Jump to content

NASA

Publishers
  • Posts

    6,179
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Hundreds of students, scientists, and other stakeholders listen in person and online as NASA leaders discuss the Artemis missions during the 2023 von Braun Space Exploration Symposium held Oct. 25–27 at the University of Alabama in Huntsville. NASA / Charles Beason Media are invited to attend the 2024 von Braun Space Exploration Symposium Monday Oct. 28 to Wednesday, Oct. 30 at the University of Alabama in Huntsville. Organized by the American Astronautical Society in collaboration with NASA’s Marshall Space Flight Center in Huntsville, the annual symposium gathers leaders from across government, industry, policy, and academia to discuss the current landscape of space exploration and chart a path forward amid the challenges that lie ahead. The theme of this year’s event is “Expanding Exploration: From Vision to Reality,” focusing on NASA’s and Marshall’s plans for the future and the broader discourse about exploration and discovery, technology, the workforce, and other elements of the space ecosystem. Media members interested should register with the astronautical society as a media representative under these guidelines for in-person or online attendance. Marshall Center Director Joseph Pelfrey will deliver opening remarks on Oct. 28, followed by panels on Artemis, artificial intelligence, and workforce development. NASA Deputy Associate Administrator Casey Swails will deliver a keynote address to close out the first day. Panels on, Oct. 29, will focus on space nuclear propulsion, science, and lunar logistics and mobility. Col. Eric Zarybnisky, Office of Space Launch director at the National Reconnaissance Office, will provide the luncheon keynote. The third and final day of the symposium Oct. 30, will include discussions on nuclear propulsion, space technology, and human exploration beyond low-Earth orbit. NASA Associate Administrator Jim Free and Wayne Hale, who retired in 2010 as the deputy associate administrator of strategic partnerships at NASA Headquarters in Washington, will lead a discussion and present awards at the closing luncheon. To arrange interviews with NASA Marshall speakers, contact Hannah Maginot, 256-932-1937, or Molly Porter, 256-424-5158. For more information on NASA’s Marshall Space Flight Center, visit: https://www.nasa.gov/marshall Hannah Maginot Marshall Space Flight Center, Huntsville, Ala. hannah.l.maginot@nasa.gov 256-932-1937 Molly Porter Marshall Space Flight Center, Huntsville, Ala. molly.a.porter@nasa.gov 256-424-5158 Share Details Last Updated Oct 23, 2024 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 19 min read The Marshall Star for October 23, 2024 Article 1 hour ago 4 min read NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft Article 5 hours ago 5 min read NASA’s IXPE Helps Researchers Determine Shape of Black Hole Corona Article 6 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  2. 19 Min Read The Marshall Star for October 23, 2024 Editor’s Note: Starting Nov. 4, the Office of Communications at NASA’s Marshall Space Flight Center will no longer publish the Marshall Star on nasa.gov. The last public issue will be Oct. 30. To continue reading Marshall news, visit nasa.gov/marshall. Habitation Systems Business Unit Spotlight: Living and Working in Space For centuries, humans have dreamed of the ability to live safely on the Moon and Mars. At NASA’s Marshall Space Flight Center, team members supporting habitation systems development bring that dream closer to reality by envisioning and shaping humanity’s future in deep space and on the surface of other worlds. Marshall’s Habitation Systems business unit – the center’s featured organization for October – develops the next generation of habitation systems to make living and working in space and on planetary bodies possible. These efforts are carried out through the Habitation Systems Development Office, in which the team works across programmatic and engineering organizations to support formulation activities for planetary surface habitation (Moon and Mars), transit habitats for deep space exploration, and the Gateway program. In addition, the Marshall team collaborates with commercial partners on future habitation concept development and risk reduction activities through NextSTEP Appendix A: Habitation Systems and Reimbursable Space Act Agreements. Seth BellNASA Seth Bell is currently the technical monitor for NASA’s commercial partner Sierra Space. Sierra has executed both full scale and subscale inflatable habitat burst tests at Marshall’s East Test Area. Bell has worked as a subsystem manager for the Mars Ascent Vehicle and as a system’s engineer and Engineering Directorate integrator. “I am excited to eventually see softgood inflatables in low Earth orbit,” Bell said. “Seeing the success of the many teams working in this office is exciting, especially after developing so many lasting relationships and putting so much time and energy into this work.” Yancy YoungNASA Since joining NASA in 2008, Yancy Young has served in multiple positions, including manager of several International Space Station research projects and Launch Package manager for Gateway Co-manifested Payloads. Currently, Young is the technical monitor for Boeing efforts under NASA’s NextSTEP Appendix A Broad Agency Announcement (BAA) for the development of deep space habitation concepts. “I love being a part of laying the foundation for long term deep space exploration,” Young said. Boeing’s current focus is a Design Analysis Cycle investigating the benefits and challenges of using composite materials in a pressurized Lunar Surface Habitat. Brooke ThorntonNASA In her 25-plus years at NASA, Brooke Thornton has worked on everything from ionized space radiation analysis to Earth observing satellites. Currently, Thornton is the industry engagement manager for the Habitation Systems Development Office and Strategy and Architecture Office. Thornton manages NextSTEP-2 Appendix A-Habitation Systems and Appendix R-Logistics and Mobility Systems BAA. In addition, Thornton fosters collaboration between industry and NASA for the Moon to Mars mission. “I am excited about working with industry to develop the elements and concepts of operations for humans to live on the Moon and beyond,” Thornton said. › Back to Top Team Members Enjoy Marshall Exchange BBQ Fest Joseph Pelfrey, center, director of NASA’s Marshall Space Flight Center, talks with team members during the BBQ Fest hosted by the Marshall Exchange on Oct. 21. The event was held on the walking trail behind the Wellness Center and was open to team members, their family members, and retirees. “My thanks to those who came out to this year’s BBQ – and especially to those who helped make it happen,” Pelfrey said. “I could not have asked for better weather or a better group of people to spend the afternoon with. It was great to see everyone’s families join us on site to celebrate the hard work our teams have put in this year.” (NASA/Charles Beason) Children play on an inflatable at the BBQ Fest with a space shuttle inflatable in the background. (NASA/Charles Beason) Marshall team members participate in Bingo during the BBQ hosted by the Marshall Exchange. (NASA/Charles Beason) › Back to Top Tony Clark Named Deputy Director of Marshall’s Engineering Directorate Tony Clark has been named to the Senior Executive Service position of deputy director of the Engineering Directorate at NASA’s Marshall Space Flight Center, effective immediately. In this role, Clark will be help lead the center’s largest organization, comprised of more than 2,500 civil service and contractor personnel, who design, test, evaluate, and operate flight hardware and software associated with Marshall-developed space transportation and spacecraft systems, science instruments, and payloads. Tony Clark has been named to the Senior Executive Service position of deputy director of the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA Clark previously served as deputy director of the Space Systems Department at Marshall from 2021-2024 and served as acting director in 2024. In this role, Clark led the design, development, assembly, integration, testing, and delivery of flight, ground, prototype, and development products for NASA human spaceflight programs, science investigations, and exploration initiatives. He aided in the oversight of an annual budget of approximately $70 million and helped manage a diverse, highly technical workforce of approximately 660 civil service employees and contractors. Over his three decades of service to NASA, Clark has held numerous key leadership roles, bringing a wealth of technical and supervisory experience to Marshall’s broad range of engineering endeavors. He served as manager of the vehicle equipment area in Johnson Space Center’s Vehicle Systems Integration Office of the Gateway Program from 2018-2021. He was also manager of the Engineering Resource Management Office in Marshall’s Engineering Directorate from 2014-2018, tasked with leading and coordinating resources among eight engineering departments, laboratories and offices staffed by more than 2,300 civil service and contract personnel. He was acting deputy manager of the Engineering Directorate’s Spacecraft and Vehicle Systems Department from February 2014 to October 2014. Prior to that, Clark was chief of the directorate’s Electrical Integration and Fabrication Division from 2007-2014, and chief of the Electromagnetic Environmental Effects and Electrical Integration Branch from 2004-2007. He joined Marshall in September 1991 as an electromagnetic environmental effects engineer. Clark earned a bachelor’s degree in electrical engineering from Tennessee Technological University in Cookeville in 1989 and a master’s degree in electrical engineering from The Ohio State University in Columbus in 1991. Among his many professional awards and honors, Clark received the NASA Exceptional Achievement Medal in 2010 for his work on the Ares IX, the launch vehicle which informed development of NASA’s new rocket, the Space Launch System. He also received a Silver Snoopy award in 1999, reflecting outstanding service and the highest dedication to safe human spaceflight. Clark was a founding member in 2004 of the Huntsville Chapter of the Institute of Electrical and Electronic Engineers’ Electromagnetic Compatibility Society. › Back to Top I Am Artemis: Sarah Ryan A passion for puzzles, problem-solving, and propulsion led Sarah Ryan – a native of Columbus, Ohio – to her current position as Raptor engine lead for NASA’s HLS (Human Landing System) insight team at NASA’s Marshall Space Flight Center. The SpaceX Raptor rocket engine powers the company’s Starship and Super Heavy rocket. SpaceX will land astronauts on the Moon for NASA’s Artemis III and Artemis IV missions using the Starship HLS. NASA’s Artemis campaign aims to land the first woman, first person of color, and first international partner astronaut on the Moon. NASA’s Sarah Ryan is the Raptor engine lead for NASA’s HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center. “With Artemis, we’re moving beyond what NASA did with Apollo and that’s really inspiring, especially to our younger workforce. We’re trying to push farther and it’s really going to drive a lot of technology development on the way there,” Ryan said. “This is a dream come true to be working on Artemis and solving problems so humanity can get back to the Moon then on to Mars.”NASA/Ken Hall “My team looks at how the components of the Raptor engine work together. Then, we evaluate the performance of the full system to make sure it will accomplish the NASA HLS and Artemis missions,” Ryan said. “I get to see lots of pieces and parts of the puzzle and then look at the system as a whole to make sure it meets NASA’s needs.” While earning a bachelor’s degree from Case Western Reserve University in Cleveland with a dual major in aerospace engineering and mechanical engineering, Ryan had an internship at Marshall, working on a payload for a science mission onboard the International Space Station. After working for a year on satellite design, Ryan returned to Marshall. She noted that the opportunity to work in Marshall’s Engine Systems branch, to be involved with pushing technology forward, and to work on Artemis, really drew her back to NASA. Ryan later earned a master’s degree in aerospace systems from the University of Alabama in Huntsville. When not occupied with rocket engine development, Ryan likes to work on quieter hobbies in her free time, including reading, board games, crocheting, and solving all manner of puzzles – crosswords, number games, word games, and more. Her interest for solving puzzles carries over into her work on the Raptor rocket engines for HLS. “My favorite tasks are the ones that most resemble a puzzle,” Ryan said. “If we’re investigating an issue and have a lot of information to assess, I love putting all the pieces together and figuring out what happened, why, and the path forward. I enjoy digging into the data and solving those puzzles.” With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. › Back to Top I Am Artemis: Casey Wolfe While precision, perseverance, and engineering are necessary skills in building a Moon rocket, Casey Wolfe knows that one of the most important aspects for the job is teamwork. “Engineering is vital, but to get this type of work done, you need to take care of the human element,” said Wolfe, the assistant branch chief of the advanced manufacturing branch in the Materials and Processes Laboratory at NASA’s Marshall Space Flight Center. Casey Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.NASA/Sam Lott Together with her team, Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques. Wolfe’s work integrates the technical day-to-day operations and personnel management of the composites manufacturing team and additive manufacturing team, balancing production of SLS hardware with the creation of new engines using the latest manufacturing technologies. “A lot of my day to day is in managing our two teams, making connections, building relationships, and making sure people feel supported,” Wolfe said. “I conduct individual tag ups with each team member so we can be proactive about anticipating and addressing problems.” Wolfe grew up in Huntsville, a place known as the “Rocket City,” but it wasn’t until she visited a job fair while studying at Auburn University for a polymer and fiber engineering degree that she began to consider a career at Marshall. Wolfe applied for and was selected to be a NASA intern through the Pathways Program, working in the non-metallic materials branch of the Materials and Processes Laboratory. Wolfe supported a coating system for electrostatic discharge on the first uncrewed test flight of the Orion spacecraft. Launching Dec. 5, 2014, Orion traveled to an altitude of 3,600 miles, orbited Earth twice, and splashed down in the Pacific Ocean. It was during her internship that Wolfe realized how inspirational it felt to be treated like a vital part of a team. “The SLS program gave everyone permission to sign the hardware, even me – even though I was just an intern,” Wolfe said. “It was impactful to me, knowing that something I had worked on had my name on it and went to space.” Since being hired by NASA, Wolfe’s work has supported development of the Orion stage adapter diaphragms for Artemis II and Artemis III, and the payload adapters for Artemis IV and beyond. The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch. Beginning with Artemis IV, the SLS Block 1B variant will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space, with the cone-shaped payload adapter situated atop the rocket’s exploration upper stage. The new variant will be capable of launching more than 38 metric tons (84,000 pounds) to the Moon in a single launch. “While the engineering development unit of the payload adapter is undergoing large-scale testing, our team is working on the production of the qualification article, which will also be tested,” Wolfe said. “Flight components should be starting fabrication in the next six months.” When Wolfe isn’t working, she enjoys hiking, gardening, and hanging out with her dogs and large family. Recently, she signed another piece of SLS hardware headed to space: the Orion stage adapter for the second Artemis mission. With as many responsibilities as Wolfe juggles, it’s easy to lose sight of her work’s impact. “I work in the lab around the hardware all the time, and in many ways, it can become very rote,” she said. But Wolfe won’t forget what she saw one evening when she worked late: “Everybody was gone, and as I walked past the launch vehicle stage adapter, there were two security guards taking pictures of each other in front of it. It was one of those things that made me step back and reflect on what my team accomplishes every day: making history happen.” NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. › Back to Top NASA’s IXPE Helps Researchers Determine Shape of Black Hole Corona By Rick Smith New findings using data from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) mission offer unprecedented insight into the shape and nature of a structure important to black holes called a corona. A corona is a shifting plasma region that is part of the flow of matter onto a black hole, about which scientists have only a theoretical understanding. The new results reveal the corona’s shape for the first time, and may aid scientists’ understanding of the corona’s role in feeding and sustaining black holes. This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” which can be seen as a purple haze floating above the underlying accretion disk and extending slightly inside its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it.NASA/Caltech-IPAC/Robert Hurt Many black holes, so named because not even light can escape their titanic gravity, are surrounded by accretion disks, debris-cluttered whirlpools of gas. Some black holes also have relativistic jets – ultra-powerful outbursts of matter hurled into space at high speed by black holes that are actively eating material in their surroundings. Less well known, perhaps, is that snacking black holes, much like Earth’s Sun and other stars, also possess a superheated corona. While the Sun’s corona, which is the star’s outermost atmosphere, burns at roughly 1.8 million degrees Fahrenheit, the temperature of a black hole corona is estimated at billions of degrees. Astrophysicists previously identified coronae among stellar-mass black holes – those formed by a star’s collapse – and supermassive black holes such as the one at the heart of the Milky Way galaxy. “Scientists have long speculated on the makeup and geometry of the corona,” said Lynne Saade, a postdoctoral researcher at NASA’s Marshall Space Flight Center and lead author of the new findings. “Is it a sphere above and below the black hole, or an atmosphere generated by the accretion disk, or perhaps plasma located at the base of the jets?” Enter IXPE, which specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of even the most powerful energy sources, illuminating their inner workings even when the objects are too small, bright, or distant to see directly. Just as we can safely observe the Sun’s corona during a total solar eclipse, IXPE provides the means to clearly study the black hole’s accretion geometry, or the shape and structure of its accretion disk and related structures, including the corona. “X-ray polarization provides a new way to examine black hole accretion geometry,” Saade said. “If the accretion geometry of black holes is similar regardless of mass, we expect the same to be true of their polarization properties.” IXPE demonstrated that, among all black holes for which coronal properties could be directly measured via polarization, the corona was found to be extended in the same direction as the accretion disk – providing, for the first time, clues to the corona’s shape and clear evidence of its relationship to the accretion disk. The results rule out the possibility that the corona is shaped like a lamppost hovering over the disk. The research team studied data from IXPE’s observations of 12 black holes, among them Cygnus X-1 and Cygnus X-3, stellar-mass binary black hole systems about 7,000 and 37,000 light-years from Earth, respectively, and LMC X-1 and LMC X-3, stellar-mass black holes in the Large Magellanic Cloud more than 165,000 light-years away. IXPE also observed a number of supermassive black holes, including the one at the center of the Circinus galaxy, 13 million light-years from Earth, and those in galaxies NGC 1068 and NGC 4151, 47 million light-years away and nearly 62 million light-years away, respectively. Stellar mass black holes typically have a mass roughly 10 to 30 times that of Earth’s Sun, whereas supermassive black holes may have a mass that is millions to tens of billions of times larger. Despite these vast differences in scale, IXPE data suggests both types of black holes create accretion disks of similar geometry. That’s surprising, said Marshall astrophysicist Philip Kaaret, principal investigator for the IXPE mission, because the way the two types are fed is completely different. “Stellar-mass black holes rip mass from their companion stars, whereas supermassive black holes devour everything around them,” he said. “Yet the accretion mechanism functions much the same way.” That’s an exciting prospect, Saade said, because it suggests that studies of stellar-mass black holes – typically much closer to Earth than their much more massive cousins – can help shed new light on properties of supermassive black holes as well. The team next hopes to make additional examinations of both types. Saade anticipates there’s much more to glean from X-ray studies of these behemoths. “IXPE has provided the first opportunity in a long time for X-ray astronomy to reveal the underlying processes of accretion and unlock new findings about black holes,” she said. The complete findings are available in the latest issue of The Astrophysical Journal. Smith, an Aeyon employee, supports the Marshall Office of Communications. › Back to Top Michoud Gets a Rare Visitor The Oort Cloud comet, called C/2023 A3 Tsuchinshan-ATLAS, passes over Southeast Louisiana near New Orleans, home of NASA’s Michoud Assembly Facility on Oct. 13. The comet is making its first appearance in documented human history; it was last seen in the night sky 80,000 years ago. The Tsuchinshan-ATLAS comet made its first close pass by Earth in mid-October and will remain visible to viewers in the Northern Hemisphere just between the star Arcturus and planet Venus through early November. Eric Bordelon, a photographer for Michoud, captured the image, which was featured as NASA’s image of the day. “On Sunday evening I decided to head out to find the comet I’ve read so much about,” Bordelon said. “Struggling at first to see it, once my eyes adjusted to the darkness I could faintly see it. I pulled my camera out and set up a tripod, with a longer exposure around six seconds I was able to capture this shot with a single frame. The far off setting sun made a beautiful color gradient in the dark sky with the other stars just beginning to appear.” Read more about the comet. (NASA/Eric Bordelon) › Back to Top Hubble Captures New View of Galaxy M90 A new NASA/ESA Hubble Space Telescope image features the striking spiral galaxy Messier 90 (M90, also NGC 4569), located in the constellation Virgo. In 2019, Hubble released an image of M90 created with Wide Field and Planetary Camera 2 (WFPC2) data taken in 1994, soon after its installation. That WFPC2 image has a distinctive stair-step pattern due to the layout of its sensors. Wide Field Camera 3 (WFC3) replaced WFPC2 in 2009 and Hubble used WFC3 when it turned its aperture to Messier 90 again in 2019 and 2023. That data resulted in this stunning new image, providing a much fuller view of the galaxy’s dusty disk, its gaseous halo, and its bright core. This eye-catching image offers us a new view of the spiral galaxy Messier 90 from the NASA/ESA Hubble Space Telescope. ESA/Hubble & NASA, D. Thilker, J. Lee and the PHANGS-HST Team The inner regions of M90’s disk are sites of star formation, seen here in red H-alpha light from nebulae. M90 sits among the galaxies of the relatively nearby Virgo Cluster, and its orbit took M90 on a path near the cluster’s center about three hundred million years ago. The density of gas in the inner cluster weighed on M90 like a strong headwind, stripping enormous quantities of gas from the galaxy and creating the diffuse halo we see around it. This gas is no longer available to form new stars in M90, with the spiral galaxy eventually fading as a result. M90 is located 55 million light-years from Earth, but it’s one of the very few galaxies getting closer to us. Its orbit through the Virgo cluster has accelerated so much that M90 is in the process of escaping the cluster entirely. By happenstance, it’s moving in our direction. Astronomers have measured other galaxies in the Virgo cluster at similar speeds, but in the opposite direction. As M90 continues to move toward us over billions of years, it will also be evolving into a lenticular galaxy. › Back to Top View the full article
  3. NASA’s SpaceX Crew-8 Re-entry and Splashdown
  4. Astronaut and Artemis II pilot, Victor Glover, maneuvers the latch handle on an Orion test side hatch during performance evaluations at the Lockheed Martin Space campus in Littleton, Colorado.Photo credit: Lockheed Martin Artemis II NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, and CSA (Canadian Space Agency) astronaut Jeremy Hansen recently traveled to Lockheed Martin Space in Littleton, Colorado, where they practiced opening and closing an Orion crew module side hatch model to help demonstrate its reliability and durability during their 10-day mission around the Moon. During normal mission operations, the crew will not operate the hatches – the ground systems team at NASA’s Kennedy Space Center in Florida will assist the crew into Orion at the launch pad, then close the hatch behind them prior to liftoff. After splashdown in the Pacific Ocean, recovery teams will open the side hatch and help crew to exit. Back-up crew members Andre Douglas of NASA and Jenni Gibbons of CSA also trained on hatch operations, which help ensure the crew can safely enter and exit the spacecraft in the event of an emergency. The side hatch is normally opened using a manual gearbox system, but in an emergency, the hatch has release mechanisms containing small pyrotechnic (explosive) devices that release the latch pins on the hatch instantaneously, allowing the hatch to open quickly. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. View the full article
  5. The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) America Reyes Wang, Sepideh Khajehei, Julie Nottage, and Ryan Felton. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond. Space Biosciences Star: America Reyes Wang America Reyes Wang serves as the Space Biology Biospecimen Sharing Program (BSP) Lead in the Space Biosciences Research Branch, where she guides a team of support scientists and a logistics coordinator in planning and performing detailed, collaborative dissections to maximize the scientific return from biological investigations. Under her leadership, the BSP team has contributed over 5,000 samples to the NASA Biological Institutional Scientific Collection (NBISC), approximately half of which were collected in the last 10 months. Earth Science Star: Sepideh Khajehei Sepideh Khajehei is a NASA Earth eXchange (NEX) Data and Research Scientist in the Biospheric Science Branch, for the Bay Area Environmental Research Institute. She is recognized for her dedicated support of the NASA Administrator’s Earth Information Center, and recently for her outstanding support for an urgent request to revise climate indices just days before the October 7, 2024, opening of NASA’s Hometown Climate Dashboard at the Smithsonian Institute in Washington, D.C. Space Science & Astrobiology Star: Julie Nottage Julie Nottage continuously goes above and beyond in her role as the Space and Earth Sciences Facilities Service Manager. She keeps a multi-use interdisciplinary science building running across all aspects of operations and is the go-to person for any problem. Her can-do approach and wealth of knowledge ensures the facility’s high-quality operation that enables scientists and engineers to focus on their research and instrument work. Her quality work and extensive coordination of the Voluntary Protection Program allowed these month-long inspections to run smoothly with an improved safety outcome. Space Science & Astrobiology Star: Ryan Felton Ryan Felton, a NASA Postdoctoral Management Fellow with the Exobiology Branch, is recognized for his successful coordination of an engaging community-wide seminar series focused on Artificial Intelligence/Machine Learning (AI/ML). This seminar series featured four speakers so far over six months on a variety of exciting topics to advance AI/ML knowledge and use in the branch’s research. View the full article
  6. NASA Associate Administrator Jim Free welcomed the Republic of Cyprus as the latest nation to commit to the responsible use of space for humanity on Wednesday, marking 46 signatories to date. “We applaud Cyprus’ commitment to the Artemis Accords, which will enhance the country’s engagement with NASA and the international community,” said Free, who participated virtually. “By joining 45 other country signatories in this effort, Cyprus will help play a role in implementing the accords and exploration that is open, responsible, transparent, and peaceful for the benefit of all.” Nicodemos Damianou, Cyprus’ deputy minister of research, innovation, and digital policy, signed the Artemis Accords during a ceremony in Nicosia, Cyprus. James O’Brian, assistant secretary for European and Eurasian Affairs for the U.S. Department of State, also attended the event. “Today marks a significant milestone for Cyprus as we officially sign the Artemis Accords,” said Damianou. “As we embark on this exciting journey, we reaffirm our commitment to a safe and responsible space exploration, as well as our strong belief in the importance of international cooperation in ensuring space is utilized to the benefit of all humanity. Cyprus, an European Union member state, is capitalizing on its geostrategic location between three continents, and aspires to play an integral role in the international space community.” The signing with Cyprus comes on the heels of an Artemis Accords meeting in Milan earlier this month with dozens of signatory countries, including the United States. In 2020, NASA, in coordination with the U.S. Department of State and seven other initial signatory nations, established the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming days and weeks ahead. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords -end- Kathryn Hambleton / Elizabeth Shaw Headquarters, Washington 202-358-1600 kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated Oct 23, 2024 LocationNASA Headquarters Related TermsOffice of International and Interagency Relations (OIIR)artemis accords View the full article
  7. NASA/Don Pettit Astronaut Don Pettit captured this image of Melbourne, Australia from the International Space Station on Oct. 9, 2024, as it orbited 271 miles above the city. Astronauts aboard the space station take photos using handheld digital cameras, usually through windows in the station’s cupola, for Crew Earth Observations. Crew members have produced hundreds of thousands of images of the Moon and Earth’s land, oceans, and atmosphere. Image credit: NASA/Don Pettit­ View the full article
  8. Radioisotope Power Systems RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Overview Power to Explore Contest Kid-Friendly Videos FAQ 5 Min Read After 60 Years, Nuclear Power for Spaceflight is Still Tried and True Workers install one of three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. More › Credits: NASA Editor’s Note: Originally published on June 21, 2021. Six decades after the launch of the first nuclear-powered space mission, Transit IV-A, NASA is embarking on a bold future of human exploration and scientific discovery. This future builds on a proud history of safely launching and operating nuclear-powered missions in space. “Nuclear power has opened the solar system to exploration, allowing us to observe and understand dark, distant planetary bodies that would otherwise be unreachable. And we’re just getting started,” said Dr. Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Future nuclear power and propulsion systems will help revolutionize our understanding of the solar system and beyond and play a crucial role in enabling long-term human missions to the Moon and Mars.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Space nuclear power to explore the deepest, dustiest, darkest, and most distant regions of our solar system and beyond. NASA From Humble Beginnings: Nuclear Power Spawns an Age of Scientific Discovery On June 29, 1961, the John’s Hopkins University Applied Physics Laboratory launched the Transit IV-A Spacecraft. It was a U.S. Navy navigational satellite with a SNAP-3B radioisotope powered generator producing 2.7 watts of electrical power — about enough to light an LED bulb. Transit IV-A broke an APL mission-duration record and confirmed the Earth’s equator is elliptical. It also set the stage for ground-breaking missions that have extended humanity’s reach across the solar system. Since 1961, NASA has flown more than 25 missions carrying a nuclear power system through a successful partnership with the Department of Energy (DOE), which provides the power systems and plutonium-238 fuel. “The department and our national laboratory partners are honored to play a role in powering NASA’s space exploration activities,” said Tracey Bishop, deputy assistant secretary in DOE’s Office of Nuclear Energy. “Radioisotope Power Systems are a natural extension of our core mission to create technological solutions that meet the complex energy needs of space research, exploration, and innovation.” There are only two practical ways to provide long-term electrical power in space: the light of the sun or heat from a nuclear source. We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today. Alan Stern Principal Investigator, NASA’s New Horizons Mission to Pluto and Beyond “As missions move farther away from the Sun to dark, dusty, and harsh environments, like Jupiter, Pluto, and Titan, they become impossible or extremely limited without nuclear power,” said Leonard Dudzinski, chief technologist for NASA’s Planetary Science Division and program executive for Radioisotope Power. That’s where Radioisotope Power Systems, or RPS, come in. They are a category of power systems that convert heat generated by the decay of plutonium-238 fuel into electricity. “These systems are reliable and efficient,” said June Zakrajsek, manager for NASA’s Radioisotope Power Systems Program office at Glenn Research Center in Cleveland. “They operate continuously over long-duration space missions regardless of sunlight, temperature, charged particle radiation, or surface conditions like thick clouds or dust. They’ve allowed us to explore from the Sun to Pluto and beyond.” RPS powered the Apollo Lunar Surface Experiment Package. They’ve sustained Voyager 1 and 2 since 1977, and they kept Cassini-Huygens’ instruments warm as it explored frigid Saturn and its moon Titan. Today, a Multi-Mission Thermoelectric Generator (MMRTG) powers the Perseverance rover, which is captivating the nation as it searches for signs of ancient life on Mars, and a single RTG is sustaining New Horizons as it ventures on its way out of the solar system 15 years after its launch. “The RTG was and still is crucial to New Horizons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute. “We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today.” New Horizons carries seven scientific instruments and a radioisotope thermoelectric generator. The spacecraft weighs 1,060 pounds. NASA/JHUAPL Great Things to Come: Science and Human Exploration Dragonfly, which is set to launch in 2028, is the next mission with plans to use an MMRTG. Part of NASA’s New Frontiers program, Dragonfly is an octocopter designed to explore and collect samples on Saturn’s largest moon, Titan, an ocean world with a dense, hazy atmosphere. “RPS is really an enabling technology,” said APL’s Zibi Turtle, principal investigator for the upcoming Dragonfly mission. “Early missions like Voyager, Galileo, and Cassini that relied on RPS have completely changed our understanding and given us a geography of the distant solar system…Cassini gave us our first close-up look at the surface of Titan.” According to Turtle, the MMRTG serves two purposes on Dragonfly: power output to charge the lander’s battery and waste heat to keep its instruments and electronics warm. “Flight is a very high-power activity. We’ll use a battery for flight and science activities and recharge the battery using the MMRTG,” said Turtle. “The waste heat from the power system is a key aspect of our thermal design. The surface of Titan is very cold, but we can keep the interior of the lander warm and cozy using the heat from the MMRTG.” As the scientific community continues to benefit from RPS, NASA’s Space Technology Mission Directorate is investing in new technology using reactors and low-enriched uranium fuel to enable a robust human presence on the Moon and eventually human missions to Mars. Astronauts will need plentiful and continuous power to survive the long lunar nights and explore the dark craters on the Moon’s South Pole. A fission surface power system could provide enough juice to power robust operations. NASA is leading an effort, working with the DOE and industry to design a fission power system for a future lunar demonstration that will pave the way for base camps on the Moon and Mars. NASA has also thought about viable ways to reduce the time it takes to travel to Mars, including nuclear propulsion systems. As NASA advances its bold vision of exploration and scientific discovery in space, it benefits from 60 years of the safe use of nuclear power during spaceflight. Sixty years of enlightenment that all started with a little satellite called Transit IV-A. News Media Contact Jan Wittry NASA’s Glenn Research Center View the full article
  9. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Shauntina Lilly, a NASA Glenn public affairs officer, smiles as she speaks to students about NASA’s available internships and educational resources during the STEM Goes Red for Girls event at Great Lakes Science Center, home of the NASA Glenn Visitor Center, on October 21.Credit: NASA/Debbie Welch NASA is making event plans for the 2025 calendar year, and we want to pencil you in! We are looking for the Midwest’s biggest and best community events with the broadest audiences to share NASA’s content and raise awareness of the agency’s most exciting aeronautics and space missions. NASA’s Glenn Research Center in Cleveland is leading the agency’s efforts to inspire the Midwest through engagement. Learn How to Submit a Proposal Interested organizations can submit an event proposal to Glenn now through Nov. 18, 2024. Those selected will receive notification via email by Dec. 31, 2024. Through this collaboration, selected organizations will gain access to NASA exhibits and artifacts, hands-on demonstrations, STEM and internship opportunities for students and educators, NASA’s innovative technology, and experts that align to the topics and themes of their events. Eligibility Requirements NASA is seeking: Organizations with direct community connections and an established event that reaches diverse audiences. Events scheduled to occur between Jan. 1, 2025, and Dec. 31, 2025. Events that are mutually beneficial – where a NASA presence will enhance the event experience and raise awareness of NASA’s contributions to the advancement of aeronautics and space exploration. Selected organizations must agree to the following: Attend virtual planning meetings through an online business communication platform. Work with NASA Glenn’s Office of Communications when coordinating marketing, media communications, and logistics as described in the event proposal. Adhere to NASA Media Usage Guidelines for NASA media and logos. Provide final attendance data within two weeks of the conclusion of the event including the following: Number of attendees Estimated percentage of attendees from underrepresented audiences Submitting a Proposal All proposals are to be submitted through the online proposal form. Proposals must be submitted by 11:59 p.m. Eastern on Nov. 18, 2024. Only proposals submitted online will be accepted. Proposal Review Process Proposals will be evaluated and scored, and selections will be made using the following criteria: Estimated audience size. Percentage of audience from underserved and/or underrepresented communities as defined below. For purposes of this solicitation, underserved and/or underrepresented communities include Black, Latino, and Indigenous and Native American persons, Asian Americans and Pacific Islanders and other persons of color; members of religious minorities; lesbian, gay, bisexual, transgender, and queer (LGBTQ+) persons; persons with disabilities; persons who live in rural areas; and persons otherwise adversely affected by persistent poverty or inequality. (Source: NASA’s Mission Equity). Alignment of the program’s goals and objectives to those of this opportunity. Plans to maximize audience participation through marketing and media communications. Evidence of historical attendance at this or similar events hosted by the proposing organization. Proposing organizations will be notified of their selection status by Dec. 31, 2024. Point of Contact If you have questions about this opportunity or the online proposal form, contact NASA Glenn’s Office of Communications: GRC-Public-Engagement@mail.nasa.gov. Timeline Solicitation posted: Oct. 23, 2024 Proposal form URL: https://osirris.grc.nasa.gov/request/request.cfm Proposal submission deadline: Nov. 18, 2024 Notification of event selection: Dec. 13, 2024 Background NASA’s Glenn Research Center designs, develops, and tests innovative technology to revolutionize air travel, advance space exploration, and improve life on Earth. As one of 10 NASA centers, and the only one in the Midwest, Glenn is a vital contributor to the region’s economy and culture. Many NASA missions have Glenn contributions, and every U.S. aircraft has NASA Glenn technology on board, making flight cleaner, safer, and quieter. View the full article
  10. Learn Home Europa Trek: NASA Offers a New… Europa Clipper Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon NASA’s Europa Clipper mission is on its way to explore a moon of Jupiter that researchers believe may be one of the best places in the Solar System to search for life beyond Earth. While the spacecraft makes its more-than-five year journey to Europa, scientists, students, teachers, and the public can tour and explore the landforms of Europa with newly-released enhancements to NASA’s Europa Trek web portal. One of the largest of Jupiter’s nearly 100 recognized moons, Europa is covered with a global ice cap. But beneath that crust of ice, researchers have found an ocean of liquid water, estimated to have about twice the volume of all of Earth’s oceans combined. This vast amount of liquid water is of particular interest to astrobiologists, scientists studying the origin, evolution, and distribution of life in the Universe. Though Europa’s ocean remains hidden beneath its global crust of ice, we can get important clues about its nature by studying the remarkable landforms of Europa’s icy surface. To accompany the launch of Europa Clipper, NASA’s Solar System Treks Project released exciting new enhancements to its online Europa Trek portal on September 30, 2024. The new additions to Europa Trek allow users to interactively fly over and explore high-resolution imagery of Europa’s surface from the Voyager, Galileo, and Juno missions. Users can also take a new guided tour of Europa’s amazing landforms, with commentary developed by a collaboration between NASA’s Astrobiology Science Communication Guild and NASA’s Solar System Exploration Research Virtual Institute. The tour and its commentary introduce virtual explorers to the geology and possible biological significance of the diverse features of Europa’s surface. “This is really fun. It’s cool how you can zoom into the high resolution data. I’ll spread the word about using this!” – Bob Pappalardo, Europa Clipper Project Scientist The new tour and capabilities of Europa Trek were featured at the Europa Clipper public launch program at the Kennedy Space Center Visitor Center on October 6,2024, in advance of the October 14 launch of the mission. As part of the public program conducted by NASA’s Planetary Mission Program Office, the Europa Trek exhibit allowed hundreds of visitors to try their hands at flying over Europa and visualizing its exotic terrain. NASA’s Solar System Treks is an infrastructure project within NASA’s Science Activation Team. Their online portals are used for mission planning, planetary science research, and Science, Technology, Engineering, & Mathematics (STEM) education. NASA’s Astrobiology Science Communication Guild is an international, community-based network of astrobiologists who engage in science communication with diverse audiences and learners. Watch for future collaborations between Solar System Treks and the Astrobiology Science Communication Guild at more locations across the Solar System! Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn A stop along the guided tour of Europa landforms Share Details Last Updated Oct 23, 2024 Editor NASA Science Editorial Team Related Terms Europa Europa Clipper Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More 5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets. Article 6 days ago 6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus Article 2 weeks ago 4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  11. A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown above is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations. Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array. “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.” The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array. The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph. Learn more about NASA’s LISA-T technology: NASA teams are testing a key technology demonstration known as LISA-T, short for the Lightweight Integrated Solar Array and anTenna. It’s a super compact, stowable, thin-film solar array that when fully deployed in space, offers both a power generation and communication capability for small spacecraft. LISA-T’s orbital flight test is part of the Pathfinder Technology Demonstrator series of missions. To travel farther into deep space, small spacecraft require more electrical power than what is currently available through existing technology. LISA-T aims to answer that demand and would offer small spacecraft access to power without compromising mass or volume. Watch this video to learn more about the spacecraft, its deployment, and the possibilities from John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. View the full article
  12. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Skydweller Aero solar-powered, autonomous aircraft flies above the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center during a September 2024 test operation. Skydweller Aero has an ongoing airspace agreement with NASA Stennis to conduct test flights of its aircraft in the area.Skydweller Aero NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a key step towards achieving a strategic center goal. The Reimbursable Space Act agreement marks the first between NASA Stennis and a commercial company to utilize the south Mississippi center’s unique capabilities to support testing and operation of uncrewed systems. “There are few locations like NASA Stennis that offer a secure location, restricted airspace and the infrastructure to support testing and operation of various uncrewed systems,” said NASA Stennis Director John Bailey. “Range operations is a critical area of focus as we adapt to the changing aerospace and technology landscape to grow into the future.” NASA Stennis and Skydweller Aero finalized the agreement in late August, paving the way for the company to begin area test flights of its autonomous, uncrewed solar-powered aircraft, which features a wingspan greater than a 747 jetliner and is designed for long-duration flights. The company announced Oct. 1 it had completed an initial test flight campaign of the aircraft, including two test excursions totaling 16 and 22.5 hours. NASA Stennis and Skydweller Aero began talks in the summer of 2023 when the company expressed interest in utilizing NASA Stennis airspace for its all-carbon fiber aircraft. The NASA Stennis area fits the company’s needs well since it provides ready access from Stennis International Airport to the Gulf of Mexico area. NASA Stennis airspace also provides a level of privacy for aircraft testing and operation. “Access to the restricted airspace above NASA Stennis has been tremendously helpful to our uncrewed, autonomous flight operations,” said Barry Matsumori, president and chief operating officer of Skydweller Aero. “The opportunity to use the controlled environment above Stennis helps accelerate our efforts, allowing us to transition the aircraft in and out of civil airspace, while demonstrating its reliability and unblemished safety record to the FAA.” Companies must be conducting public aircraft operations to use any restricted airspace. In this instance, Skydweller Aero is flying its aircraft in association with the U.S. Department of Defense, allowing for the Reimbursable Space Act agreement with NASA Stennis. The agreement provides the company Federal Aviation Administration (FAA) authorization for future test flights in designated areas of the NASA Stennis buffer zone. It also represents a key step in the center’s effort to grow its range operations presence. “This really opens the door for others to come here,” said Jason Peterson, NASA Stennis range officer. “There are requirements that must be met, but for those who meet them, NASA Stennis is an ideal location for test and flight operations.” The FAA established restricted airspace at NASA Stennis in 1966 and approved its expansion in 2016. The expansion was necessary to conduct propulsion testing safely, accommodate U.S. Department of Defense missions, and support unmanned aerial systems activities. Restricted airspace at NASA Stennis allows qualifying organizations to conduct various uncrewed flight activities. NASA Stennis personnel provide scheduling and range operation support, including reviews and evaluations to ensure safe flight operations. Processes are in place to ensure communication between aircraft operators, FAA air traffic controllers, and range safety personnel. Peterson said he hopes the agreement with Skydweller Aero will clear the way for future collaborations as NASA Stennis continues to expand its customer-based operations. For instance, although Skydweller Aero is not located onsite, NASA Stennis is able to support ground operations for a variety of unmanned aircraft system takeoffs and landings. Beyond that, the center also hopes to expand its operational capabilities to include marine and ground activities. In addition to a large geographic footprint, the center features a secure 7.5-mile waterway canal system for testing unmanned underwater or surface vehicles. For information about range operations at NASA’s Stennis Space Center, visit: Range and Airspace Operations – NASA Share Details Last Updated Oct 23, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Keep Exploring Discover More Topics From NASA Stennis Range and Airspace Operations Propulsion Test Engineering NASA Stennis Front Door Doing Business with NASA Stennis View the full article
  13. NASA researchers developed a Quiet Space Fan to reduce the noise inside crewed spacecraft, sharing the results with industry for potential use on future commercial space stations. Controlling noise inside spacecraft helps humans talk to each other, hear alarms clearer, get restful sleep, and minimizes the risk of hearing loss. It is best to control the noise at the source, and in spacecraft the noise often comes from cabin ventilation and equipment cooling fans. Since the earliest days of human spaceflight, there has been noise from the Environmental Control and Life Support System ventilation. NASA is working to design highly efficient and quiet fans by building on technology initially developed at the agency’s Glenn Research Center in Cleveland and sharing it with companies that are developing new spacecraft and space stations. The Quiet Space Fan prototype, initially developed at Glenn, to reduce noise inside spacecraft.Credits: NASA “As NASA continues to support the design and development of multiple commercial space stations, we have intentional and focused efforts to share technical expertise, technologies, and data with industry,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “The Quiet Space Fan research is one more example of how we are actively working with private companies to foster the development of future destinations.” The initial fan prototype was designed at Glenn in 2009 using tools developed for aircraft turbofan engines. The fan design size, flow rate – how much air the fan moves – and pressure rise – the increase in pressure across the fan – were designed similarly to the original Orion cabin fan design point (150 cubic feet per minute, 3.64 inches of water column). Acoustic measurements showed that the new design was approximately 10 decibels quieter than a similar-sized commercial off-the-shelf fan. To take the research a step further, a larger fan was recently designed with almost twice the flow rate and pressure rise capability (250 cubic feet per minute, 7 inches of water column) compared to the initial prototype. For example, the original fan could provide enough airflow for a large car or van, and the larger fan could provide enough airflow for a house. NASA’s quiet fan design aims to maintain high performance standards while significantly reducing everyday noise levels and can potentially be used on the International Space Station and future commercial destinations. The Quiet Space Fan helps to control noise that often comes from cabin ventilation and equipment cooling fans, and the research is being shared with industry. Credits: NASA “This work will lead to significant benefits including volume and mass savings from noise controls that are no longer as large or needed at all, reduced system pressure loss from mufflers and silencers that don’t need to be as restrictive, reduced power draw because of the reduced system pressure loss and the highly efficient fan design, and satisfying spaceflight vehicle acoustic requirements to provide a safe and habitable acoustic environment for astronauts,” said Chris Allen, Acoustics Office manager at NASA Johnson. Developing quieter fans is one of many efforts NASA is making to improve human spaceflight and make space exploration more innovative and comfortable for future missions to low Earth orbit. Helping private companies provide reliable and safe services at a lower cost will allow the agency to focus on Artemis missions to the Moon while continuing to use low Earth orbit as a training and proving ground for deep space missions. Learn more about NASA’s commercial space strategy at: https://www.nasa.gov/humans-in-space/commercial-space View the full article
  14. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA has selected All Native Synergies Company of Winnebego, Nebraska, to provide custodial and refuse collection services at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Custodial and Refuse Collection Services III contract is a firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. Its maximum potential value is approximately $33.5 million. The performance period begins Wednesday, Oct. 23, and will extend four and a half years, with a one-year base period, four one-year options, and a six-month extension. This critical service contract provides custodial and refuse collection services for all Marshall facilities. Work under the contract includes floor maintenance, including elevators; trash removal; cleaning drinking fountains and restrooms; sweeping, mopping, and cleaning building entrances and stairways. For information about NASA and other agency programs, visit: www.nasa.gov Abbey Donaldson Headquarters, Washington 202-913-2184 abbey.a.donaldson@nasa.gov Molly Porter Marshall Space Flight Center, Huntsville, Ala. 256-424-5158 molly.a.porter@nasa.gov Share Details Last Updated Oct 22, 2024 EditorBeth RidgewayContactAbbey A. Donaldsonabbey.a.donaldson@nasa.govMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 5 min read NASA’s IXPE Helps Researchers Determine Shape of Black Hole Corona Article 5 days ago 24 min read The Marshall Star for October 16, 2024 Article 6 days ago 8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC The study of X-ray emission from astronomical objects reveals secrets about the Universe at the… Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  15. NASA

    A Dazzling Supernova

    NASA, ESA, R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation), and M. Mutchler and R. Avila (STScI) This image, released on Feb. 24, 2017, shows Supernova 1987a (center) surrounded by dramatic red clouds of gas and dust within the Large Magellanic Cloud. This supernova, first discovered on Feb. 23, 1987, blazed with the power of 100 million Suns. Since that first sighting, SN 1987A has continued to fascinate astronomers with its spectacular light show. Located in the nearby Large Magellanic Cloud, it was the nearest supernova explosion observed in hundreds of years and the best opportunity yet for astronomers to study the phases before, during, and after the death of a star. Image credit: NASA, ESA, R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation), and M. Mutchler and R. Avila (STScI) View the full article
  16. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This September 2024 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range.Courtesy Patrick J. Hendrickson; used with permission NASA’s Wallops Flight Facility in Virginia is scheduled to support the launch of a suborbital sounding rocket for the U.S. Department of Defense during a launch window that runs 5 p.m. to 11 p.m. EDT each day from Wednesday, Oct. 23 to Friday, Oct. 25. No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The Wallops Visitor Center will be closed to the public. The rocket launch is expected to be visible from the Chesapeake Bay region. Share Details Last Updated Oct 22, 2024 LocationWallops Flight Facility Related TermsWallops Flight Facility Explore More 4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments… Article 1 year ago 2 min read NASA Wallops Supports Second Rocket Lab Electron Launch NASA’s Wallops Flight Facility supported the successful launch of a Rocket Lab Electron rocket at… Article 2 years ago 5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse UPDATE: The three rockets comprising the APEP mission launched on Monday, April 8, 2024, at 2:40pm,… Article 7 months ago View the full article
  17. Flight Engineer Joe Acaba holds a children’s book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children’s book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station. Stories open up new worlds and spark curiosity in readers of all ages – and NASA is using the power of storytelling to encourage the Artemis Generation to explore STEM (science, technology, engineering, and mathematics). Through the below list of reading resources – books, comics, and graphic novels written and illustrated by NASA experts, and video read-alongs by astronauts – students will find themselves exploring the Moon, piloting a cutting-edge aircraft, searching for life among the stars, and more. Come along with NASA on a journey of discovery! Story Time With NASA Astronauts (Grades Pre-K to 4) Take your reading adventure out of this world! In this video playlist, astronauts read storybooks aloud from aboard the International Space Station and other locations around NASA. Kids Club Picture Show (Grades Pre-K to 4) View cool pictures from NASA missions and more! This curated collection of fascinating photos introduces young explorers to a variety of topics across NASA. Each photo includes a short description with the option to hear it read aloud. Astro-Not-Yet Storybooks (Grades K-4) These storybooks follow along as an ambitious classroom of students learn about the International Space Station, NASA’s Commercial Crew Program, and important STEM concepts such as microgravity and sound waves. The books are available in English and Spanish. The Adventures of Kennedy and Duke Storybook (Grades K-4) This book follows the experiences of Kennedy, a fictional young girl who discovers an amateur radio during a visit to her grandfather’s farm. While learning to use the radio, she communicates with Duke, an astronaut living and working aboard the International Space Station. Also available in Spanish. You Are Going, illustrated by former NASA intern Shane Tolentino, shares a glimpse into future Artemis missions. You Are Going (Grades K-4 and 5-8) Through “You Are Going,” readers get a glimpse into NASA’s Artemis campaign. Learn about NASA’s powerful megarocket, the SLS (Space Launch System), as well as the Orion spacecraft, the Gateway, and other important elements that will help make these pioneering flights possible. Also available in Spanish and French. Hooray For SLS (Grades K-4) NASA is working to send humans back to the Moon to live, learn, and explore through the Artemis campaign – and as members of the Artemis Generation, today’s students are invited to be part of the story. “Hooray for SLS!” is the first in a series of children’s books introducing young explorers ages 3 to 8 to the SLS rocket and other components of the Artemis missions. The Adventures of Commander Moonikin Campos and Friends Comics (Grades K-4 and 5-8) Although no astronauts flew around the Moon on the Artemis I mission, the mission included a crew of manikins – Commander Moonikin Campos and two identical manikin torsos – outfitted with sensors to capture data during the flight. This webcomic explains what the manikins experienced on the Artemis I mission around the Moon. Also available in Spanish. During World War II the United States Army Air Corps created the first fighter squadron in its history made up of Black military pilots. They became known as the Tuskegee Airmen. Their success in war overseas, and challenges faced at home, helped light the path toward equal rights for all. Aeronautics Leveled Readers (Grades K-4, 5-8, and 9-12) The history of American aviation comes to life through these stories written at elementary, middle school, and high school levels. Students will read about important figures in aviation such as Amelia Earhart and the Tuskegee Airmen, as well as mini biographies of NASA employees Danielle Koch, Maria Cabellero, and Red Jensen. Ruby Flottum reads the first issue of NASA’s “First Woman” graphic novel, entitled “Dream to Reality,” on Monday, July 25, 2022 at AirVenture at Oshkosh. First Woman Graphic Novels (Grades 5-8, 9-12, and Higher Education) This graphic novel series takes readers into the world of fictional astronaut Callie Rodriguez, the first woman to explore the Moon. Build on the story’s lessons with the accompanying hands-on activities and videos designed for use in K-12 informal education settings. Also available in Spanish. Astrobiology Graphic Novels (Grades 5-12) Produced within NASA’s Astrobiology Program, “Astrobiology” is a graphic novel series that explores the many facets of astrobiology: the study of the origin, evolution, and distribution of life in the universe. Some novels are also available in Japanese, Korean, or Spanish editions. Explore Further There’s more to explore! Check out NASA’s STEM Search for additional resources for each grade level, including hands-on activities, games, educator guides, and more. Visit NASA’s Learning Resources for the latest news and resources from the agency’s Office of STEM Engagement. Keep Exploring Discover More STEM Topics From NASA Outside the Classroom For Educators For Kids and Students NASA EXPRESS Newsletter Sign-up View the full article
  18. Casey Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.NASA/Sam Lott While precision, perseverance, and engineering are necessary skills in building a Moon rocket, Casey Wolfe knows that one of the most important aspects for the job is teamwork. “Engineering is vital, but to get this type of work done, you need to take care of the human element,” said Wolfe, the assistant branch chief of the advanced manufacturing branch in the Materials and Processes Laboratory at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Together with her team, Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques. Wolfe’s work integrates the technical day-to-day operations and personnel management of the composites manufacturing team and additive manufacturing team, balancing production of SLS hardware with the creation of new engines using the latest manufacturing technologies. “A lot of my day to day is in managing our two teams, making connections, building relationships, and making sure people feel supported,” Wolfe explains. “I conduct individual tag ups with each team member so we can be proactive about anticipating and addressing problems.” Wolfe grew up in Huntsville, a place known as the “Rocket City,” but it wasn’t until she visited a job fair while studying at Auburn University for a polymer and fiber engineering degree that she began to consider a career at NASA Marshall. Wolfe applied for and was selected to be a NASA intern through the Pathways Program, working in the non-metallic materials branch of the Materials and Processes Laboratory. Wolfe supported a coating system for electrostatic discharge on the first uncrewed test flight of the Orion spacecraft. Launching December 5, 2014, Orion traveled to an altitude of 3,600 miles, orbited Earth twice, and splashed down in the Pacific Ocean. It was during her internship that Wolfe realized how inspirational it felt to be treated like a vital part of a team: “The SLS program gave everyone permission to sign the hardware, even me – even though I was just an intern,” says Wolfe. “It was impactful to me, knowing that something I had worked on had my name on it and went to space.” Since being hired by NASA, Wolfe’s work has supported development of the Orion stage adapter diaphragms for Artemis II and Artemis III, and the payload adapters for Artemis IV and beyond. The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch. Beginning with Artemis IV, the SLS Block 1B variant will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space, with the cone-shaped payload adapter situated atop the rocket’s exploration upper stage. The new variant will be capable of launching more than 38 metric tons (84,000 pounds) to the Moon in a single launch. “While the engineering development unit of the payload adapter is undergoing large-scale testing, our team is working on the production of the qualification article, which will also be tested,” Wolfe says. “Flight components should be starting fabrication in the next six months.” When Wolfe isn’t working, she enjoys hiking, gardening, and hanging out with her dogs and large family. Recently, she signed another piece of SLS hardware headed to space: the Orion stage adapter for the second Artemis mission. With as many responsibilities as Wolfe juggles, it’s easy to lose sight of her work’s impact. “I work in the lab around the hardware all the time, and in many ways, it can become very rote,” she says. But Wolfe won’t forget what she saw one evening when she worked late: “Everybody was gone, and as I walked past the launch vehicle stage adapter, there were two security guards taking pictures of each other in front of it. It was one of those things that made me step back and reflect on what my team accomplishes every day: making history happen.” NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. View the full article
  19. A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown. Name: Meloë S. Kacenelenbogen Formal Job Classification: Research scientist Organization: Climate and Radiation Laboratory, Science Directorate (Code 613) Dr. Meloë S. Kacenelenbogen is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She studies the impact of aerosols on air quality and the Earth’s climate.Photo courtesy of Meloë Kacenelenbogen What do you do and what is most interesting about your role here at Goddard? I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models. Why did you become a scientist? What is your educational background? I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long. I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France. What are some of your career highlights? After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing. In 2022, I came to work at the Climate and Radiation Lab at Goddard. What is most interesting about aerosols? Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange. Please tell us about your involvement with the Atmosphere Observing System (AOS)? I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms. My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge. Why do you enjoy always challenging yourself intellectually? I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored. What did you learn from your mentors? A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be. Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me. As a mentor, what do you advise? I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable. Why do you enjoy working on a team? I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it. What are the happiest moments in your career? I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved. What do you hope to achieve in your career? I want to have been a major contributor to the mission by the time the AOS satellites launch. What do you do for fun? I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past. Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë Kacenelenbogen Who is your favorite author? I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up. Who would you like to thank? I would like to thank my family for being my rock. What are your guiding principles? To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Explore More 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250… Article 6 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 3 weeks ago Share Details Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsPeople of GoddardGoddard Space Flight CenterPeople of NASA View the full article
  20. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4338-4340: Decisions, Decisions This image was taken by Mast Camera (Mastcam) aboard NASA’s Mars rover Curiosity on sol 4338 — Martian day 4,338 of the Mars Science Laboratory mission — Oct. 19, 2024, at 08:29:23 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Friday, Oct. 18, 2024 On sol 4338, we have a science block planned as well as some arm activities. Our science activities include a ChemCam observation of “Donkey Lake.” This is a bedrock target with exposed laminations. In geology, lamination is a sequence of small-scale, embedded fine layers of sedimentary rock. Next, we will do an RMI mosaic as well as Mastcam imaging on “Fascination Turret” to document the boulder configuration for study of both debris flow and rock deposition processes. We’ll also do a Navcam dust devil survey to study the Martian atmosphere, before moving into our arm backbones. We’ll perform a DRT and APXS on several bedrock targets with exposed layering. An exciting sol for geology! Sol 4339 presented some interesting decisions for our planning team to make. We started out with a science block. This included a ChemCam LIBS analysis on a soil target with interesting color differences. We also performed an RMI mosaic and Mastcam imaging of “Whitebark Pass” to study possible surface erosion. After this science block, we planned to do a long traverse, which is where planning got a bit tricky. The drive was a bit complicated to plan. The terrain had lots of rocks which ultimately prevented us from planning a guarded drive (i.e., a drive using auto navigation), which would have extended the drive length. There are occlusion considerations — we always want to end the drive in a good orientation for a communications link. When evaluating our end of drive, there are potential configurations where the line of sight for communications would be blocked, either due to terrain or due to objects on the rover deck. Here, because of the many and large size of rocks in our terrain, we were not confident that auto-navigation would not fault and position us in a bad orientation for our next communications window. With this risk, we decided to take a shorter drive with a sure unoccluded end-of-drive orientation. As planned, our drive will reach about 27 meters (almost 89 feet), whereas a guarded drive if the terrain was better might have yielded around 50 meters (about 164 feet). After the drive, we’ll take some imaging and do a Mastcam survey to observe soils along the traverse path. On sol 4340, we planned for two science blocks. The first included a ChemCam AEGIS activity — this will allow the rover to examine its surroundings and pick out some interesting targets for analysis. We will also perform a Navcam dust devil movie to capture any interesting dust activities in the atmosphere. Next, we’ll move into our second science block, which is focused on environmental science. We’ll first take Mastcam tau observations, which will allow us to study and measure the optical depth of the atmosphere, which is often used as a proxy to understand the dust in the atmosphere. We’ll also do some early morning remote science, including Navcam cloud movies at zenith and at suprahorizon. Written by Remington Free, Operations Systems Engineer at NASA’s Jet Propulsion Laboratory Image Download Share Details Last Updated Oct 22, 2024 Related Terms Blogs Explore More 2 min read Sols 4336-4337: Where the Streets Have No Name Article 4 days ago 2 min read Just Keep Roving Throughout the past week, Perseverance has continued marching up the Jezero crater rim. This steep… Article 5 days ago 3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration! Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  21. 2 min read NASA Reveals Prototype Telescope for Gravitational Wave Observatory NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources. On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA/Dennis Henry The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers. “Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.” The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. NASA/Dennis Henry The Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature. The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures. The LISA mission is slated to launch in the mid-2030s. Download additional images from NASA’s Scientific Visualization Studio By Francis Reddy NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Oct 22, 2024 Related Terms Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Gravitational Waves LISA (Laser Interferometer Space Antenna) The Universe Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  22. Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup for the Gateway lunar space station. Thales Alenia Space Teams at NASA, ESA (European Space Agency), and Thales Alenia Space, including astronauts Stan Love and Luca Parmitano, came together in Turin, Italy, this summer for a test run of Gateway, humanity’s first space station to orbit the Moon. The group conducted what is known as human factors testing inside a mockup of Lunar I-Hab, one of four Gateway modules where astronauts will live, conduct science, and prepare for missions to the Moon’s South Pole region. The testing is an important step on the path to launch by helping refine the design of spacecraft for comfort and safety. Lunar I-Hab is provided by ESA and Thales Alenia Space and is slated to launch on Artemis IV. During that mission, four astronauts will launch inside the Orion spacecraft atop an upgraded version of the SLS (Space Launch System) rocket and deliver Lunar I-Hab to Gateway in orbit around the Moon. ESA, CSA (Canadian Space Agency), JAXA (Japan Aerospace Exploration Agency), and the Mohammad Bin Rashid Space Centre of the United Arab Emirates are providing major hardware for Gateway, including science experiments, the modules where astronauts will live and work, robotics, and life support systems. International teams of astronauts will explore the scientific mysteries of deep space with Gateway as part of the Artemis campaign to return to the Moon for scientific discovery and chart a path for the first human missions to Mars and beyond. A mockup of ESA’s Lunar I-Hab module, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.Thales Alenia Space An artist’s rendering of ESA’s Lunar I-Hab module in orbit around the Moon, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.NASA/Alberto Bertolin, Bradley Reynolds Learn More About Gateway Share Details Last Updated Oct 22, 2024 EditorBriana R. ZamoraContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related TermsGateway Space StationArtemisArtemis 4Earth's MoonExploration Systems Development Mission DirectorateGateway ProgramHumans in SpaceJohnson Space Center Explore More 1 min read Gateway Stands Tall for Stress Test The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in… Article 3 weeks ago 6 min read NASA’s Artemis IV: Building First Lunar Space Station Article 7 months ago 2 min read Gateway: Energizing Exploration Discover the cutting-edge technology powering Gateway, humanity's first lunar space station. Article 2 months ago Keep Exploring Discover More Topics From NASA Space Launch System (SLS) Orion Spacecraft Gateway Human Landing System View the full article
  23. The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) on behalf of the Space Technology Mission Directorate’s (STMD) Small Spacecraft Technology (SST) Program and is hereby soliciting information from potential sources for inputs on industry, academia, or government adopted battery passivation techniques. As part of a continual process improvement effort and potential requirement revisions, the NASA Small Spacecraft community, Office of Safety and Mission Assurance, and Orbital Debris Program Office are seeking inputs from industry on battery passivation techniques that are used by industry to satisfy the Orbital Debris Mitigation Standard Practices (ODMSP) requirements 2-2. Limiting the risk to other space systems from accidental explosions and associated orbital debris after completion of mission operations: All on-board sources of stored energy of a spacecraft or upper stage should be depleted or safed when they are no longer required for mission operations or post mission disposal. Depletion should occur as soon as such an operation does not pose an unacceptable risk to the payload. Propellant depletion burns and compressed gas releases should be designed to minimize the probability of subsequent accidental collision and to minimize the impact of a subsequent accidental explosion. Background NASA has well-established procedures for passivating power sources on large, highly redundant spacecraft to mitigate debris generation at end-of-life. However, the rise of capable small spacecraft utilizing single-string and Commercial Off-The-Shelf (COTS) components presents challenges. Directly applying passivation strategies designed for redundant systems to these less complex spacecraft can introduce risks and may not be cost-effective for these missions. Recognizing that the commercial sector has emerged as a leader in Low Earth Orbit (LEO) small satellite operations, NASA seeks to engage with industry, academia, and government spacecraft operators to gain insights into current battery passivation techniques. Understanding industry-adopted practices, their underlying rationale, and performance data will inform NASA’s ongoing efforts to develop safe and sustainable end-of-life procedures for future missions. NASA invites government, academic, or industry stakeholders, including small satellite operators, manufacturers, and component suppliers, to share information on battery passivation strategies employed in their spacecraft. Click here for more information. View the full article
  24. NASA logo Chile will sign the Artemis Accords during a ceremony at 3 p.m. EDT on Friday, Oct. 25, at NASA’s Headquarters in Washington. NASA Administrator Bill Nelson will host Aisén Etcheverry, Chile’s minister of science, technology, knowledge and innovation, and Juan Gabriel Valdés, ambassador of Chile to the United States, along with other officials from Chile and the U.S. Department of State. This event is in-person only. U.S. media and U.S. citizens representing international media organizations interested in attending must RSVP no later than 5 p.m. on Thursday, Oct. 24, to hq-media@mail.nasa.gov. NASA’s media accreditation policy is online. The signing ceremony will take place at the agency’s Glennan Assembly Room inside NASA Headquarters located at 300 E St. SW Washington. NASA, in coordination with the U.S. Department of State and seven other initial signatory nations, established the Artemis Accords in 2020. With many countries and private companies conducting missions and operations around the Moon, the Artemis Accords provide a common set of principles to enhance the governance of the civil exploration and use of outer space. The Artemis Accords reinforce the commitment by signatory nations to the Outer Space Treaty, the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior for civil space exploration and use. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated Oct 21, 2024 LocationNASA Headquarters Related TermsOffice of International and Interagency Relations (OIIR)artemis accords View the full article
  25. NASA

    On the Road Again…

    NASA/Jamie Peer In this image from Oct. 3, 2024, NASA’s mobile launcher 1 makes its way back to the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, after undergoing upgrades and tests in preparation for the agency’s Artemis II mission. Artemis II is the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration through Artemis. Artemis II will send four astronauts around the Moon, testing NASA’s foundational human deep space exploration capabilities, the SLS rocket, and Orion spacecraft. Image credit: NASA/Jamie Peer View the full article
×
×
  • Create New...