacular outflow of molecular hydrogen from a massive star is rare in other regions of our galaxy,” said lead author Yu Cheng of the National Astronomical Observatory of Japan. Image A: Stellar Jet in Sh2-284 (NIRCam Image) Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) This unique class of stellar fireworks are highly collimated jets of plasma shooting out from newly forming stars. Such jetted outflows are a star’s spectacular “birth announcement” to the universe. Some of the infalling gas building up around the central star is blasted along the star’s spin axis, likely under the influence of magnetic fields. Today, while hundreds of protostellar jets have been observed, these are mainly from low-mass stars. These spindle-like jets offer clues into the nature of newly forming stars. The energetics, narrowness, and evolutionary time scales of protostellar jets all serve to constrain models of the environment and physical properties of the young star powering the outflow. “I was really surprised at the order, symmetry, and size of the jet when we first looked at it,” said co-author Jonathan Tan of the University of Virginia in Charlottesville and Chalmers University of Technology in Gothenburg, Sweden. Its detection offers evidence that protostellar jets must scale up with the mass of the star powering them. The more massive the stellar engine propelling the plasma, the larger the gusher’s size. The jet’s detailed filamentary structure, captured by Webb’s crisp resolution in infrared light, is evidence the jet is plowing into interstellar dust and gas. This creates separate knots, bow shocks, and linear chains. The tips of the jet, lying in opposite directions, encapsulate the history of the star’s formation. “Originally the material was close into the star, but over 100,000 years the tips were propagating out, and then the stuff behind is a younger outflow,” said Tan. Outlier At nearly twice the distance from the galactic center as our Sun, the host proto-cluster that’s home to the voracious jet is on the periphery of our Milky Way galaxy. Within the cluster, a few hundred stars are still forming. Being in the galactic hinterlands means the stars are deficient in heavier elements beyond hydrogen and helium. This is measured as metallicity, which gradually increases over cosmic time as each passing stellar generation expels end products of nuclear fusion through winds and supernovae. The low metallicity of Sh2-284 is a reflection of its relatively pristine nature, making it a local analog for the environments in the early universe that were also deficient in heavier elements. “Massive stars, like the one found inside this cluster, have very important influences on the evolution of galaxies. Our discovery is shedding light on the formation mechanism of massive stars in low metallicity environments, so we can use this massive star as a laboratory to study what was going on in earlier cosmic history,” said Cheng. Unrolling Stellar Tapestry Stellar jets, which are powered by the gravitational energy released as a star grows in mass, encode the formation history of the protostar. “Webb’s new images are telling us that the formation of massive stars in such environments could proceed via a relatively stable disk around the star that is expected in theoretical models of star formation known as core accretion,” said Tan. “Once we found a massive star launching these jets, we realized we could use the Webb observations to test theories of massive star formation. We developed new theoretical core accretion models that were fit to the data, to basically tell us what kind of star is in the center. These models imply that the star is about 10 times the mass of the Sun and is still growing and has been powering this outflow.” For more than 30 years, astronomers have disagreed about how massive stars form. Some think a massive star requires a very chaotic process, called competitive accretion. In the competitive accretion model, material falls in from many different directions so that the orientation of the disk changes over time. The outflow is launched perpendicularly, above and below the disk, and so would also appear to twist and turn in different directions. “However, what we’ve seen here, because we’ve got the whole history – a tapestry of the story – is that the opposite sides of the jets are nearly 180 degrees apart from each other. That tells us that this central disk is held steady and validates a prediction of the core accretion theory,” said Tan. Where there’s one massive star, there could be others in this outer frontier of the Milky Way. Other massive stars may not yet have reached the point of firing off Roman-candle-style outflows. Data from the Atacama Large Millimeter Array in Chile, also presented in this study, has found another dense stellar core that could be in an earlier stage of construction. The paper has been accepted for publication in The Astrophysical Journal. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). To learn more about Webb, visit: https://science.nasa.gov/webb Related Information View more: Webb images of other protostar outflows – HH 49/50, L483, HH 46/47, and HH 211 View more: Data visualization of protostar outflows – HH 49/50 Animation Video – “Exploring Star and Planet Formation” Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive Read more about Herbig-Haro objects More Webb News More Webb Images Webb Science Themes Webb Mission Page Related For Kids What is the Webb Telescope? SpacePlace for Kids En Español Ciencia de la NASA NASA en español Space Place para niños Related Images & Videos Stellar Jet in Sh2-284 (NIRCam Image) Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars–the more massive the stellar engine driving the plasma, the larger the resulting jet. Stellar Jet in Sh2-284 (NIRCam Compass Image) This image of the stellar jet in Sh2-284, captured by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera), shows compass arrows, scale bar, and color key for reference. Immense Stellar Jet in Sh2-284 This video shows the relative size of two different protostellar jets imaged by NASA’s James Webb Space Telescope. The first image shown is an extremely large protostellar jet located in Sh2-284, 15,000 light-years away from Earth. The outflows from the massive central prot… Share Details Last Updated Sep 10, 2025 Location NASA Goddard Space Flight Center Contact Media Laura Betz NASA’s Goddard Space Flight Center Greenbelt, Maryland laura.e.betz@nasa.gov Ray Villard Space Telescope Science Institute Baltimore, Maryland Christine Pulliam Space Telescope Science Institute Baltimore, Maryland Related Terms James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe Related Links and Documents The journal paper by Y. Cheng et al. Keep Exploring Related Topics James Webb Space Telescope Space Telescope Stars Stars Stories Universe View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) What Would It Take to Say We Found Life? We call this the podium test. What would it take for you personally to confidently stand up in front of an international audience and make that claim? When you put it in that way, I think for a lot of scientists, the bar is really high. So of course, there would be obvious things, you know, a very clear signature of technology or a skeleton or something like that. But we think that a lot of the evidence that we might encounter first will be much more subtle. For example, chemical signs of life that have to be detected above a background of abiotic chemistry. And really, what we see might depend a lot on where we look. On Mars, for example, the long history of exploration there gives us a lot of context for what we might find. But we’re potentially talking about samples that are billions of years old in those cases, and on Earth, those kinds of samples, the evidence of life is often degraded and difficult to detect. On the ocean worlds of our outer solar system, so places like Jupiter’s moon Europa and Saturn’s moon Enceladus, there’s the tantalizing possibility of extant life, meaning life that’s still alive. But potentially we’re talking about exceedingly small amounts of samples that would have to be analyzed with a relatively limited amount of instrumentation that can be carried from Earth billions of miles away. And then for exoplanets, these are planets beyond our own solar system. Really, what we’re looking for there are very large magnitude signs of life that can be detectable through a telescope from many light-years away. So changes like the oxygenation of Earth’s atmosphere or changes in surface color. So any one of those things, if they rose to the suspicion of being evidence of life, would be really heavily scrutinized in a very sort of specific and custom way to that particular observation. But I think there are also some general principles that we can follow. And the first is just: Are we sure we’re seeing what we think we’re seeing? Many of these environments are not very well known to us, and so we need to convince ourselves that we’re actually seeing a clear signal that represents what we think it represents. Carl Sagan once said, “Life is the hypothesis of last resort,” meaning that we ought to work hard for such a claim to rule out alternative possibilities. So what are those possibilities? One is contamination. The spacecraft and the instruments that we use to look for evidence of life are built in an environment, Earth, that is full of life. And so we need to convince ourselves that what we’re seeing is not evidence of our own life, but evidence of indigenous life. If that’s the case, we should ask, should life of the type we’re seeing live there? And finally, we need to ask, is there any other way than life to make that thing, any of the possible abiotic processes that we know and even the ones that we don’t know? And as you can imagine, that will be quite a challenge. Once we have a piece of evidence in hand that we really do think represents evidence of life, now we can begin to develop hypotheses. For example, do we have separate independent lines of evidence that corroborate what we’ve seen and increase our confidence of life? Ultimately, all of this has to be looked at hard by the entire scientific community, and in that sense, I think the really operative word in our question is we. What does it take to say we found evidence of life? Because really, the answer, I think, depends on the full scientific community scrutinizing and skepticizing this observation to finally say that we scientists, we as a community and we as humanity found life. [END VIDEO TRANSCRIPT] Full Episode List Full YouTube Playlist Share Details Last Updated Sep 10, 2025 Related TermsAstrobiologyMarsPerseverance (Rover)Science & ResearchScience Mission Directorate Explore More 6 min read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured… Article 21 minutes ago 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery Article 1 day ago 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb… Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission.Credit: NASA/JPL-Caltech NASA will host a news conference at 11 a.m. EDT Wednesday, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper. The agency previously announced this event as a teleconference. Watch the news conference on NASA’s YouTube channel and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media. Participants include: Acting NASA Administrator Sean Duffy NASA Associate Administrator Amit Kshatriya Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, senior scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance project scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than one hour before the start of the event to: rexana.v.vizza@jpl.nasa.gov. Media who registered for the earlier teleconference-only version of this event do not need to re-register. NASA’s media accreditation policy is available online. The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago. Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars. Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio. To learn more about Perseverance visit: https://www.nasa.gov/perseverance -end- Bethany Stevens / Karen Fox Headquarters, Washington 202-358-1600 bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Share Details Last Updated Sep 10, 2025 LocationNASA Headquarters Related TermsPerseverance (Rover)Mars 2020Planetary Science DivisionScience Mission Directorate View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) While auroras are a beautiful sight on Earth, the solar activity that causes them can wreak havoc with space-based infrastructure like satellites. Using artificial intelligence to predict these disruptive solar events was a focus of KX’s work with FDL.Credit: Sebastian Saarloos In the summer of 2024, people across North America were amazed when auroras lit up the night sky across their hometowns, but the same solar activity that makes auroras can cause disruptions to satellites that are essential to systems on Earth. The solution to predicting these solar events and warning satellite operators may come through artificial intelligence. The Frontier Development Lab of Mountain View, California, is an ongoing partnership between NASA and commercial AI firms to apply advanced machine learning to problems that matter to the agency and beyond. Since 2016, the Frontier Development Lab has applied AI on behalf of NASA in planetary defense, Heliophysics, Earth science, medicine, and lunar exploration. Through a collaboration with a company called KX Systems, the Frontier Development Lab looked to use proven software in an innovative new way. The company’s flagship data analytics software, called kdb+, is typically used in the financial industry to keep track of rapid shifts in market trends, but the company was exploring how it could be used in space. Between 2017 and 2019, KX Systems participated in the Frontier Development Lab partnership through NASA’s Ames Research Center in Silicon Valley, California. Working with NASA scientists, KX applied the capabilities of kdb+ to searching for exoplanets and predicting space weather, areas which could be improved with AI models. One question the Frontier Development Lab worked to answer was whether kdb+ could forecast the kind of space weather that creates the auroras to predict when GPS satellites might experience signal interruption due to the Sun. By importing several datasets monitoring the ionosphere, solar activity, and Earth’s magnetic field, then applying machine learning algorithms to them, the Frontier Development Lab researchers were able to predict disruptive events up to 24 hours in advance. While this was a scientific application of AI, KX Systems says some of this development work has made it back into its commercial offerings, as there are similarities between AI models developed to find patterns in satellite signal losses and ones that predict maintenance needs for industrial manufacturing equipment. A division of FD Technologies plc., KX Systems is a technology company that offers database management and analytics software for customers that need to make decisions quickly. While KX started in 1993, its AI-driven business has grown considerably, and the company credits work done with NASA for accelerating some of its capabilities. From protecting valuable satellites to keeping manufacturing lines moving at top performance, pairing NASA’s expertise with commercial ingenuity is a combination for success. Read More Share Details Last Updated Sep 09, 2025 Related TermsTechnology Transfer & SpinoffsSpinoffsTechnology Transfer Explore More 3 min read NASA-Developed Printable Metal Can Take the Heat Article 4 weeks ago 5 min read NASA Releases Opportunity to Boost Commercial Space Tech Development Article 1 month ago 3 min read NASA-Derived Textiles are Touring France by Bike Article 2 months ago Keep Exploring Discover Related Topics Missions Technology Transfer and Spinoffs News Auroras Auroras, often called the northern lights (aurora borealis) or southern lights (aurora australis), are colorful, dynamic, and often visually delicate… Solar System View the full article
-
NASA/Kim Shiflett The Artemis II crew (from front left to back right) – pilot Victor Glover, commander Reid Wiseman, mission specialist Jeremy Hansen of CSA (Canadian Space Agency), and mission specialist Christina Koch – walk out of the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Monday, Aug. 11, 2025. During a two-day training, the crew practiced launch day operations if the Artemis II test flight launches at night. Join the Artemis II mission and sign up to launch your name aboard the Orion spacecraft and SLS (Space Launch System) rocket alongside the crew. Through the Artemis program, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. Image credit: NASA/Kim Shiflett View the full article
-
Research Astrophysicist and Roman’s Deputy Wide Field Instrument Scientist – Goddard Space Flight Center From a young age, Ami Choi — now a research astrophysicist at NASA — was drawn to the vast and mysterious. By the fifth grade, she had narrowed her sights to two career paths: marine biology or astrophysics. “I’ve always been interested in exploring big unknown realms, and things that aren’t quite tangible,” Choi said. That curiosity has served her all throughout her career. In addition to conducting research, Ami Choi shares science with the public at various outreach events, including tours at NASA’s Goddard Space Flight Center in Greenbelt, Md. This photo captures one tour stop, outside the largest clean room at Goddard.Credit: NASA/Travis Wohlrab As a student at University Laboratory High School in Urbana, Illinois, Choi gravitated toward astrophysics and was fascinated by things like black holes. She studied physics as an undergraduate at the University of Chicago, though she says math and physics didn’t necessarily come easily to her. “I wasn’t very good at it initially, but I really liked the challenge so I stuck with it,” Choi said. Early opportunities to do research played a pivotal role in guiding her career. As an undergraduate, Choi worked on everything from interacting galaxies to the stuff in between stars in our galaxy, called the interstellar medium. She learned how to code, interpret data, and do spectroscopy, which involves splitting light from cosmic objects into a rainbow of colors to learn about things like their composition. After college, Choi read an article about physicist Janet Conrad’s neutrino work at Fermilab and was so inspired by Conrad’s enthusiasm and inclusivity that she cold-emailed her to see if there were any positions available in her group. On October 14, 2023, Ami took a break from a thermal vacuum shift to snap a selfie with a partial eclipse. She was visiting BAE, Inc. in Boulder, Co., where the primary instrument for NASA’s Nancy Grace Roman Space Telescope was undergoing testing. Credit: Courtesy of Ami Choi “That one email led to a year at Fermilab working on neutrino physics,” Choi said. She went on to earn a doctorate at the University of California, Davis, where she studied weak gravitational lensing — the subtle warping of light by gravity — and used it to explore dark matter, dark energy, and the large-scale structure of the universe. Her postdoctoral work took Choi first to the University of Edinburgh in Scotland, where she contributed to the Kilo-Degree Survey, and later to The Ohio State University, where she became deeply involved in DES (the Dark Energy Survey) and helped lay the groundwork for the Nancy Grace Roman Space Telescope — NASA’s next flagship astrophysics mission. “One of my proudest moments came in 2021, when the DES released its third-year cosmology results,” Choi said. “It was a massive team effort conducted during a global pandemic, and I had helped lead as a co-convener of the weak lensing team.” Choi regularly presents information about NASA’s Nancy Grace Roman Space Telescope to fellow scientists and the public. Here, she gives a Hyperwall talk at an AAS (American Astronomical Society) meeting.Credit: Courtesy of Ami Choi After a one-year stint at the California Institute of Technology in Pasadena, where Choi worked on SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer)—an observatory that’s surveying stars and galaxies—she became a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also serves as the deputy Wide Field Instrument scientist for Roman. Choi operates at the intersection of engineering, calibration, and cosmology, helping translate ground-based testing into flight-ready components that will help Roman reveal large swaths of the universe in high resolution. “I’m very excited for Roman’s commissioning phase — the first 90 days when the spacecraft will begin transmitting data from orbit,” Choi said. Choi, photographed here in Death Valley, finds joy in the natural world outside of work. She cycles, hikes, and tends a small vegetable garden with a friend from grad school. Credit: Insook Choi (used with permission) She’s especially drawn to so-called systematics, which are effects that can alter the signals scientists are trying to measure. “People sometimes think of systematics as nuisances, but they’re often telling us something deeply interesting about either the physics of something like a detector or the universe itself,” Choi said. “There’s always something more going on under the surface.” While she’s eager to learn more about things like dark energy, Choi is also looking forward to seeing all the other ways our understanding of the universe grows. “It’s more than just an end goal,” she said. “It’s about everything we learn along the way. Every challenge we overcome, every detail we uncover, is an important discovery too.” For those who hope to follow a similar path, Choi encourages staying curious, being persistent, and taking opportunities to get involved in research. And don’t let the tricky subjects scare you away! “You don’t have to be perfect at math or physics right away,” she said. “What matters most is a deep curiosity and the tenacity to keep pushing through.” By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Sep 09, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related TermsGoddard Space Flight CenterNancy Grace Roman Space TelescopePeople of Goddard View the full article
-
6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept shows a brown dwarf — an object larger than a planet but not massive enough to kickstart fusion in its core like a star. Brown dwarfs are hot when they form and may glow like this one, but over time they get closer in temperature to gas giant planets like Jupiter. NOIRLab/NSF/AURA/R. Proctor An unusual cosmic object is helping scientists better understand the chemistry hidden deep in Jupiter and Saturn’s atmospheres — and potentially those of exoplanets. Why has silicon, one of the most common elements in the universe, gone largely undetected in the atmospheres of Jupiter, Saturn, and gas planets like them orbiting other stars? A new study using observations from NASA’s James Webb Space Telescope sheds light on this question by focusing on a peculiar object that astronomers discovered by chance in 2020 and called “The Accident.” The results were published on Sept. 4 in the journal Nature. As shown in this graphic, brown dwarfs can be far more massive than even large gas planets like Jupiter and Saturn. However, they tend to lack the mass that kickstarts nuclear fusion in the cores of stars, causing them to shine. NASA/JPL-Caltech The Accident is a brown dwarf, a ball of gas that’s not quite a planet and not quite a star. Even among its already hard-to-classify peers, The Accident has a perplexing mix of physical features, some of which have been previously seen in only young brown dwarfs and others seen only in ancient ones. Because of those features, it slipped past typical detection methods before being discovered five years ago by a citizen scientist participating in Backyard Worlds: Planet 9. The program lets people around the globe look for new discoveries in data from NASA’s now-retired NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), which was managed by NASA’s Jet Propulsion Laboratory in Southern California. The brown dwarf nicknamed “The Accident” can be seen moving in the bottom left corner of this video, which shows data from NASA’s now-retired NEOWISE (Near-Earth Object Wide-Field Infrared Survey Explorer), launched in 2009 with the moniker WISE. NASA/JPL-Caltech/Dan Caselden The Accident is so faint and odd that researchers needed NASA’s most powerful space observatory, Webb, to study its atmosphere. Among several surprises, they found evidence of a molecule they couldn’t initially identify. It turned out to be a simple silicon molecule called silane (SiH4). Researchers have long expected — but been unable — to find silane not only in our solar system’s gas giants, but also in the thousands of atmospheres belonging to brown dwarfs and to the gas giants orbiting other stars. The Accident is the first such object where this molecule has been identified. Scientists are fairly confident that silicon exists in Jupiter and Saturn’s atmospheres but that it is hidden. Bound to oxygen, silicon forms oxides such as quartz that can seed clouds on hot gas giants, bearing a resemblance to dust storms on Earth. On cooler gas giants like Jupiter and Saturn, these types of clouds would sink far beneath lighter layers of water vapor and ammonia clouds, until any silicon-containing molecules are deep in the atmosphere, invisible even to the spacecraft that have studied those two planets up close. Some researchers have also posited that lighter molecules of silicon, like silane, should be found higher up in these atmospheric layers, left behind like traces of flour on a baker’s table. That such molecules haven’t appeared anywhere except in a single, peculiar brown dwarf suggests something about the chemistry occurring in these environments. “Sometimes it’s the extreme objects that help us understand what’s happening in the average ones,” said Faherty, a researcher at the American Museum of Natural History in New York City, and lead author on the new study. Happy accident Located about 50 light-years from Earth, The Accident likely formed 10 billion to 12 billion years ago, making it one of the oldest brown dwarfs ever discovered. The universe is about 14 billion years old, and at the time that The Accident developed, the cosmos contained mostly hydrogen and helium, with trace amounts of other elements, including silicon. Over eons, elements like carbon, nitrogen, and oxygen forged in the cores of stars, so planets and stars that formed more recently possess more of those elements. Webb’s observations of The Accident confirm that silane can form in brown dwarf and planetary atmospheres. The fact that silane seems to be missing in other brown dwarfs and gas giant planets suggests that when oxygen is available, it bonds with silicon at such a high rate and so easily, virtually no silicon is left over to bond with hydrogen and form silane. So why is silane in The Accident? The study authors surmise it is because far less oxygen was present in the universe when the ancient brown dwarf formed, resulting in less oxygen in its atmosphere to gobble up all the silicon. The available silicon would have bonded with hydrogen instead, resulting in silane. “We weren’t looking to solve a mystery about Jupiter and Saturn with these observations,” said JPL’s Peter Eisenhardt, project scientist for the WISE (Wide-field Infrared Survey Explorer) mission, which was later repurposed as NEOWISE. “A brown dwarf is a ball of gas like a star, but without an internal fusion reactor, it gets cooler and cooler, with an atmosphere like that of gas giant planets. We wanted to see why this brown dwarf is so odd, but we weren’t expecting silane. The universe continues to surprise us.” Brown dwarfs are often easier to study than gas giant exoplanets because the light from a faraway planet is typically drowned out by the star it orbits, while brown dwarfs generally fly solo. And the lessons learned from these objects extend to all kinds of planets, including ones outside our solar system that might feature potential signs of habitability. “To be clear, we’re not finding life on brown dwarfs,” said Faherty. “But at a high level, by studying all of this variety and complexity in planetary atmospheres, we’re setting up the scientists who are one day going to have to do this kind of chemical analysis for rocky, potentially Earth-like planets. It might not specifically involve silicon, but they’re going to get data that is complicated and confusing and doesn’t fit their models, just like we are. They’ll have to parse all those complexities if they want to answer those big questions.” More about WISE, Webb A division of Caltech, JPL managed and operated WISE for NASA’s Science Mission Directorate. The mission was selected competitively under NASA’s Explorers Program managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. The NEOWISE mission was a project of JPL and the University of Arizona in Tucson, supported by NASA’s Planetary Defense Coordination Office. For more information about WISE, go to: https://www.nasa.gov/mission_pages/WISE/main/index.html The James Webb Space Telescope is the world’s premier space science observatory, and an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). To learn more about Webb, visit: https://science.nasa.gov/webb News Media Contacts Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov Christine Pulliam Space Telescope Science Institute, Baltimore, Md. cpulliam@stsci.edi 2025-113 Share Details Last Updated Sep 09, 2025 Related TermsJames Webb Space Telescope (JWST)Brown DwarfsExoplanetsThe Search for Life Explore More 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb… Article 1 day ago 5 min read Glittering Glimpse of Star Birth From NASA’s Webb Telescope This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope.… Article 5 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler Scientists have devised a new method for mapping the spottiness of distant stars by using… Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
Los nombres de los participantes irán en tarjetas de embarque a bordo de la misión Artemis II de la NASA en 2026.Crédito: NASA Read this press release in English here. La NASA invita al público a unirse al vuelo de prueba Artemis II de la agencia en el que cuatro astronautas emprenderán un viaje alrededor de la Luna y de regreso a la Tierra para poner a prueba los sistemas y el hardware necesarios para la exploración del espacio profundo. Como parte de la iniciativa de la agencia “Envía tu nombre con Artemis II”, cualquiera puede asegurar su lugar a registrándose antes del 21 de enero. Los nombres de los participantes en esta iniciativa viajarán en la nave espacial Orion y el cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés) junto a los astronautas de la NASA Reid Wiseman, Victor Glover, Christina Koch y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen. “Artemis II es un vuelo de prueba clave en nuestro esfuerzo por enviar de nuevo a seres humanos a la superficie de la Luna y desarrollar futuras misiones a Marte. También es una oportunidad para inspirar a personas de todo el mundo y darles la oportunidad de acompañarnos mientras lideramos el camino en la exploración humana hacia lugares más profundos en el espacio”, dijo Lori Glaze, administradora asociada interina en la Dirección de Misiones de Desarrollo de Sistemas de Exploración en la sede central de la NASA en Washington. Los nombres recopilados se incluirán en una tarjeta de memoria SD que será cargada a bordo de Orion antes del lanzamiento. A cambio, los participantes pueden descargar una tarjeta de embarque con su nombre como un recuerdo coleccionable. Para añadir tu nombre y recibir una tarjeta de embarque en español, visita el sitio web: https://go.nasa.gov/TuNombreArtemis Para añadir tu nombre y recibir una tarjeta de embarque en inglés, visita el sitio web: https://go.nasa.gov/artemisnames Como parte de una edad de oro de innovación y exploración, el vuelo de prueba Artemis II es el primer vuelo tripulado de la campaña Artemis de la NASA. Tendrá una duración aproximada de 10 días y despegará a más tardar en abril de 2026. Este es otro paso hacia nuevas misiones tripuladas de Estados Unidos a la superficie de la Luna que ayudarán a la agencia a prepararse para enviar a los primeros astronautas estadounidenses a Marte. Para obtener más información acerca de esta misión, visita el sitio web (en inglés): https://www.nasa.gov/mission/artemis-ii/ -fin- Rachel Kraft / María José Viñas Sede central, Washington 202-358-1600 rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov Share Details Last Updated Sep 09, 2025 LocationNASA Headquarters Related TermsNASA en españolArtemisArtemis 2Exploration Systems Development Mission DirectorateMissions View the full article
-
NASA Stennis Buffer ZoneNASA / Stennis NASA’s Stennis Space Center is widely known for rocket propulsion testing, especially to support the NASA Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars. What may not be so widely known is that the site also is a unique federal city, home to more than 50 federal, state, academic, and commercial tenants and serving as both a model of government efficiency and a powerful economic engine for its region. “NASA Stennis is a remarkable story of vision and innovation,” Center Director John Bailey said. “That was the case 55 years ago when the NASA Stennis federal city was born, and it remains the case today as we collaborate and grow to meet the needs of a changing aerospace world.” Apollo Years Nearly four years after its first Saturn V stage test, NASA’s Stennis Space Center faced a crossroads to the future. Indeed, despite its frontline role in supporting NASA’s Apollo lunar effort, it was not at all certain a viable future awaited the young rocket propulsion test site. In 1961, NASA announced plans to build a sprawling propulsion test site in south Mississippi to support Apollo missions to the Moon. The news was a significant development for the sparsely populated Gulf Coast area. The new site, located near Bay St. Louis, Mississippi, conducted its first hot fire of a Saturn V rocket stage in April 1966. Saturn V testing progressed steadily during the next years. In fall 1969, however, NASA announced an end to Apollo-related testing, leading to an existential crisis for the young test site. What was to become of NASA Stennis? An Expanded Vision Some observers speculated the location would close or be reduced to caretaker status, with minimal staffing. Either scenario would deliver a serious blow to the families who had re-located to make way for the site and the local communities who had heavily invested in municipal projects to support the influx of workforce personnel. Such outcomes also would run counter to assurances provided by leaders that the new test site would benefit its surrounding region and involve area residents in “something great.” For NASA Stennis manager Jackson Balch and others, such a result was unacceptable. Anticipating the crisis, Balch had been working behind the scenes to communicate – and realize – the vision of a multiagency site supporting a range of scientific and technological tenants and missions. A Pivotal Year The months following the Saturn V testing announcement were filled with discussions and planning to ensure the future of NASA Stennis. The efforts began to come to fruition in 1970 with key developments: In early 1970, NASA Administrator Thomas Paine proposed locating a regional environmental center at NASA Stennis. U.S. Sen. John C. Stennis (Mississippi) responded with a message of the president, “urgently requesting” that a National Earth Resources and Environmental Data Program be established at the site. In May 1970, President Richard Nixon offered assurances that an Earth Resources Laboratory would be established at NASA Stennis and that at least two agencies are preparing to locate operations at the site. U.S. congressional leaders earmarked $10 million to enable the location of an Earth Resources Laboratory at NASA Stennis. On July 9, 1970, the U.S. Coast Guard’s National Data Buoy Project (now the National Data Buoy Center) announced it was relocating to NASA Stennis, making it the first federal city tenant. The project arrived onsite two months later on September 9. On Sept. 9, 1970, NASA officially announced establishment of an Earth Resources Laboratory at NASA Stennis. Time to Grow By the end of 1970, Balch’s vision was taking shape, but it needed time to grow. The final Saturn V test had been conducted in October – with no new campaign scheduled. A possibility was on the horizon, however. NASA was building a reusable space shuttle vehicle. It would be powered by the most sophisticated rocket engine ever designed – and the agency needed a place to conduct developmental and flight testing expected to last for decades. Three sites vied for the assignment. Following presentations and evaluations, NASA announced its selection on March 1, 1971. Space shuttle engine testing would be conducted at NASA Stennis, providing time for the location to grow. A Collaborative Model By the spring of 1973, preparations for the space shuttle test campaign were progressing and NASA Stennis was on its way to realizing the federal city vision. Sixteen agencies and universities were now located at NASA Stennis. The resident tenants followed a shared model in which they shared in the cost of basic site services, such as medical, security, and fire protection. The shared model freed up more funding for the tenants to apply towards innovation and assigned mission work. It was a model of government collaboration and efficiency. As the site grew, leaders then began to call for it to be granted independent status within NASA, a development not long in coming. On June 14, 1974, just more than a decade after site construction began, NASA Administrator James Fletcher announced the south Mississippi location would be renamed National Space Technology Laboratories and would enjoy equal, independent status alongside other NASA centers. “Something Great” For NASA Stennis leaders and supporters, independent status represented a milestone moment in their effort to ensure NASA Stennis delivered on its promise of greatness. There still were many developments to come, including the first space shuttle main engine test and the subsequent 34-year test campaign, the arrival and growth of the U.S. Navy into the predominant resident presence onsite, the renaming of the center to NASA Stennis, and the continued growth of the federal city. No one could have imagined it all at the time. However, even in this period of early development, one thing was clear – the future lay ahead, and NASA Stennis was on its way. Read More About Stennis Space Center Share Details Last Updated Sep 09, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis Provides Ideal Location for Range of Site Tenants Article 16 minutes ago 4 min read NASA Stennis Provides Ideal Setting for Range Operations Article 2 weeks ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards Article 4 weeks ago View the full article
-
Boarding passes will carry participants’ names on NASA’s Artemis II mission in 2026.Credit: NASA Lee este comunicado de prensa en español aquí. NASA is inviting the public to join the agency’s Artemis II test flight as four astronauts venture around the Moon and back to test systems and hardware needed for deep space exploration. As part of the agency’s “Send Your Name with Artemis II” effort, anyone can claim their spot by signing up before Jan. 21. Participants will launch their name aboard the Orion spacecraft and SLS (Space Launch System) rocket alongside NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen. “Artemis II is a key test flight in our effort to return humans to the Moon’s surface and build toward future missions to Mars, and it’s also an opportunity to inspire people across the globe and to give them an opportunity to follow along as we lead the way in human exploration deeper into space,” said Lori Glaze, acting associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. The collected names will be put on an SD card loaded aboard Orion before launch. In return, participants can download a boarding pass with their name on it as a collectable. To add your name and receive an English-language boarding pass, visit: https://go.nasa.gov/artemisnames To add your name and receive a Spanish-language boarding pass, visit: https://go.nasa.gov/TuNombreArtemis As part of a Golden Age of innovation and exploration, the approximately 10-day Artemis II test flight, launching no later than April 2026, is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars. To learn more about the mission visit: https://www.nasa.gov/mission/artemis-ii/ -end- Rachel Kraft Headquarters, Washington 202-358-1600 rachel.h.kraft@nasa.gov Share Details Last Updated Sep 09, 2025 LocationNASA Headquarters Related TermsArtemis 2ArtemisMissions View the full article
-
Teams at NASA’s Stennis Space Center conduct a hot fire test of an Aerojet AJ26 rocket engine on the E-1 Test Stand in November 2013.NASA/Stennis If location, location, location is the overarching mantra in real estate, it is small wonder that NASA’s Stennis Space Center is considered a national asset and prime aerospace and technology operations site. It has long stood as a premier – and the nation’s largest – rocket propulsion test site. With unparalleled test infrastructure and expertise, NASA Stennis has helped power the nation’s human space exploration for almost 60 years. It continues to do so, testing systems and engines for NASA’s Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars. In addition, NASA Stennis is the choice location for a range of agencies, organizations, offices, and companies, all of whom readily attest to the values of the setting. Ask resident tenants to note the value of their NASA Stennis location, and one hears terms like “strategic advantages,” “ideal location,” “local expertise and experience,” “collaborative opportunities,” “hub of innovation,” and “valuable security buffer.” For the NASA Shared Services Center, its location at the south Mississippi test site provides “substantial strategic advantages” that helps the NSSC maximize its work and provide streamlined business operations for the agency. Likewise, NASA Stennis provides an ideal location for the North Gulf Institute operated by Mississippi State University, as it conducts frontline work in hurricane forecasting, modeling and assessment, as well as fishery and ecosystem management. The location is strengthened further by the proximity to collaborative partners like the Naval Meteorology and Oceanography Command and the National Data Buoy Center. The same holds true for the National Centers for Environmental Information operated by the National Oceanic and Atmospheric Administration. A spokesperson said the centers’ mission success is “firmly rooted in its strategic co-location with other federal partners,” including the Naval Meteorology and Oceanography Command, the National Data Buoy Center, and the Northern Gulf Institute. For Relativity Space, the largest NASA Stennis test complex tenant, the “unparalleled infrastructure” at NASA Stennis has been key to enabling the company’s rocket engine testing. “NASA’s Stennis Space Center plays a vital role in getting Terran R to space,” said Clay Walker, vice president of test and launch for Relativity Space. “The infrastructure here allows us to test high-performance engines in ways no other place can.” Other companies express similar sentiments, citing the unique opportunities NASA Stennis provides, as well as the value of the local workforce. For instance, L3Harris Technologies has operated at NASA Stennis under various names since the 1960s, providing support to the Apollo, Space Shuttle, and, now, Artemis programs. In 2008, Lockheed Martin opened a start-to-finish facility for production of propulsion systems, making use of the various NASA Stennis propulsion test services and resources. Evolution Space is capitalizing on decades of aerospace experience at NASA Stennis, as well as “world-class” site infrastructure to establish production and test capabilities for solid rocket motors onsite. Both Mississippi and Louisiana have established technology offices onsite. As a Mississippi Enterprise for Technology statement noted, “The NASA Stennis environment enhances our ability to support emerging technologies, strengthen Mississippi’s technology ecosystem, and contribute to the economic vitality of the region,” said Davis Pace, chief executive officer for the Mississippi Enterprise for Technology. Meanwhile, the site’s most prominent tenant – the U.S. Navy – operates various offices at NASA Stennis. The Navy’s move to the site began in the 1970s to take advantage of the security provided by the surrounding NASA Stennis acoustical buffer zone. Various Navy functions eventually located continuing operations onsite, including the Naval Meteorology and Oceanography Command, the Naval Oceanographic Office, the Naval Small Craft Instruction and Technical Training School, the Navy Office of Civilian Human Resources, and the Naval Research Laboratory. In similar fashion, the U.S. Department of Homeland Security credits the “high-quality, secure, and resilient” NASA Stennis site for its decision to location information technology and applications operations onsite. As the very first NASA Stennis federal city tenant, arriving onsite in September 1970, the National Data Buoy Center has borne witness to it all. “From its inception, Sen. John Stennis (and other leaders) envisioned a place where America would push the boundaries of the unknown – from the depths of the oceans to the far reaches of space,” said Dr. William Burnett, director of the National Data Buoy Center onsite. “That vision lives on at NASA Stennis, now home to one of the world’s largest concentrations of oceanographers. At the National Data Buoy Center, we proudly carry out our mission to safeguard maritime safety by harnessing the full strength of this unique scientific and technical community. “We are deeply rooted in the community and grateful to thrive within the collaborative spirit that defines Stennis. It’s an honor to be part of its legacy – and its future.” Read More About Stennis Space Center Share Details Last Updated Sep 09, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 5 min read Crossroads to the Future – NASA Stennis Grows into a Model Federal City Article 14 minutes ago 4 min read NASA Stennis Provides Ideal Setting for Range Operations Article 2 weeks ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards Article 4 weeks ago View the full article
-
Space changes you. It strengthens some muscles, weakens others, shifts fluids within your body, and realigns your sense of balance. NASA’s Human Research Program works to understand—and sometimes even counter—those changes so astronauts can thrive on future deep space missions. NASA astronaut Loral O’Hara pedals on the Cycle Ergometer Vibration Isolation System (CEVIS) inside the International Space Station’s Destiny laboratory module.NASA Astronauts aboard the International Space Station work out roughly two hours a day to protect bone density, muscle strength and the cardiovascular system, but the longer they are in microgravity, the harder it can be for the brain and body to readapt to gravity’s pull. After months in orbit, returning astronauts often describe Earth as heavy, loud, and strangely still. Some reacclimate within days, while other astronauts take longer to fully recover. Adjusting to Gravity NASA’s SpaceX Crew-7 astronaut Jasmin Moghbeli after landing in the Gulf of America on March 12, 2024, completing 197 days in space.NASA/Joel Kowsky The crew of NASA’s SpaceX Crew-7 mission— NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov—landed in March 2024 after nearly 200 days in space. One of the first tests volunteer crew members completed was walking with their eyes open and then closed. “With eyes closed, it was almost impossible to walk in a straight line,” Mogensen said. In space, vision is the primary way astronauts orient themselves, but back on Earth, the brain must relearn how to use inner-ear balance signals. Moghbeli joked her first attempt at the exercise looked like “a nice tap dance.” “I felt very wobbly for the first two days,” Moghbeli said. “My neck was very tired from holding up my head.” She added that, overall, her body readapted to gravity quickly. Astronauts each recover on their own timetable and may encounter different challenges. Mogensen said his coordination took time to return. Furukawa noted that he could not look down without feeling nauseated. “Day by day, I recovered and got more stable,” he said. NASA astronaut Loral O’Hara after landing in a remote area near the town of Zhezkazgan, Kazakhstan, on April 6, 2024.NASA/Bill Ingalls NASA astronaut Loral O’Hara returned in April 2024 after 204 days in space. She said she felt almost completely back to normal a week after returning to Earth. O’Hara added that her prior experience as an ocean engineer gave her insight into space missions. “Having those small teams in the field working with a team somewhere else back on shore with more resources is a good analog for the space station and all the missions we’re hoping to do in the future,” she said. NASA astronaut Nichole Ayers, who flew her first space mission with NASA’s SpaceX Crew-10, noted that the brain quickly adapts to weightlessness by tuning out the vestibular system, which controls balance. “Then, within days of being back on Earth, it remembers again—it’s amazing how fast the body readjusts,” she said. Expedition 69 NASA astronaut Frank Rubio outside the Soyuz MS-23 spacecraft after landing near the town of Zhezkazgan, Kazakhstan, on Sept. 27, 2023. NASA/Bill Ingalls When NASA astronaut Frank Rubio landed in Kazakhstan in September 2023, he had just completed a record 371-day mission—the longest single U.S. spaceflight. Rubio said his body adjusted to gravity right away, though his feet and lower back were sore after more than a year without weight on them. Thanks to consistent workouts, Rubio said he felt mostly recovered within a couple of weeks. Mentally, extending his mission from six months to a year was a challenge. “It was a mixed emotional roller coaster,” he said, but regular video calls with family kept him grounded. “It was almost overwhelming how much love and support we received.” Crew-8 astronauts Matt Dominick, Jeanette Epps, Michael Barratt, and cosmonaut Alexander Grebenkin splashed down in October 2024 after 235 days on station. Dominick found sitting on hard surfaces uncomfortable at first. Epps felt the heaviness of Earth immediately. “You have to move and exercise every day, regardless of how exhausted you feel,” she said. Barratt, veteran astronaut and board certified in internal and aerospace medicine, explained that recovery differs for each crew member, and that every return teaches NASA something new. Still a Challenge, Even for Space Veterans NASA astronaut Suni Williams is helped out of a SpaceX Dragon spacecraft aboard the SpaceX recovery ship after splashing down off the coast of Tallahassee, Florida, March 18, 2025. NASA/Keegan Barber Veteran NASA astronauts Suni Williams and Butch Wilmore returned from a nine-month mission with Crew-9 in early 2025. Despite her extensive spaceflight experience, Williams said re-adapting to gravity can still be tough. “The weight and heaviness of things is surprising,” she said. Like others, she pushed herself to move daily to regain strength and balance. NASA astronaut Don Pettit arrives at Ellington Field in Houston on April 20, 2025, after returning to Earth aboard the Soyuz MS-25 spacecraft. NASA/Robert Markowitz NASA astronaut Don Pettit, also a veteran flyer, came home in April 2025 after 220 days on the space station. At 70 years old, he is NASA’s oldest active astronaut—but experience did not make gravity gentler. During landing, he says he was kept busy, “emptying the contents of my stomach onto the steppes of Kazakhstan.” Microgravity had eased the aches in his joints and muscles, but Earth’s pull brought them back all at once. Pettit said his recovery felt similar to earlier missions. “I still feel like a little kid inside,” he said. The hardest part, he explained, isn’t regaining strength in big muscle groups, but retraining the small, often-overlooked muscles unused in space. “It’s a learning process to get used to gravity again.” Recovery happens day by day—with help from exercise, support systems, and a little humor. No matter how long an astronaut is in space, every journey back to Earth is unique. The Human Research Program help scientists understand how spaceflight environments affect astronaut health and performance and informs strategies to keep crews healthy for future missions to the Moon, Mars, and beyond. The program studies astronauts before, during, and after spaceflight to learn how the human body adapts to living and working in space. It also collects data through Earth-based analog missions that can help keep astronauts safer for future space exploration. To learn more about how microgravity affects the human body and develop new ways to help astronauts stay healthy, for example, its scientists conduct bedrest studies – asking dozens of volunteers to spend 60 days in bed with their heads tilted down at a specific angle. Lying in this position tricks the body into responding as it would if the body was in space which allows scientists to trial interventions to hopefully counter some of microgravity’s effects. Such studies, through led by NASA, occur at the German Aerospace Center’s Cologne campus at a facility called :envihab – a combination of “environment” and “habitat.” Additional Earth-based insights come from the Crew Health and Performance Exploration Analog (CHAPEA) and the Human Exploration Research Analog (HERA) at NASA’s Johnson Space Center in Houston. Both analogs recreate the remote conditions and scenarios of deep space exploration here on Earth with volunteer crews who agree to live and work in the isolation of ground-based habitats and endure challenges like delayed communication that simulates the type of interactions that will occur during deep space journeys to and from Mars. Findings from these ground-based missions and others will help NASA refine its future interventions, strategies, and protocols for astronauts in space. NASA and its partners have supported humans continuously living and working in space since November 2000. After nearly 25 years of continuous human presence, the space station remains the sole space-based proving ground for training and research for deep space missions, enabling NASA’s Artemis campaign, lunar exploration, and future Mars missions. Explore More 7 min read A Few Things Artemis Will Teach Us About Living and Working on the Moon Article 6 years ago 3 min read Inside NASA’s New Orion Mission Evaluation Room for Artemis II Article 2 weeks ago 12 min read 15 Ways the International Space Station Benefits Humanity Back on Earth Article 3 years ago View the full article
-
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read Perseverance Meets the Megabreccia NASA’s Mars Perseverance rover acquired this image of the “Scotiafjellet” workspace on Aug. 31, 2025, using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. This image was acquired on Sol 1610, or Martian day 1,610 of the Mars 2020 mission, at the local mean solar time of 14:52:20. NASA/JPL-Caltech Written by By Henry Manelski, Ph.D. student at Purdue University Last week, the Perseverance rover began an exciting new journey. Driving northwest of the Soroya ridge, Perseverance entered an area filled with a diverse range of boulders that the science team believes could hold clues to Mars’ early history. The terrain we are exploring is known as megabreccia: a chaotic mixture of broken rock fragments likely produced during ancient asteroid impacts. Some blocks may have originated in the gargantuan Isidis impact event, which created a 1,200-mile-wide crater (about 1,930 kilometers) just east of Jezero. Studying megabreccia could help us link Jezero’s geology to the wider region around Isidis Basin, tying local observations to Mars’ global history. The rover is now beginning a systematic exploration of these rocks, starting at Scotiafjellet. If they are truly megabreccia, they could contain pieces of deep crustal material, offering a rare glimpse into Mars’ interior. These rocks likely predate the deltaic and volcanic deposits we explored earlier in Jezero Crater, making them some of the oldest accessible rocks Perseverance will ever encounter. They may therefore reveal to what extent water was present on ancient Mars — a key question as we continue our search for signs of past life on the Red Planet. In short, by venturing into this jumbled terrain, Perseverance is giving us a front-row seat to the earliest chapters of Mars’ story. Want to read more posts from the Perseverance team? Visit Mission Updates Want to learn more about Perseverance’s science instruments? Visit the Science Instruments page Share Details Last Updated Sep 08, 2025 Related Terms Blogs Explore More 4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’ Article 4 days ago 2 min read Over Soroya Ridge & Onward! Article 2 weeks ago 3 min read Curiosity Blog, Sols 4638-4640: Imaging Extravaganza Atop a Ridge Article 2 weeks ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
-
Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Station’s Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.Credit: NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 6:11 p.m. EDT, Sunday, Sept. 14, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23. Watch the agency’s launch and arrival coverage on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media. Filled with more than 11,000 pounds of supplies, the Northrop Grumman Cygnus XL spacecraft, carried on a SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft. Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL on Wednesday, Sept. 17, before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading. Highlights of space station research and technology demonstrations, facilitated by delivery aboard this Cygnus XL, include materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases. Media interested in speaking to a science subject matter expert should contact Sandra Jones at: sandra.p.jones@nasa.gov. A copy of NASA’s media accreditation policy is available on the agency’s website. The Cygnus XL spacecraft is scheduled to remain at the orbiting laboratory until March before it departs and burns up in the Earth’s atmosphere. Northrop Grumman has named the spacecraft the S.S. William “Willie” McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident. NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): Wednesday, Sept. 10: 1 p.m. – International Space Station National Laboratory Science Webinar with the following participants: Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Phillip Irace, science program director, International Space Station National Laboratory Paul Westerhoff, regents professor, School of Sustainable Engineering and the Built Environment, Arizona State University Robert Garmise, director of formulation development; exploratory biopharmaceuticals, Bristol Myers Squibb Joel Sercel, founder and CEO, TransAstra Corporation and Mike Lewis, senior vice president, customer innovation, Voyager Technologies Mohammad Kassemi, research professor, Case Western University Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar. The webinar will be recorded and shared to the International Space Station National Lab’s YouTube channel following the event. Ask questions in advance using social accounts @ISS_CASIS and @Space_Station. Friday, Sept 12 11:30 a.m. – Prelaunch media teleconference with the following participants: Dina Contella, deputy manager, NASA’s International Space Station Program Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Ryan Tintner, vice president, Civil Space Systems, Northrop Grumman Jared Metter, director, Flight Reliability, SpaceX Media who wish to participate by phone must request dial-in information by 5 p.m., Thursday, Sept. 11, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. Audio of the teleconference will stream live on the agency’s website and YouTube. Sunday, Sept. 14: 5:50 p.m. – Launch coverage begins on NASA+ and Amazon Prime 6:11 p.m. – Launch Wednesday, Sept. 17: 5 a.m. – Arrival coverage begins on NASA+ and Amazon Prime 6:35 a.m. – Capture 8 a.m. – Installation coverage begins on NASA+ and Amazon Prime NASA website launch coverage Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 5:50 p.m. on Sept. 14, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates. Attend Launch Virtually Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. Watch, Engage on Social Media Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts: X: @NASA, @NASASpaceOps, @NASAKennedy, @Space_Station, @ISS_CASIS Facebook: NASA, NASAKennedy, ISS, ISS National Lab Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab Coverage en Espanol Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov. Learn more about the mission at: https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/ -end- Josh Finch / Jimi Russell Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov Steven Siceloff Kennedy Space Center, Fla. 321-876-2468 steven.p.siceloff@nasa.gov Sandra Jones / Joseph Zakrzewski Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov Share Details Last Updated Sep 08, 2025 EditorLauren E. LowLocationNASA Headquarters Related TermsNorthrop Grumman Commercial ResupplyCommercial ResupplyInternational Space Station (ISS)ISS Research View the full article
-
NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission. Credit: NASA/JPL-Caltech NASA will host a media teleconference at 11 a.m. EDT Wednesday, Sept. 10, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper. The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago. Audio and visuals of the call will stream on the agency’s website at: https://www.nasa.gov/live Participants in the teleconference include: Acting NASA Administrator Sean Duffy Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, Senior Scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance Project Scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars. Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio. To learn more about Perseverance visit: https://www.nasa.gov/perseverance -end- Bethany Stevens / Karen Fox Headquarters, Washington 202-358-1600 bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Share Details Last Updated Sep 08, 2025 LocationNASA Headquarters Related TermsPerseverance (Rover)MarsMars 2020Planetary Science DivisionScience Mission Directorate View the full article