Members Can Post Anonymously On This Site
-
Posts
6,903 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A close-up of NASA’s shock-sensing probe highlights its pressure ports, designed to measure air pressure changes during supersonic flight. The probe will be mounted on NASA’s F-15B Aeronautics Research Test Bed for calibration flights, validating its ability to measure shock waves generated by the X 59 as part of NASA’s Quesst mission to provide data on quiet supersonic flight.NASA/Lauren Hughes NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA will soon test advancements made on a key tool for measuring the unique “sonic thumps” that its quiet supersonic X-59 research aircraft will make while flying. A shock-sensing probe is a cone-shaped air data probe developed with specific features to capture the unique shock waves the X-59 will produce. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California developed two versions of the probe to collect precise pressure data during supersonic flight. One probe is optimized for near-field measurements, capturing shock waves that occur very close to where the X-59 will generate them. The second shock-sensing probe will measure the mid-field, collecting data at altitudes between 5,000 to 20,000 feet below the aircraft. When an aircraft flies supersonic, it generates shockwaves that travel through the surrounding air, producing loud sonic booms. The X-59 is designed to divert those shock waves, reducing the loud sonic booms to quieter sonic thumps. During test flights, an F-15B aircraft with a shock-sensing probe attached to its nose will fly with the X-59. The roughly 6-foot probe will continuously collect thousands of pressure samples per second, capturing air pressure changes as it flies through shock waves. Data from the sensors will be vital for validating computer models that predict the strength of the shock waves produced by the X-59, the centerpiece of NASA’s Quesst mission. “A shock-sensing probe acts as the truth source, comparing the predicted data with the real-world measurements,” said Mike Frederick, NASA principal investigator for the probe. For the near-field probe, the F-15B will fly close behind the X-59 at its cruising altitude of approximately 55,000 feet, utilizing a “follow-the-leader” setup allowing researchers to analyze shock waves in real time. The mid-field probe, intended for separate missions, will collect more useful data as the shock waves travel closer to the ground. The probes’ ability to capture small pressure changes is especially important for the X-59, as its shock waves are expected to be much weaker than those of most supersonic aircraft. By comparing the probes’ data to predictions from advanced computer models, researchers can better evaluate their accuracy. “The probes have five pressure ports, one at the tip and four around the cone,” said Frederick. “These ports measure static pressure changes as the aircraft flies through shock waves, helping us understand the shock characteristics of a particular aircraft.” The ports combine their measurements to calculate the local pressure, speed, and direction of airflow. Researchers will soon evaluate upgrades to the near-field shock-sensing probe through test flights, where the probe, mounted on one F-15B, will collect data by chasing a second F-15 during supersonic flight. The upgrades include having the probe’s pressure transducers – devices that measure the air pressure on the cone – just 5 inches from its ports. Previous designs placed those transducers nearly 12 feet away, delaying recording time and distorting measurements. Temperature sensitivity on previous designs also presented a challenge, causing fluctuations in accuracy with changing conditions. To solve this, the team designed a heating system to maintain the pressure transducers at a consistent temperature during flight. “The probe will meet the resolution and accuracy requirements from the Quesst mission,” Frederick said. “This project shows how NASA can take existing technology and adapt it to solve new challenges.” Share Details Last Updated Dec 05, 2024 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related TermsAdvanced Air Vehicles ProgramAeronauticsAmes Research CenterArmstrong Flight Research CenterCommercial Supersonic TechnologyGlenn Research CenterIntegrated Aviation Systems ProgramLangley Research CenterQuesst (X-59) Explore More 3 min read NASA Flips Efficient Wing Concept for Testing Article 24 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events Article 1 day ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students Article 3 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Aeronautics Supersonic Flight Armstrong Capabilities & Facilities View the full article
-
Electra’s EL2 Goldfinch experimental prototype aircraft reference, photographed outside of NASA s Langley Research Center in Hampton, Virginia.Credit: Electra NASA Administrator Bill Nelson will fly in aircraft manufacturer Electra’s EL2 Goldfinch experimental prototype aircraft on Sunday, Dec. 8. Members of the media are invited to speak with Nelson and Electra leaders just prior to the flight at 11:45 a.m. EST at Manassas Regional Airport in Manassas, Virginia. Electra designed the experimental aircraft with the goals of reducing emissions and noise and connecting new locations for regional air travel, including underserved communities. Media will be able to view and film the flight, which is set to feature ultra-short takeoffs and landings with as few as 150 feet of ground roll. The flight also is set to include a battery-only landing. Media interested in participating must RSVP to Rob Margetta at robert.j.margetta@nasa.gov. NASA’s aeronautics research works to develop new generations of sustainable aviation technologies that will create new options for both U.S. passengers and cargo. Agency-supported research aims to provide industry providers like Electra, and others, data that can help inform the designs of innovative, greener aircraft with reduced operating costs. NASA investments have included projects that explore electrified aircraft technologies, and work that helped refine the electric short-takeoff and landing concept. The agency’s work with private sector aviation providers helps NASA in its effort to bring sustainable solutions to the American public. In November, NASA selected Electra as one of five recipients of its Advanced Aircraft Concepts for Environmental Sustainability 2050 awards, through which they will develop design studies and explore key technologies to push the boundaries of possibility for next-generation sustainable commercial aircraft. These new studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. https://www.nasa.gov/aeronautics -end- Meira Bernstein / Rob Margetta Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / robert.j.margetta@nasa.gov Share Details Last Updated Dec 05, 2024 LocationNASA Headquarters Related TermsAeronauticsAeronautics ResearchAeronautics Research Mission DirectorateGreen Aviation Tech View the full article
-
A new American human-rated spacecraft made its first foray into space on Dec. 5, 2014. Under contract to NASA, Lockheed Martin builds Orion as the vehicle to take American astronauts back to the Moon and eventually beyond. Orion’s overall shape harkens back to the Apollo Command and Service Modules, but using today’s technology is a larger and far more capable vehicle for NASA’s Artemis Program. Orion’s first mission, called Engineering Flight Test-1 (EFT-1), used a Delta-IV Heavy booster, at the time the most powerful operational rocket. The 4.5-hour mission demonstrated Orion’s space-worthiness, tested the spacecraft’s heat shield during reentry into the Earth’s atmosphere, and proved the capsule’s recovery systems. Although the EFT-1 mission didn’t include a crew, the Orion capsule flew higher and faster than any human-rated spacecraft in more than 40 years. The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop, lifts off from Cape Canaveral Air Force Station’s Space Launch Complex 37B in Florida.NASA/Bill Ingalls At 7:05 a.m. EST on Dec. 5, 2014, the three-core first stage of the Delta-IV Heavy rocket ignited, lifting the Orion spacecraft off from Launch Complex 37B at Cape Canaveral Air Force, now Space Force, Station (CCAFS) in Florida to begin the EFT-1 mission. Three minutes and fifty-eight seconds after liftoff, the two side boosters separated as the center core continued firing for another 93 seconds. The second stage ignited thirteen seconds after separation to begin the first of three planned burns. During the first burn, the Service Module’s protective fairing separated, followed by the Launch Abort System. Lasting about 11 and a half minutes, this first burn of the second stage placed the spacecraft into a preliminary 115-by-552-mile parking orbit. While completing one revolution around the Earth, controllers in Mission Control at NASA’s Johnson Space Center in Houston, led by Flight Director Michael L. Sarafin, verified the functioning of the spacecraft’s systems. The second stage ignited a second time, firing for 4 minutes and 42 seconds to raise Orion’s apogee or high point above the Earth to 3,600 miles. During the coast to apogee, Orion remained attached to the second stage and completed its first crossing through the inner Van Allen radiation belt. Mission Control at NASA’s Johnson Space Center in Houston, Texas during the EFT-1 mission.NASA/Mark Sowa Three hours and five minutes after launch, Orion reached its apogee and began its descent back toward Earth, separating from the second stage about 18 minutes later. The second stage conducted a one-minute disposal burn to ensure it didn’t interfere with the spacecraft’s trajectory. During the passage back through the Van Allen belt, Orion fired its thrusters for 10 seconds to adjust its course for reentry. At an altitude of 400,000 feet, the spacecraft encountered the first tendrils of the Earth’s atmosphere at a point called Entry Interface, traveling at 20,000 miles per hour (mph). A buildup of ionized gases caused by the reentry heating resulted in a communications blackout with Orion for about two and a half minutes. The spacecraft experienced maximum heating of about 4,000 degrees Fahrenheit, proving the worthiness of the heat shield. After release of Orion’s forward bay cover, two drogue parachutes deployed to slow and stabilize the spacecraft. Next followed deployment of the three main parachutes that slowed the spacecraft to 20 mph. Splashdown occurred 4 hours and 24 minutes after launch about 600 miles southwest of San Diego, California. A video of the Orion EFT-1 mission can be viewed here. Crew module splashing down during EFT-1 in the Pacific ocean.NASA Standing by to recover the Orion capsule, U.S. Navy Divers assigned to Explosive Ordnance Disposal Mobile Unit 11 and Fleet Combat Camera Pacific and crew members from amphibious transport dock U.S.S. Anchorage (LPD-23) stepped into action, first placing a flotation collar around the spacecraft. After securing a tow line to the capsule, the sailors towed it aboard the amphibious well deck of Anchorage, which set sail for Naval Base San Diego arriving there on Dec 8. Engineers from NASA and Lockheed Martin conducted a preliminary inspection of the spacecraft during the cruise to San Diego and found that it survived its trip into space in excellent condition. U.S. Navy divers approach the Orion capsule during recovery operations. U.S. Navy The Orion EFT-1 mission met all its objectives and received many accolades. “Today was a great day for America,” said Flight Director Sarafin from his console at Mission Control. “It is hard to have a better day than today,” said Mark S. Geyer, Orion program manager. “We’re already working on the next capsule,” said W. Michael “Mike” Hawes, Lockheed Martin’s Orion program manager, adding, “We’ll learn a tremendous amount from what we did today.” NASA Associate Administrator for Human Exploration and Operations William H. Gerstenmaier praised all personnel involved with the EFT-1 mission, “What a tremendous team effort.” NASA Administrator Charles F. Bolden summarized his thoughts about the mission, “Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space.” Former NASA Administrator Charles F. Bolden inspects Orion EFT-1 capsule at NASA’s Kennedy Space Center in Florida.NASA After its arrival at Naval Base San Diego, workers placed the Orion capsule aboard a truck that delivered it to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 18. After engineers conducted a thorough inspection of the spacecraft at KSC, workers trucked it to the Lockheed Martin facility in Littleton, Colorado, where it arrived on Sept. 1, 2015. Engineers completed final inspections and decontamination of the vehicle. The KSC Visitor Complex has the capsule on display. The Orion capsule during the Artemis I mission, with the Moon and Earth in the background. NASA The next time an Orion spacecraft flew in space during the Artemis I mission, the Space Launch System (SLS) carried it into orbit after launch from KSC’s Launch Complex 39B. The thunderous night launch took place on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I provided a foundation for human deep space exploration and demonstrated our commitment and capability to extend human existence to the Moon and beyond. The uncrewed Orion spacecraft spent 25.5 days in space, including 6 days in a retrograde orbit around the Moon, concluding with a splashdown in the Pacific Ocean on Dec. 11, exactly 50 years after the Apollo 17 Moon landing. The Artemis II crew poses in front of the Orion capsule at NASA’s Kennedy Space Center in Florida.NASA/Kim Shiflett On April 3, 2023, NASA named the four-person crew for the Artemis II mission, the first flight to take humans beyond low Earth orbit since Apollo 17 in December 1972. The crew includes NASA astronauts G. Reid Wiseman as commander, Victor J. Glover as pilot, and Christina H. Koch as a mission specialist as well as Canadian Space Agency astronaut Jeremy R. Hansen as the other mission specialist. The four will take an Orion spacecraft on a 10-day journey around the Moon to human rate the spacecraft and SLS. Interested in learning more about the Artemis Program? Go to https://www.nasa.gov/humans-in-space/artemis/ View the full article
-
iss071e650763 (Sept. 14, 2024) — The long exposure photograph taken by NASA astronaut Matthew Dominick shows star trails, streaks of city lights, and two Roscosmos crew ships, the Soyuz MS-26 docked to the Rassvet module (foreground) and the Soyuz MS-25 (background) docked to the Prichal docking module, as the International Space Station orbited 265 miles above central China.NASA Space Station trajectory data is now available to the public! This data, called an ephemeris, is generated by the ISS Trajectory Operations and Planning Officer (TOPO) flight controllers in the Mission Control Center at NASA’s Johnson Space Center. TOPO keeps track of where the ISS is, where it is going to be, and most importantly makes sure it isn’t at risk of colliding with other objects in space. At ISS’s altitude, a very thin atmosphere is still present. This thin atmosphere creates drag and over time can cause TOPO’s predicted ISS trajectory to accumulate error. Because of this, TOPO updates the predicted trajectory approximately three times a week, so the ISS Flight Control Team has the best trajectory estimate possible. An accurate trajectory is essential for maintaining communications links, planning visiting vehicle rendezvous, and ensuring ISS’s path is clear of any potential collisions. The links above and below are to the most current posted ephemeris. The ephemeris is in the CCSDS Orbital Ephemeris Message (OEM) standard and is available in .txt and .xml file formats. Each file contains header lines with the ISS mass in kg, drag area in m2, and drag coefficient used in generating the ephemeris. The header also contains lines with details for the first and last ascending nodes within the ephemeris span. Following this is a listing of upcoming ISS translation maneuvers, called “reboosts,” and visiting vehicle launches, arrivals, and departures. After the header, ISS state vectors in the Mean of J2000 (J2K) reference frame are listed at four-minute intervals spanning a total length of 15 days. During reboosts (translation maneuvers), the state vectors are reported in two-second intervals. Each state vector lists the time in UTC; position X, Y, and Z in km; and velocity X, Y, and Z in km/s. Orbit Ephemeris Message (OEM) https://nasa-public-data.s3.amazonaws.com/iss-coords/current/ISS_OEM/ISS.OEM_J2K_EPH.txt https://nasa-public-data.s3.amazonaws.com/iss-coords/current/ISS_OEM/ISS.OEM_J2K_EPH.xml Users of this data should monitor this page for information regarding any future changes to the file format. Past data postings can be found archived on data.nasa.gov by searching “ISS COORDS.” NOTE: NASA is providing this information for use by the general public. The OEM data format is supported natively by many commercial spaceflight software applications. Please consult your application’s support documentation for specific details on how to deploy this data. View the full article
-
What does all this sighting information mean? SpotTheStation! Time: Wed Apr 25 7:45 PM, Visible: 4 min, Max Height: 66 degrees, Appears: WSW, Disappears NE.” Spot The station Download the App The International Space Station is seen in this 30 second exposure as it flies over Elkton, VA early in the morning, Saturday, August 1, 2015. NASA/Bill Ingalls Time is when the sighting opportunity will begin in your local time zone. All sightings will occur within a few hours before or after sunrise or sunset. This is the optimum viewing period as the sun reflects off the space station and contrasts against the darker sky. Visible is the maximum time period the space station is visible before crossing back below the horizon. Max Height is measured in degrees (also known as elevation). It represents the height of the space station from the horizon in the night sky. The horizon is at zero degrees, and directly overhead is ninety degrees. If you hold your fist at arm’s length and place your fist resting on the horizon, the top will be about 10 degrees. Appears is the location in the sky where the station will be visible first. This value, like maximum height, also is measured in degrees from the horizon. The letters represent compass directions — N is north, WNW is west by northwest, and so on. Disappears represents where in the night sky the International Space Station will leave your field of view. The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location.NASA Important: The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location. The space station looks like an airplane or a very bright star moving across the sky, except it doesn’t have flashing lights or change direction. It will also be moving considerably faster than a typical airplane (airplanes generally fly at about 600 miles (965 km) per hour; the space station flies at 17,500 miles (28,000 km) per hour). View the full article
-
An astronaut aboard the International Space Station adjusted the camera for night imaging and captured the green veils and curtains of an aurora that spanned thousands of kilometers over Quebec, Canada.NASA Why is the space station up there? The space station is Earth’s only microgravity laboratory. This football field-sized platform hosts a plethora of science and technology experiments that are continuously being conducted by crew members, or are automated. Research aboard the orbiting laboratory holds benefits for life back on Earth, as well as for future space exploration. The space station serves as a testbed for technologies and allows us to study the impacts of long-term spaceflight to humans, supporting NASA’s mission to push human presence farther into space. Learn more about the research happening on the space station, and opportunities to conduct your science there. The sighting opportunity schedule indicates that the space station passed over my house last night; I’m signed up for alerts but didn’t get one, why not? You will only receive an alert if the space station will reach a max height of at least 40° on flyover. Flyovers reaching at least 40° provide the best chance for a sighting opportunity because they are visible above most landscapes and buildings. Check the “Max Height” column of your sighting opportunity schedule for the flyovers that are 40° or more. The flyover schedule indicates the space station is both appearing and disappearing from the same direction, how is that possible? E.g. – Time: Mon Jul 15 11:57 PM, Visible: 2 min, Max Height: 51°, Appears: 51° above ENE, Disappears: 11° above ENE The Spot the Station software rounds off directions to the nearest cardinal and intracardinal directions. This can result in it seeming as though the ISS will be appearing and disappearing in the same direction even though it is traveling across the sky. This typically happens on flyovers with a short window of visibility because the ISS is quickly moving into (or out of) the Earth’s dark shadow where, from our location on the ground, we can’t observe its full pass across the sky. How often can I expect to see the space station? The space station is visible because it reflects the light of the Sun – the same reason we can see the Moon. However, unlike the Moon, the space station isn’t bright enough to see during the day. It can only be seen when it is dawn or dusk at your location. As such, it can range from one sighting opportunity a month to several a week, since it has to be both dark where you are, and the space station has to happen to be going overhead. Why aren’t there any sighting opportunities for my location? It needs to be dark where you are and the space station needs to be overhead in order for you to see it. Since the space station’s orbit takes it all around the globe, it can be passing over you at times when it will not be visible- either in the middle of the day or the middle of the night. The space station must be 40 degrees or more above the horizon for it to be visible. Spot The Station will only send out notifications when you will have an opportunity to see the space station, not every time it will be overhead. Do I need a telescope to see the space station? No, you can see the space station with your bare eyes, no equipment required. Can you explain how to identify the space station in the sky? Did I see the space station last night? The space station looks like an airplane or a very bright star moving across the sky, except it doesn’t have flashing lights or change direction. It will also be moving considerably faster than a typical airplane (airplanes generally fly at about 600 miles (965 km) per hour; the space station flies at 17,500 miles (28,000 km) per hour). Can you explain how to read the alert messages? What does all this sighting information mean? Time is when the sighting opportunity will begin in your local time zone. All sightings will occur within a few hours before or after sunrise or sunset. This is the optimum viewing period as the sun reflects off the space station and contrasts against the darker sky. Visible is the maximum time period the space station is visible before crossing back below the horizon. Max Height is measured in degrees (also known as elevation). It represents the height of the space station from the horizon in the night sky. The horizon is at zero degrees, and directly overhead is ninety degrees. If you hold your fist at arm’s length and place your fist resting on the horizon, the top will be about 10 degrees. Appears is the location in the sky where the station will be visible first. This value, like maximum height, also is measured in degrees from the horizon. The letters represent compass directions — N is north, WNW is west by northwest, and so on. Disappears represents where in the night sky the International Space Station will leave your field of view. The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location.NASA How fast is the space station travelling? The ISS circles the Earth every 90 minutes. It travels at about 17,500 miles (28,000 km) per hour, which gives the crew 16 sunrises and sunsets every day. In the more than 15 years that people have been living onboard, the Station has circumnavigated the Earth tens of thousands of times. You can see more facts about the ISS on the Space Station: Facts and Figures webpage . Does the station appear and then disappear because of the light of the Moon? The space station is visible because it is reflecting light from the Sun. This is the same reason that the Moon appears to shine. Even when the Moon hasn’t risen, you’ll still be able to see the space station. I haven’t received any emails or text messages. If you signed up, entered your registration code and received an on-screen confirmation message then you’re signed up! Chances are the International Space Station just hasn’t passed over your location at dawn or dusk yet. Read the FAQ “Why aren’t there any sighting opportunities for my location” for more information. If you signed up with your email address, check your spam folder to see if alert messages are going there. Add SpotTheStation@hq.nasa.gov to your list of allowed senders to prevent alerts from going to spam or junk email. I haven’t received the code for sign up / renewal / unsubscribe? If you signed up by email make sure the email containing the code didn’t end up in your spam folder. This email will appear to come from noreply@nasa.gov. Add the SpotTheStation@hq.nasa.gov email address to your list of allowed senders. If it has been more than one hour and you haven’t received the requested code please try the process again and if you’re still have problems, email us at SpotTheStation@hq.nasa.gov for assistance. What if my city isn’t listed? If your specific city or town isn’t listed, register using the next closest one. The space station is visible for an approximate 50 mile (80 km) radius around each of the listed locations. When are alerts sent out? Alerts are generally sent about 24 hours before the International Space Station pass. This means you’ll receive the message the night before for a morning pass and the morning of for an evening pass. If you are not receiving the alerts on time, see related FAQs for an explanation. Why am I receiving the alerts hours or even days after sightings? Spot The Station alerts are sent out 24 hours before an upcoming space station pass. Unfortunately, some email providers queue messages in an unpredictable way. Adding SpotTheStation@hq.nasa.gov to list of allowed senders or contacts list might help. You can also obtain a two-week schedule of space station passes from the website. Please see the next FAQ for details. How can I receive a two-week schedule of upcoming sightings? Visit the Sighting Opportunities page and enter your location to find out when the space station will be passing over you during the next two weeks. You can bookmark this page or print the schedule for easy access. Can I register more than one location to the same email address or phone number? Unfortunately, no. Only one location can be registered per email address or mobile phone number. However, if you have multiple email addresses and/or both an email address and a mobile phone, you can register each of them to receive alerts for different locations. I am getting errors when I try to register, renew or cancel my alerts. “The email address / mobile number you entered is not valid” – Make sure you have entered a properly formatted email or SMS address. Mobile phone numbers do not require any formatting, you can simply enter as a string of digits; special characters like parenthesis and dashes are not required. “The email address / mobile number you provided cannot be found” – You are attempting to renew or cancel alerts for an email address or mobile number that does not appear to be registered. “It looks like you have already attempted this process but not yet completed it. Please check your email or text messages for an 8-digit code and instructions to complete the process or wait 24-hours and try again.” – You will receive this error message if you try to initiate the same request more than three times without entering your 8-digit code to complete the process. Please complete your request now or wait 24-hours and try again. “The code you entered is not valid. Please try again.” – If you have received this message, verify the correct 8-digit code is entered and that the code is less than 24-hours old. Codes expire after 24-hours at which point a new code will be required. “You must cancel your current alert before creating a new one or create a new alert using a different email address or mobile number.” – You can only sign up for one alert per email address or mobile number. If you want to change the alert you are receiving you have to cancel the existing alert and sign up for a new one. If you wish to have alerts sent to you for more than one location you can sign up using different email addresses or mobile numbers. “You have already completed your sign up / renewal / cancellation” – You will receive this error message if you attempt to enter your 8-digit code more than once. No further action is required. “You have exceeded the number of incomplete requests allowed from your IP address. Please wait 24-hours and try again.” – To prevent spam, Spot The Station limits the number of incomplete requests allowed from each IP address. Please complete your request now or wait 24-hours and try your request again If you are receiving other error messages or continue to have trouble, please let us know. What time zone is used for alert notifications? All of the Spot The Station information is listed in the local time zone for the selected location. Spot The Station automatically adjusts for Daylight Saving Time. What email address should I add to my “Allow/Safe Senders List” so I can make sure my alerts don’t end up in the spam folder? The correct address is SpotTheStation@hq.nasa.gov How do I change my email address or phone number? In order to update your email address or phone number, you need to register using a different email address or mobile phone number. If you choose, you can cancel your original alert. I moved, how can I change my location? In order to change your location you need to cancel your existing alert and register again using the new location information. What is my SMS Address? Your SMS Address is an email address used to send text messages to mobile phones. The format is your 10-digit mobile number followed by the email address of your mobile carrier. For example, an AT&T SMS address would be 12345678910@text.att.net. Check with your individual carrier for their format. Will I get charged for the mobile phone text alerts? Check with your mobile carrier and the service plan you have to find out if you are charged for text messages. NASA’s Spot The Station is not responsible for any charges associated with the alerts. How will I know when it’s necessary for me to renew my alert registration? Your registration is good for one year. Spot The Station will email you when it is time to renew your registration so you can continue to receive alerts. This is a one-step process; all you need to do is follow the link in the renewal message. How do I unsubscribe from alerts? You can stop receiving email or mobile phone alerts by canceling them here. You will be sent an email or text message, simply follow the link provided in that message to complete your request. View the full article
-
1 Min Read 2024 NESC Technical Update Annual Report of NESC Technical Activities On behalf of the NASA Engineering and Safety Center (NESC), I am pleased to provide you with the 2024 NESC Technical Update. This annual report summarizes the technical work, engineering advancements, and knowledge capture efforts we made in FY24. With support provided by members of our NASA community from across the centers, we focused our efforts on performing value-added independent testing, analysis, and assessments of NASA’s high-risk projects to ensure safety and mission success. This report contains summaries of technical assessments requested by our stakeholders and the technical bulletins and innovative techniques that resulted from that assessment work. Several of the NASA Technical Fellows provide summaries of accomplishments in their respective disciplines, and expertise drawn from across the Agency is featured on the Center Pages. We appreciate the opportunity to share our progress and highlight the accomplishments of our technically and culturally diverse, multidisciplinary, multigenerational teams. All NESC knowledge products are available at nasa.gov/nesc. As always, we value your feedback and engagement. Thank you for your continuing support of the NESC. Timmy R. Wilson Director, NASA Engineering and Safety Center View the full article
-
Read this release in English here. Mediante la campaña Artemis, la NASA llevará a los siguientes astronautas estadounidenses y al primer astronauta internacional a la región del Polo Sur de la Luna. El jueves, la NASA anunció las últimas actualizaciones de sus planes de exploración lunar. Un grupo de expertos examinó los resultados de la investigación de la NASA sobre el escudo térmico de la nave Orion, tras haber sufrido una inesperada pérdida de material carbonizado en su reentrada en la atmósfera durante el vuelo de prueba sin tripulación Artemis I. Para el vuelo de prueba tripulado Artemis II, los ingenieros seguirán preparando a Orion con el escudo térmico ya montado en la cápsula. La agencia también anunció que ahora apunta a abril de 2026 para el lanzamiento de Artemis II y a mediados de 2027 para Artemis III. Los plazos actualizados de las misiones también contemplan el tiempo necesario para abordar los sistemas de control medioambiental y de soporte vital de Orion. “La campaña Artemis es la iniciativa internacional más audaz, técnicamente desafiante y colaborativa que la humanidad se haya propuesto jamás”, dijo el administrador de la NASA, Bill Nelson. “Hemos logrado avances significativos en la campaña Artemis durante los últimos cuatro años, y estoy orgulloso del trabajo que nuestros equipos técnicos han hecho para prepararnos para este próximo paso adelante en la exploración, ya que buscamos aprender más sobre los sistemas de soporte vital de Orion para sustentar las operaciones de la tripulación durante Artemis II. Tenemos que hacer bien este próximo vuelo de prueba. Así es como la campaña Artemis triunfará”. La decisión de la agencia se produce después de que una investigación exhaustiva de un problema con el escudo térmico de Artemis I demostrara que el escudo térmico de Artemis II es capaz de mantener a salvo a la tripulación durante la misión planeada con modificaciones en la trayectoria de Orion cuando entre en la atmósfera terrestre y reduzca su velocidad de unos 40.000 kilómetros por hora (casi 25.000 millas por hora) a unos 520 km/h (unas 325 mph) antes de que sus paracaídas se desplieguen para un amerizaje seguro en el océano Pacífico. “Durante todo nuestro proceso para investigar el fenómeno del escudo térmico y determinar un camino a seguir, nos hemos mantenido fieles a los valores fundamentales de la NASA; pusimos primero la seguridad y el análisis basado en datos”, dijo Catherine Koerner, administradora asociada de la Dirección de Misión de Desarrollo de Sistemas de Exploración en la sede de la NASA en Washington. “Las actualizaciones de nuestros planes de misión son un paso positivo para asegurar que podemos cumplir con seguridad nuestros objetivos en la Luna y desarrollar las tecnologías y capacidades necesarias para las misiones tripuladas a Marte.” La NASA seguirá acoplando los componentes de su cohete Sistema de Lanzamiento Espacial o SLS (un proceso que comenzó en noviembre) y lo preparará para su integración con Orion para Artemis II. Durante el otoño boreal, la NASA, junto con un equipo de revisión independiente, estableció la causa técnica de un problema observado tras el vuelo de prueba sin tripulación Artemis I, en el que el material carbonizado del escudo térmico se desgastó de forma distinta a la esperada. Un análisis exhaustivo, que incluyó más de 100 pruebas en distintas instalaciones por todo el país, determinó que el escudo térmico de Artemis I no permitía evacuar suficientemente los gases generados en el interior de un material denominado Avcoat, lo que provocó que parte del material se agrietara y se desprendiera. El Avcoat está diseñado para desgastarse a medida que se calienta y es un material clave en el sistema de protección térmica que resguarda a Orion y a su tripulación de los casi 5.000 grados Fahrenheit de temperatura (2.760 grados Celsius) que se generan cuando Orion atraviesa la atmósfera terrestre al regresar de la Luna. Aunque durante Artemis I no había tripulación a bordo de Orion, los datos muestran que la temperatura en el interior de Orion hubiera sido agradable y segura de haber habido tripulación a bordo. Los equipos de ingeniería ya están ensamblando e integrando la nave Orion para Artemis III basándose en las lecciones aprendidas de Artemis I e implementando mejoras en la forma de fabricar los escudos térmicos para los retornos de las misiones tripuladas de alunizaje con el fin de lograr uniformidad y permeabilidad constante. La reentrada atmosférica doble (“skip entry”) es necesaria para el retorno desde las velocidades previstas para las misiones de alunizaje. “Victor, Christina, Jeremy y yo hemos estado siguiendo todos los aspectos de esta decisión y estamos agradecidos por la disposición de la NASA a sopesar todas las opciones y tomar decisiones en el mejor interés de los vuelos espaciales tripulados. Estamos entusiasmados por volar con la misión Artemis II y seguir allanando el camino para la exploración humana continua de la Luna y Marte”, declaró Reid Wiseman, astronauta de la NASA y comandante de Artemis II. “Hace poco estuvimos en el Centro Espacial Kennedy de la agencia en Florida y pudimos ver los propulsores de nuestro cohete SLS, la etapa central y la nave Orion. Es inspirador ver la escala de este esfuerzo, conocer a las personas que trabajan en esta máquina, y no podemos esperar a hacerla volar a la Luna”. Wiseman, junto con los astronautas de la NASA Victor Glover y Christina Koch y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen, volarán a bordo del vuelo de prueba Artemis II, de 10 días de duración, alrededor de la Luna y de regreso. El vuelo proporcionará datos valiosos sobre los sistemas de Orion necesarios para sustentar a la tripulación en su viaje al espacio profundo y traerlos sanos y salvos de vuelta a casa, incluyendo la renovación del aire en la cabina, las funciones de vuelo manual y cómo interactúan los humanos con el resto del hardware y software de la nave espacial. Con Artemis, la NASA explorará más de la Luna que nunca, aprenderá a vivir y trabajar más lejos de nuestro hogar y se preparará para la futura exploración humana del planeta rojo. El SLS de la NASA, los sistemas terrestres de exploración y la nave Orion, junto con el sistema de aterrizaje para seres humanos, los trajes espaciales de nueva generación, la estación espacial lunar Gateway y los futuros vehículos exploradores son los cimientos de la NASA para la exploración del espacio profundo. Para más información sobre Artemis (en inglés), visita: https://www.nasa.gov/artemis -fin- Meira Bernstein / Rachel Kraft / María José Viñas Sede, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov View the full article
-
Earth (ESD) Earth Explore Climate Change Science in Action Multimedia Data For Researchers About Us 6 min read NASA Flights Map Critical Minerals from Skies Above Western US Various minerals are revealed in vibrant detail in this sample mineral map of Cuprite, Nevada, following processing of imaging spectrometer data. USGS On a crystal-clear afternoon above a desert ghost town, a NASA aircraft scoured the ground for minerals. The plane, a high-altitude ER-2 research aircraft, had taken off early that morning from NASA’s Armstrong Flight Research Center in Edwards, California. Below pilot Dean Neeley, the landscape looked barren and brown. But to the optical sensors installed on the plane’s belly and wing, it gleamed in hundreds of colors. Neeley’s flight that day was part of GEMx, the Geological Earth Mapping Experiment led by NASA and the U.S. Geological Survey to map critical minerals across more than 190,000 square miles (500,000 square kilometers) of North American soil. Using airborne instruments, scientists are collecting these measurements over parts of California, Nevada, Arizona, and Oregon. That’s an area about the size of Spain. An ER-2 science aircraft banks away during a flight over the southern Sierra Nevada. The high-altitude plane supports a wide variety of research missions, including the GEMx campaign, which is mapping critical minerals in the Western U.S. using advanced airborne imaging developed by NASA. Credit: NASA/Carla Thomas Lithium, aluminum, rare earth elements such as neodymium and cerium — these are a few of the 50 mineral commodities deemed essential to U.S. national security, to the tech industry, and to clean energy. They support a wide range of technologies from smartphones to steelmaking, from wind turbines to electric vehicle batteries. In 2023, the U.S. imported its entire supply of 12 of these minerals and imported at least 50% of its supply of another 29. The GEMx team believes that undiscovered deposits of at least some of these minerals exist domestically, and modern mineral maps will support exploration by the private sector. “We’ve been exploring the earth beneath our feet for hundreds of years, and we’re discovering that we’ve only just begun,” said Kevin Reath, NASA’s associate project manager for GEMx. The View From 65,000 Feet To jumpstart mineral exploration, USGS is leading a nationwide survey from the inside out, using tools like lidar and magnetic-radiometric sensors to probe ancient terrain in new detail. The collaboration with NASA brings another tool to bear: imaging spectrometers. These advanced optical instruments need to stay cold as they fly high. From cryogenic vacuum chambers on planes or spacecraft, they detect hundreds of wavelengths of light — from the visible to shortwave infrared — reflected off planetary surfaces. The technology is now being used to help identify surface minerals across dry, treeless expanses of the Western U.S. Every molecule reflects a unique pattern of light, like a fingerprint. Processed through a spectroscopic lens, a desert expanse can appear like an oil painting popping with different colorful minerals, including pale-green mica, blue kaolinite, and plummy gypsum. “We’re not digging for gold. We’re revealing what’s hidden in plain sight,” said Robert Green, a researcher at NASA’s Jet Propulsion Laboratory in Southern California, who helped pioneer spectroscopic imaging at NASA JPL in the late 1970s. Like many of the scientists involved with GEMx, he has spent years surveying other worlds, including the Moon and Mars. A handful of such instruments exist on Earth, and Green is in charge of two of them. One, called EMIT (Earth Surface Mineral Dust Source Investigation) flies aboard the International Space Station. Surveying Earth’s surface from about 250 miles (410 kilometers) above, EMIT has captured thousands of images at a resolution of 50 by 50 miles (80 by 80 kilometers) in a wide belt around Earth’s mid-section. The other instrument rides beneath the fuselage of the ER-2 aircraft. Called AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), it’s helping guide geologists to critical minerals directly and indirectly, by spotting the types of rocks that often contain them. It’s joined by another instrument developed by NASA, the MODIS/ASTER Airborne Simulator (MASTER), which senses thermal infrared radiance. Both instruments provide finely detailed measurements of minerals that complement what EMIT sees on a broader scale. A crew of life support staff prepare pilot Dean Neeley for an ER-2 flight. A specialized suit – similar to an astronaut’s – allows the pilot to work, breathe, and eat at altitudes almost twice as high as a cruising passenger jet. NASA/Carla Thomas Old Mines, New Finds In and around the multimillion-year-old magmas of the Great Basin of the Western U.S., lithium takes several forms. The silvery metal is found in salty brines, in clay, and locked in more than 100 different types of crystals. It can also be detected in the tailings of abandoned prospects like Hector Mine, near Barstow, California. Abandoned years before a magnitude 7.1 earthquake rocked the region in 1999, the mine is located on a lode of hectorite, a greasy, lithium-bearing clay. Geologists from USGS are taking a second look at legacy mines like Hector as demand for lithium rises, driven primarily by lithium-ion batteries. A typical battery pack in an electric vehicle uses about 17 pounds (eight kilograms) of the energy-dense metal. Australia and Chile lead worldwide production of lithium, which exceeded 180,000 tons in 2023. The third largest producer is China, which also hosts about 50% of global lithium refining capacity. Total U.S. production was around 1,000 tons, sourced entirely from a deposit in northern Nevada. Known reserves in the state are estimated to contain more than a million metric tons of lithium, according to data collected by the Nevada Bureau of Mines and Geology. Mine wastes are also potential sources of lithium, said Bernard Hubbard, a remote sensing geologist at USGS, and many other byproduct commodities that are considered critical today but were discarded by previous generations. “There are old copper and silver mines in the West that were abandoned long before anyone knew what lithium or rare earth element deposits were,” Hubbard said. “What has been a pollution source for communities could now be a resource.” Following a winter pause, high-altitude GEMx flights over the American West will resume in the spring of 2025, after which USGS will process the raw data and release the first mineral maps. Already, the project has collected enough data to start producing a complete hyperspectral map of California — the first of its kind. The value of these observations extends beyond identifying minerals. Scientists expect they’ll provide new insight into invasive plant species, waste from mines that can contaminate surrounding environments, and natural hazards such as earthquakes, landslides, and wildfires. “We are just beginning to scratch the surface in applying these measurements to help the nation’s economy, security, and health,” said Raymond Kokaly, USGS research geophysicist and lead of the GEMx survey. More About GEMx The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative (EarthMRI), through investments from the Bipartisan Infrastructure Law. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging as well as the expertise in analyzing the datasets and extracting critical mineral information from them. Data collected by GEMx is available here. By Sally Younger NASA’s Earth Science News Team Share Details Last Updated Dec 05, 2024 Contact Sally Younger Related Terms Earth Explore More 4 min read Expanded AI Model with Global Data Enhances Earth Science Applications Article 1 day ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery Article 1 week ago 5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities Article 1 week ago Keep Exploring Discover Related Topics Earth Surface and Interior Focus Area Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Earth Science in Action NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet. View the full article
-
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.NASA The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign and will pave the way to land astronauts on the Moon on Artemis III and future missions. The crew of four aboard the agency’s Orion spacecraft will travel around the Moon and back to confirm the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed missions to Mars. On Dec. 5, NASA updated its timelines for the missions and shared the results of an investigation into the Orion heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight in late 2022. Here are some frequently asked questions about Artemis II, NASA’s recent updates, and the agency’s path to the Moon and Mars. What is Orion? NASA’s Orion spacecraft is where our crew live while traveling to and from deep space. Orion is built to take humans farther than they’ve ever gone before. On Artemis missions, Orion will carry crews of four astronauts from Earth to space, provide emergency abort capability, sustain them as they venture to the Moon, and safely return them to Earth from deep space speeds and temperatures. What is a heat shield and why is it important? When Orion travels back from deep space, its journey through Earth’s atmosphere generates intense temperatures of up to 5,000 degrees Fahrenheit on parts of the spacecraft. The 16-foot diameter protective heat shield on the bottom of the capsule is designed to dissipate that heat and keep the crew inside safe. Orion’s heat shield is primarily composed of Avcoat, a material designed to wear away as it heats up. What abnormal behavior did you see on the Artemis I heat shield? NASA flew the uncrewed Artemis I mission in late 2022 to test Orion, the agency’s SLS rocket, and the ground systems needed to launch them, testing these elements together for the first time to ensure engineers understand everything about the systems before flights with astronauts. The successful test flight sent Orion past the Moon and provided valuable data to ensure our deep space spacecraft and other systems are ready for crewed missions. When Orion returned to Earth, engineers saw variations across Orion’s heat shield they did not expect. Some of the charred material had broken off. If a crew had been aboard the flight, they would have remained safe, but understanding the phenomenon has been the subject of an extensive investigation since the test flight. What did NASA’s find as the cause of the issue? Engineers determined that as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and horizontal cracking to occur near the surface of the charred layer, causing some charred material to break off in several locations. For Artemis II, engineers will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred by modifying how far Orion can fly between when it enters Earth atmosphere and lands. Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. A more detailed description is here. Why did NASA decide to use the current heat shield? Extensive data from the investigation has given engineers confidence the heat shield for Artemis II can be used to safely fly the mission’s crew around the Moon and back. NASA will modify the trajectory by shortening how far Orion can fly between when it enters Earth’s atmosphere and splashes down in the Pacific Ocean. This will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred. The heat shield for the test flight is already attached to Orion. When will Artemis II take place? The Artemis II test flight will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft and will pave the way to land astronauts on the Moon on Artemis III. Artemis II builds on the success of the uncrewed Artemis I mission and will demonstrate a broad range of capabilities needed on lunar missions. The 10-day flight will help to confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. The mission is targeted for April 2026. The updated timeline for the Artemis II flight is informed by technical issues engineers are troubleshooting including with an Orion battery issue and its environmental control system. The heat shield was installed in June 2023 and the root cause investigation took place in parallel to other assembly and testing activities to preserve as much schedule as possible. What are the astronauts doing during the mission delay? NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen will continue training for the mission. More intensive training will begin about six months before launch. About the Artemis Campaign What is Artemis? NASA is establishing a long-term presence at the Moon for scientific exploration and discovery with our commercial and international partners, learning how to live and work far from home, and preparing for future human exploration of Mars – we call this endeavor Artemis. Under Artemis, NASA will land the first woman, first person of color, and first international partner astronaut on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Why is NASA going back to the Moon? NASA is going back to the Moon for scientific discovery, economic benefits, and inspiration for a new generation of explorers: the Artemis Generation. Artemis is a new approach to America’s space exploration efforts — it is the most technically challenging, collaborative, international endeavor humanity has ever set out to do. What we learn from expanding scientific knowledge and developing new technologies will be applied to improve life on Earth. Samples from the lunar South Pole could tell us more about the formation of our planet and origins of our solar system. We are meeting this challenge by investing in American ingenuity and leadership to advance our understanding of the universe for the benefit of all. What makes Artemis different from Apollo? The Apollo Program successfully landed 12 men near the equator of the Moon in the 1960s and 1970s. Under Artemis, NASA is going to the lunar South Pole region, where no humans have ever set foot, in new ways with commercial and international partners. The agency is leading the largest international coalition in space to push humanity farther than ever before for the benefit of all, developing capabilities for astronauts to live and work on the Moon before our next giant leap – human exploration of Mars. What happens after Artemis II? Artemis III will build on the crewed Artemis II flight test, adding new capabilities with the human landing system and advanced spacesuits to send the first humans to explore the lunar South Pole region. Over the course of about 30 days a crew of four will launch atop the Space Launch System rocket in Orion and travel to a special lunar orbit where they will dock with SpaceX’s Starship human landing system. Two Artemis crew members will transfer from Orion to Starship and descend to the lunar surface. There, they will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. The mission is planned for mid-2027. NASA is also working with SpaceX to further develop the company’s Starship lander requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer. NASA will use Blue Origin’s human landing system for Artemis V. View the full article
-
Through the Artemis campaign, NASA will land the next American astronauts and first international astronaut on the South Pole region of the Moon. On Thursday, NASA announced the latest updates to its lunar exploration plans. Experts discussed results of NASA’s investigation into its Orion spacecraft heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight. For the Artemis II crewed test flight, engineers will continue to prepare Orion with the heat shield already attached to the capsule. The agency also announced it is now targeting April 2026 for Artemis II and mid-2027 for Artemis III. The updated mission timelines also reflect time to address the Orion environmental control and life support systems. “The Artemis campaign is the most daring, technically challenging, collaborative, international endeavor humanity has ever set out to do,” said NASA Administrator Bill Nelson. “We have made significant progress on the Artemis campaign over the past four years, and I’m proud of the work our teams have done to prepare us for this next step forward in exploration as we look to learn more about Orion’s life support systems to sustain crew operations during Artemis II. We need to get this next test flight right. That’s how the Artemis campaign succeeds.” The agency’s decision comes after an extensive investigation of an Artemis I heat shield issue showed the Artemis II heat shield can keep the crew safe during the planned mission with changes to Orion’s trajectory as it enters Earth’s atmosphere and slows from nearly 25,000 mph to about 325 mph before its parachutes unfurl for safe splashdown in the Pacific Ocean. “Throughout our process to investigate the heat shield phenomenon and determine a forward path, we’ve stayed true to NASA’s core values; safety and data-driven analysis remained at the forefront,” said Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The updates to our mission plans are a positive step toward ensuring we can safely accomplish our objectives at the Moon and develop the technologies and capabilities needed for crewed Mars missions.” NASA will continue stacking its SLS (Space Launch System) rocket elements, which began in November, and prepare it for integration with Orion for Artemis II. Throughout the fall months, NASA, along with an independent review team, established the technical cause of an issue seen after the uncrewed Artemis I test flight in which charred material on the heat shield wore away differently than expected. Extensive analysis, including from more than 100 tests at unique facilities across the country, determined the heat shield on Artemis I did not allow for enough of the gases generated inside a material called Avcoat to escape, which caused some of the material to crack and break off. Avcoat is designed to wear away as it heats up and is a key material in the thermal protection system that guards Orion and its crew from the nearly 5,000 degrees Fahrenheit of temperatures that are generated when Orion returns from the Moon through Earth’s atmosphere. Although a crew was not inside Orion during Artemis I, data shows the temperature inside Orion remained comfortable and safe had crew been aboard. Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. The skip entry is needed for return from speeds expected for lunar landing missions. “Victor, Christina, Jeremy, and I have been following every aspect of this decision and we are thankful for the openness of NASA to weigh all options and make decisions in the best interest of human spaceflight. We are excited to fly Artemis II and continue paving the way for sustained human exploration of the Moon and Mars,” said Reid Wiseman, NASA astronaut and Artemis II commander. “We were at the agency’s Kennedy Space Center in Florida recently and put eyes on our SLS rocket boosters, the core stage, and the Orion spacecraft. It is inspiring to see the scale of this effort, to meet the people working on this machine, and we can’t wait to fly it to the Moon.” Wiseman, along with NASA astronauts Victor Glover and Christina Koch and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will fly aboard the 10-day Artemis II test flight around the Moon and back. The flight will provide valuable data about Orion systems needed to support crew on their journey to deep space and bring them safely home, including air revitalization in the cabin, manual flying capabilities, and how humans interact with other hardware and software in the spacecraft. With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work farther away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. For more information about Artemis, visit: https://www.nasa.gov/artemis -end- Meira Bernstein / Rachel Kraft Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov Share Details Last Updated Dec 05, 2024 LocationNASA Headquarters Related TermsMissionsArtemisArtemis 2Exploration Systems Development Mission DirectorateNASA Directorates View the full article
-
The Artemis II Orion spacecraft is lifted from the Final Assembly and Testing (FAST) Cell and placed in the west altitude chamber inside the Operations and Checkout Building at NASA’S Kennedy Space Center in Florida on June 28, 2024. Inside the altitude chamber, the spacecraft underwent a series of tests simulating deep space vacuum conditions.Photo Credit: NASA / Rad Sinyak After extensive analysis and testing, NASA has identified the technical cause of unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Engineers determined as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and cracking to occur, causing some charred material to break off in several locations. “Our early Artemis flights are a test campaign, and the Artemis I test flight gave us an opportunity to check out our systems in the deep space environment before adding crew on future missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program Office, NASA Headquarters in Washington. “The heat shield investigation helped ensure we fully understand the cause and nature of the issue, as well as the risk we are asking our crews to take when they venture to the Moon.” Findings Teams took a methodical approach to understanding and identifying the root cause of the char loss issue, including detailed sampling of the Artemis I heat shield, review of imagery and data from sensors on the spacecraft, and comprehensive ground testing and analysis. During Artemis I, engineers used the skip guidance entry technique to return Orion to Earth. This technique provides more flexibility by extending the range Orion can fly after the point of reentry to a landing spot in the Pacific Ocean. Using this maneuver, Orion dipped into the upper part of Earth’s atmosphere and used atmospheric drag to slow down. Orion then used the aerodynamic lift of the capsule to skip back out of the atmosphere, then reenter for final descent under parachutes to splashdown. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA’s Ames Research Center in California. They observed that during the period between dips into the atmosphere, heating rates decreased, and thermal energy accumulated inside the heat shield’s Avcoat material. This led to the accumulation of gases that are part of the expected ablation process. Because the Avcoat did not have “permeability,” internal pressure built up, and led to cracking and uneven shedding of the outer layer. After NASA’s Orion spacecraft was recovered at the conclusion of the Artemis I test flight and transported to NASA’s Kennedy Space Center in Florida, its heat shield was removed from the crew module inside the Operations and Checkout Building and rotated for inspection. Credit: NASA Teams performed extensive ground testing to replicate the skip phenomenon before Artemis I. However, they tested at much higher heating rates than the spacecraft experienced in flight. The high heating rates tested on the ground allowed the permeable char to form and ablate as expected, releasing the gas pressure. The less severe heating seen during the actual Artemis I reentry slowed down the process of char formation, while still creating gases in the char layer. Gas pressure built up to the point of cracking the Avcoat and releasing parts of the charred layer. Recent enhancements to the arc jet facility have enabled a more accurate reproduction of the Artemis I measured flight environments, so that this cracking behavior could be demonstrated in ground testing. While Artemis I was uncrewed, flight data showed that had crew been aboard, they would have been safe. The temperature data from the crew module systems inside the cabin were also well within limits and holding steady in the mid-70s Fahrenheit. Thermal performance of the heat shield exceeded expectations. Engineers understand both the material phenomenon and the environment the materials interact with during entry. By changing the material or the environment, they can predict how the spacecraft will respond. NASA teams unanimously agreed the agency can develop acceptable flight rationale that will keep crew safe using the current Artemis II heat shield with operational changes to entry. NASA’s Investigation Process Soon after NASA engineers discovered the condition on the Artemis I heat shield, the agency began an extensive investigation process, which included a multi-disciplinary team of experts in thermal protection systems, aerothermodynamics, thermal testing and analysis, stress analysis, material test and analysis, and many other related technical areas. NASA’s Engineering and Safety Center was also engaged to provide technical expertise including nondestructive evaluation, thermal and structural analysis, fault tree analysis, and other testing support. “We took our heat shield investigation process extremely seriously with crew safety as the driving force behind the investigation,” said Howard Hu, manager, Orion Program, NASA’s Johnson Space Center in Houston. “The process was extensive. We gave the team the time needed to investigate every possible cause, and they worked tirelessly to ensure we understood the phenomenon and the necessary steps to mitigate this issue for future missions.” The Artemis I heat shield was heavily instrumented for flight with pressure sensors, strain gauges, and thermocouples at varying ablative material depths. Data from these instruments augmented analysis of physical samples, allowing the team to validate computer models, create environmental reconstructions, provide internal temperature profiles, and give insight into the timing of the char loss. Approximately 200 Avcoat samples were removed from the Artemis I heat shield at NASA’s Marshall Space Flight Center in Alabama for analysis and inspection. The team performed non-destructive evaluation to “see” inside the heat shield. One of the most important findings from examining these samples was that local areas of permeable Avcoat, which had been identified prior to the flight, did not experience cracking or char loss. Since these areas were permeable at the start of the entry, the gases produced by ablation were able to adequately vent, eliminating the pressure build up, cracking, and char loss. A test block of Avcoat undergoes heat pulse testing inside an arc jet test chamber at NASA’s Ames Research Center in California. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon.Credit: NASA Engineers performed eight separate post-flight thermal test campaigns to support the root cause analysis, completing 121 individual tests. These tests took place in facilities with unique capabilities across the country, including the Aerodynamic Heating Facility at the Arc-Jet Complex at Ames to test convective heating profiles with various test gases; the Laser Hardened Materials Evaluation Laboratory at Wright‐Patterson Air Force Base in Ohio to test radiative heating profiles and provide real-time radiography; as well as the Interaction Heating Facility at Ames to test combined convective and radiative heating profiles in the air at full-block scale. Aerothermal experts also completed two hypersonic wind tunnel test campaigns at NASA’s Langley Research Center in Virginia and CUBRC aerodynamic test facilities in Buffalo, New York, to test a variety of char loss configurations and enhance and validate analytical models. Permeability testing was also performed at Kratos in Alabama, the University of Kentucky, and Ames to help further characterize the Avcoat’s elemental volume and porosity. The Advanced Light Source test facility, a U.S. Department of Energy scientific user facility at Lawrence Berkeley National Laboratory, was also used by engineers to examine the heating behavior of the Avcoat at a microstructure level. In the spring of 2024, NASA stood up an independent review team to conduct an extensive review of the agency’s investigation process, findings, and results. The independent review was led by Paul Hill, a former NASA leader who served as the lead space shuttle flight director for Return to Flight after the Columbia accident, led NASA’s Mission Operations Directorate, and is a current member of the agency’s Aerospace Safety Advisory Panel. The review occurred over a three-month period to assess the heat shield’s post-flight condition, entry environment data, ablator thermal response, and NASA’s investigation progress. The review team agreed with NASA’s findings on the technical cause of the physical behavior of the heat shield. Heat Shield Advancements Knowing that permeability of Avcoat is a key parameter to avoid or minimize char loss, NASA has the right information to assure crew safety and improve performance of future Artemis heat shields. Throughout its history, NASA has learned from each of its flights and incorporated improvements into hardware and operations. The data gathered throughout the Artemis I test flight has provided engineers with invaluable information to inform future designs and refinements. Lunar return flight performance data and a robust ground test qualification program improved after the Artemis I flight experience are supporting production enhancements for Orion’s heat shield. Future heat shields for Orion’s return from Artemis lunar landing missions are being produced to achieve uniformity and consistent permeability. The qualification program is currently being completed along with the production of more permeable Avcoat blocks at NASA’s Michoud Assembly Facility in New Orleans. For more information about NASA’s Artemis campaign, visit: https://www.nasa.gov/artemis View the full article
-
Hubble Space Telescope Home NASA’s Hubble Takes the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Takes the Closest-Ever Look at a Quasar A NASA Hubble Space Telescope image of the core of quasar 3C 273. Credits: NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) Astronomers have used the unique capabilities of NASA’s Hubble Space Telescope to peer closer than ever into the throat of an energetic monster black hole powering a quasar. A quasar is a galactic center that glows brightly as the black hole consumes material in its immediate surroundings. The new Hubble views of the environment around the quasar show a lot of “weird things,” according to Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in Nice, France. “We’ve got a few blobs of different sizes, and a mysterious L-shaped filamentary structure. This is all within 16,000 light-years of the black hole.” Some of the objects could be small satellite galaxies falling into the black hole, and so they could offer the materials that will accrete onto the central supermassive black hole, powering the bright lighthouse. “Thanks to Hubble’s observing power, we’re opening a new gateway into understanding quasars,” said Ren. “My colleagues are excited because they’ve never seen this much detail before.” Quasars look starlike as point sources of light in the sky (hence the name quasi-stellar object). The quasar in the new study, 3C 273, was identified in 1963 by astronomer Maarten Schmidt as the first quasar. At a distance of 2.5 billion light-years it was too far away for a star. It must have been more energetic than ever imagined, with a luminosity over 10 times brighter than the brightest giant elliptical galaxies. This opened the door to an unexpected new puzzle in cosmology: What is powering this massive energy production? The likely culprit was material accreting onto a black hole. A Hubble Space Telescope image of the core of quasar 3C 273. A coronagraph on Hubble blocks out the glare coming from the supermassive black hole at the heart of the quasar. This allows astronomers to see unprecedented details near the black hole such as weird filaments, lobes, and a mysterious L-shaped structure, probably caused by small galaxies being devoured by the black hole. Located 2.5 billion light-years away, 3C 273 is the first quasar (quasi-stellar object) ever discovered, in 1963. NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) In 1994 Hubble’s new sharp view revealed that the environment surrounding quasars is far more complex than first suspected. The images suggested galactic collisions and mergers between quasars and companion galaxies, where debris cascades down onto supermassive black holes. This reignites the giant black holes that drive quasars. For Hubble, staring into the quasar 3C 273 is like looking directly into a blinding car headlight and trying to see an ant crawling on the rim around it. The quasar pours out thousands of times the entire energy of stars in a galaxy. One of closest quasars to Earth, 3C 273 is 2.5 billion light-years away. (If it was very nearby, a few tens of light-years from Earth, it would appear as bright as the Sun in the sky!) Hubble’s Space Telescope Imaging Spectrograph (STIS) can serve as a coronagraph to block light from central sources, not unlike how the Moon blocks the Sun’s glare during a total solar eclipse. Astronomers have used STIS to unveil dusty disks around stars to understand the formation of planetary systems, and now they can use STIS to better understand quasars’ host galaxies. The Hubble coronograph allowed astronomers to look eight times closer to the black hole than ever before. Scientists got rare insight into the quasar’s 300,000-light-year-long extragalactic jet of material blazing across space at nearly the speed of light. By comparing the STIS coronagraphic data with archival STIS images with a 22-year separation, the team led by Ren concluded that the jet is moving faster when it is farther away from the monster black hole. “With the fine spatial structures and jet motion, Hubble bridged a gap between the small-scale radio interferometry and large-scale optical imaging observations, and thus we can take an observational step towards a more complete understanding of quasar host morphology. Our previous view was very limited, but Hubble is allowing us to understand the complicated quasar morphology and galactic interactions in detail. In the future, looking further at 3C 273 in infrared light with the James Webb Space Telescope might give us more clues,” said Ren. At least 1 million quasars are scattered across the sky. They are useful background “spotlights” for a variety of astronomical observations. Quasars were most abundant about 3 billion years after the big bang, when galaxy collisions were more common. The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Explore More Science Behind the Discoveries: Quasars Science Behind the Discoveries: Black Holes Monster Black Holes are Everywhere Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contact: Bin Ren Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France Share Details Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Quasars Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Night Sky Challenge Hubble Gravitational Lenses Hubble Lithographs View the full article
-
The Fresh Eyes on Ice team receives the C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities. H. Buurman Congratulations to the Fresh Eyes on Ice project, which received a C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities! The award recognizes programs that demonstrate how colleges and universities have redesigned their learning, discovery, and engagement missions to deepen their partnerships and achieve broader impacts in their communities. “Thank you to all of you for making this project what it is.” said Fresh Eyes on Ice project lead Research Professor Katie Spellman from the University of Alaska, Fairbanks. “We couldn’t do it without you.” Fresh Eyes on Ice tracks changes in the timing and thickness of ice throughout Alaska and the circumpolar north. You can get involved by downloading the GLOBE Observer app and taking photos of ice conditions using the GLOBE Land Cover protocol. Fresh Eyes on Ice is supported by the Navigating the New Arctic Program of the U.S. National Science Foundation and the NASA Citizen Science for Earth Systems Program. Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Dec 05, 2024 Related Terms Citizen Science Earth Science Explore More 4 min read 2024 AGU Fall Meeting Hyperwall Schedule Article 1 day ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists! Article 1 week ago 9 min read The Earth Observer Editor’s Corner: Fall 2024 Article 3 weeks ago View the full article
-
3 Min Read Matt Dominick’s X Account: A Visual Journey from Space We are lucky to have had the opportunity to fly in space and feel a responsibility to share with humanity the incredible views of the Earth and the cosmos. Matt dominick NASA Astronaut NASA astronaut and Expedition 72 Flight Engineer Matthew Dominick launched to the International Space Station on March 3, 2024 as the commander of NASA’s SpaceX Crew-8 mission. As a flight engineer aboard the orbiting laboratory, Dominick conducted scientific research while capturing breathtaking views of Earth and beyond from the ultimate vantage point—250 miles above the planet. Dominick’s X account (@dominickmatthew) has become a visual diary, showcasing the beauty of our planet captured from low Earth orbit during his 235 days in space. From the ethereal glow of auroras dancing across the atmosphere to comets rising up over the horizon during an orbital sunrise, each meticulously captured image reflects his dedication to sharing the wonders of space exploration through social media. He goes beyond simply posting pictures; he reveals the techniques behind his astrophotography, including camera settings and insights into his creative process, inviting followers to appreciate the artistry involved. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Matt Dominick shared this timelapse video to his X account in August 2024, showing the Moon setting into streams of red and green aurora.Matt Dominick See the full X post here. Amid his daily astronaut duties, Dominick dedicated personal time to this endeavor, amassing nearly 500,000 captivating photos of Earth and snapshots of life aboard the International Space Station, while having traveled 99,708,603 total statue miles around our home planet. Through his lens(es), he invited us to experience the awe of space while highlighting the realities of life in orbit, fostering an authentic connection with those who engage with his work. Building on this commitment to connect, Dominick participated in the first-ever live X Spaces event from space, marking a new way for NASA astronauts to connect personally with followers. He shared insider tips on astrophotography from orbit and discussed the challenges and joys of capturing stunning images in microgravity. Concluding the event, he vividly narrated his live experience floating into the Cupola at sunset while orbiting over Paris just days before the 2024 Summer Olympic Games. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video A screen recording of the first X Spaces event from space featuring NASA astronaut Matt Dominick.NASA Dominick’s journey as an astronaut unfolds in real-time on his X account. He has captured the arrivals and departures of various spacecraft, documented dynamic weather events, and even participated in Olympic festivities. His stunning timelapses and behind-the-scenes videos offer an intimate look at life aboard the space station, beautifully illustrating the intricate interplay between science and wonder. What sets Dominick’s account apart is his playful perspective. He invites his audience into lighthearted moments—whether he’s cleaning his retainer in microgravity, relishing the arrival of fresh fruit, or sharing insights from the ISS toolbox. By documenting and sharing these experiences, he demystifies the complexities of space travel, making it an accessible and relatable journey for all. Through his engaging posts, Dominick cultivates a deeper connection with his followers, encouraging them to share in the beauty and reality of life beyond our planet. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Matt Dominick shared this video video to his X account in August 2024 after receiving fresh fruit aboard the International Space Station.Matt Dominick See the full X post here. Visit Dominick’s X account (@dominickmatthew) to experience the wonders of space through his eyes, enriched by his remarkable journey of orbiting the Earth 3,760 times. Share Details Last Updated Dec 05, 2024 Related TermsInternational Space Station (ISS)AstronautsExpedition 72Humans in Space View the full article
-
2 Min Read NASA Astronauts Compete in ISS “Olympics” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The International Space Station Olympics.NASA See the Content Online: Olympics Instagram | Olympics X | Olympics Website | NASA HQ YouTube | NASA Facebook | FLOTUS Instagram “Over the past few days on the International Space Station, we’ve had an absolute blast pretending to be Olympic athletes,” astronaut Matt Dominick started off in a crew message. “We, of course, have had the benefits of weightlessness…We can’t imagine how hard this must be, to be such a world-class athlete doing your sports under actual gravity. So from all of us aboard the International Space Station to every single athlete in the Olympic Games, Godspeed!” 250 miles above Earth, NASA astronauts aboard the International Space Station (ISS) held their own version of the 2024 Summer Olympics. Before the athletes competed on the ground in Paris, astronauts Matthew Dominick, Suni Williams, Butch Wilmore, Jeanette Epps, Tracy Dyson, and Mike Barratt brought the spirit of the Games to space, showcasing their own unique series of sports. The two-minute epic montage, released on July 26, begins with crew members passing a uniquely orbital Olympic torch, crafted right aboard the space station. Each astronaut warms up for their event, with a standout moment featuring Butch Wilmore taking a sip from a floating sphere of water. Let the games begin! NASA astronaut Tracy Dyson kicked things off by powerlifting two of her fellow astronauts. Then Jeanette Epps went for the gold in the long jump. Matthew Dominick defied microgravity, executing a flawless gymnastics routine as he flew through the station. Suni Williams showcased her focus and strength, becoming the first to compete on the pommel horse in space. Mike Barratt gave it his all in the discus. And finally, Butch Wilmore set a record with his shotput throw! NASA astronaut Tracy C. Dyson powerlifts two of her fellow astronauts during the ISS “Olympics.”NASA NASA astronaut Jeanette Epps goes for the gold in her long jump for the ISS “Olympics.”NASA NASA astronaut Matt Dominick defies microgravity during his ISS “Olympics” gymnastics routine.NASA NASA astronaut Suni Williams shows off her strength during the ISS “Olympics.”NASA NASA astronaut Mike Barratt performs a discus throw in microgravity for the ISS “Olympics.”NASA NASA astronaut Butch Wilmore throws the shot put during the ISS “Olympics.”NASA The crew ended the video with a heartfelt message to all Olympic athletes, celebrating the spirit of international cooperation—a core principle of space station operations. The video was shared collaboratively across multiple social media channels, amplifying its reach and impact. Both NASA and the official Olympics social media accounts posted the video, showcasing the astronauts’ unique tribute to the Games. A special version of the video was also shared on the First Lady’s Instagram account, further emphasizing the spirit of international unity and the connection between space exploration and global events. This coordinated effort highlighted the collaboration between NASA and the Olympics, bringing attention to the shared values of teamwork, perseverance, and global cooperation. Share Details Last Updated Dec 05, 2024 Related TermsInternational Space Station (ISS)AstronautsExpedition 71Humans in Space View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable. Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW), an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods. The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight. Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.” To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors. “The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.” Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said. The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests. With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing. The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept. NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share Details Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterAdvanced Air Transport TechnologyAdvanced Air Vehicles ProgramAeronauticsAeronautics Research Mission DirectorateFlight InnovationGreen Aviation TechSustainable Aviation Explore More 4 min read NASA’s C-20A Studies Extreme Weather Events Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports Ground traffic management program saves passengers and airlines time while cutting fuel costs Article 1 week ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong Programs & Projects Armstrong Aeronautics Projects Armstrong Capabilities & Facilities View the full article
-
2 Min Read Turn Supermoon Hype into Lunar Learning Caption: The Earth-Moon distance to scale. Credits: NASA/JPL-Caltech Supermoons get lots of publicity from the media, but is there anything to them beyond the hype? If the term “supermoon” bothers you because it’s not an official astronomical term, don’t throw up your hands. You can turn supermoon lemons into lunar lemonade for your star party visitors by using it to illustrate astronomy concepts and engaging them with great telescopic views of its surface! Many astronomers find the frequent supermoon news from the media misleading, if not a bit upsetting! Unlike the outrageously wrong “Mars is as big as the moon” pieces that appear like clockwork every two years during Mars’s close approach to Earth, news about a huge full moon is more of an overstatement. The fact is that while a supermoon will indeed appear somewhat bigger and brighter in the sky, it would be difficult to tell the difference between an average full moon and a supermoon with the naked eye. A whiteboard illustration of Earth’s Moon at perigee, or closest position to Earth. Credit: NASA There are great bits of science to glean from supermoon discussion that can turn supermoon questions into teachable moments. For example, supermoons are a great gateway into discussing the shape of the moon’s orbit, especially the concepts of apogee and perigee. Many people may assume that the moon orbits Earth in a perfect circle, when in fact its orbit is elliptical! The moon’s distance from Earth constantly varies, and so during its orbit it reaches both apogee (when it’s farthest from Earth), as well as perigee (closest to Earth). A supermoon occurs when the moon is at both perigee and in its full phase. That’s not rare; a full moon at closest approach to Earth can happen multiple times a year, as you may have noticed. This activity is related to a Teachable Moment from Nov. 15, 2017. See “What Is a Supermoon and Just How Super Is It?” Credit: NASA/JPL While a human observer won’t be able to tell the difference between the size of a supermoon and a regular full moon, comparison photos taken with a telephoto lens can reveal the size difference between full moons. NASA has a classroom activity called Measuring the Supermoon where students can measure the size of the full moon month to month and compare their results. Comparison of the size of an average full moon, compared to the size of a supermoon. NASA/JPL-Caltech Students can use digital cameras (or smartphones) to measure the moon, or they can simply measure the moon using nothing more than a pencil and paper! Both methods work and can be used depending on the style of teaching and available resources. /wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpg This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth. NASA, ESA, CSA, and STScI View the full article
-
Mike Lauer manages production of the RS-25 main engines for NASA’s heavy-lift SLS (Space Launch System), which will launch U.S. astronauts back to the Moon as part of the agency’s Artemis campaign. L3 Harris Technologies Mike Lauer, an engineer who works for the Aerojet Rocketdyne segment of L3Harris Technologies, found his career inspiration in science fiction, but for the perspective it takes to execute complex space programs, he draws on real-world experience. Growing up, Lauer spent many cold winter nights in the basement of his Sioux Falls, South Dakota, home, creating pictures of iconic space hardware from Hollywood space movies. “That really is what got me into it,” he says. Fast forward to today, and he’s managing production of the RS-25 main engines for NASA’s heavy-lift SLS (Space Launch System), which will launch U.S. astronauts back to the Moon as part of the agency’s Artemis campaign. When the scale and complexity of the undertaking appear daunting, Lauer thinks back to early in his career, when he designed hardware for the International Space Station, now in its third decade on orbit. “It just seemed to me that there’s no way this was going to work, but we just kept building and solving problems and the next thing you know, we’re launching space station parts,” Lauer says. “Having that experience of seeing a program that seemed too big, too complex, and it worked, gives me great hope and confidence that we can do it again with Artemis.” Lauer has family ties to space. His father, Don Lauer, ran the U.S. Geological Survey’s Earth Resources Observation and Science Center in Sioux Falls, a repository for data collected by NASA’s long-running Landsat series of land imaging satellites. Lauer’ father even spent time at NASA’s Johnson Space Center in Houston, home to the Agency’s human spaceflight program, exploring the role of astronauts in Earth observation from space. But it was an artist’s fascination with fictional hardware –– that ultimately led Mike Lauer to earn his bachelor and master’s degrees in Aeronautical & Astronautical engineering from Stanford University in Palo Alto, California. “With engineering in general, there’s a connection with art,” Lauer says. “We create these things that have an artistic aesthetic to them, which is really cool.” Cool is a word Lauer, a licensed pilot, deploys frequently in describing his career journey, understandably so. For example, he once participated in a space station assembly rehearsal with veteran astronaut Jerry Ross at Johnson’s Neutral Buoyancy Facility, a giant pool used to help train astronauts for spacewalks. “I’m in this spacesuit and Jerry Ross is in this spacesuit and we’re plugging in elements of the space station,” Lauer says, almost in disbelief. “Oh my gosh!” While serving as Aerojet Rocketdyne’s lead engineer on the Multi Mission Radioisotope Thermo-electric Generator program, Lauer visited the U.S. Department of Energy’s Idaho National Laboratory to observe the loading of Plutonium 238 nuclear fuel into the device, which continues to power NASA’s car-sized Curiosity rover on the Martian surface. “Super cool,” he says. For his next move, Lauer figured that, being at Aerojet Rocketdyne (now L3Harris), builder of the engines on NASA’s legendary Saturn V Moon rocket, he should get into the propulsion side of the business. He began on the J-2X, a modified version of the Saturn V’s second stage engine that NASA had planned at one point to use on the SLS. Working from 1960s era drawings, Lauer and his team created a modern, easier-to-produce design with more power that had a successful series of hot-fire tests before being replaced in favor of a different upper stage design. Now, as RS-25 program director, Lauer works on another engine, this one originally designed for NASA’s now-retired Space Shuttle, updating and redesigning key components to meet new requirements and reduce production costs. The SLS flew its first mission without a crew, but upcoming flights will have astronauts aboard, which gives Lauer a huge sense of pride and responsibility. “I’m awed and inspired by what we’re doing,” he says. “Really cool.” Also really cool: Lauer serves as a volunteer pilot for the Civil Air Patrol, supporting the U.S. Air Force on search and rescue, disaster relief, and fire damage assessment missions. That keeps him busy on many weekends when he’s not refereeing youth soccer. Aside from that, Lauer most looks forward to the day four NASA astronauts are safely aboard their recovery ship at the successful conclusion of the first human moon landing in more than five decades. Read other I am Artemis features. View the full article
-
Una luna gibosa creciente se eleva sobre el resplandor azul del horizonte terrestre mientras la Estación Espacial Internacional orbitaba a 264 millas sobre el Océano Índico el 13 de Noviembre de 2024.Crédito: NASA Read this release in English here. El administrador de la NASA, Bill Nelson, y otros directivos darán una rueda de prensa el jueves 5 de diciembre a la 1 p.m. EST (hora del este de EE.UU.) en la sede de la agencia en Washington para proporcionar información sobre la campaña Artemis de la agencia. El evento para los medios de comunicación estará disponible en NASA+. Aprende a transmitir contenidos de la NASA a través de diversas plataformas, incluidas las redes sociales. Los participantes incluyen: Bill Nelson, administrador de la NASA Pam Melroy, administradora adjunta de la NASA Jim Free, administrador asociado de la NASA Catherine Koerner, administradora asociada, Dirección de Misión de Desarrollo de Sistemas de Exploración, Sede de la NASA Amit Kshatriya, administrador asociado adjunto, Oficina del Programa de la Luna a Marte, Dirección de Misión de Desarrollo de Sistemas de Exploración Reid Wiseman, astronauta de la NASA y comandante del Artemis II Los medios de comunicación interesados en participar en persona o por teléfono deben confirmar su asistencia antes de las 11 a.m. EST del 5 de diciembre a: hq-media@mail.nasa.gov. La conferencia de prensa tendrá lugar en el Auditorio James E. Webb de la sede central de la NASA, en el edificio Mary W. Jackson, 300 E St. SW, Washington. La política de acreditación de medios de comunicación de la NASA está disponible en línea (en inglés). A través de la campaña Artemis, la agencia establecerá una presencia a largo plazo en la Luna para la exploración científica conjuntamente con nuestros socios comerciales e internacionales, aprenderá a vivir y trabajar lejos de nuestro hogar y se preparará para la futura exploración humana de Marte. El cohete Sistema de Lanzamiento Espacial de la NASA, los sistemas terrestres de exploración y la nave espacial Orion, junto con el sistema de aterrizaje humano, los trajes espaciales de próxima generación, la estación espacial lunar, Gateway y los futuros vehículos exploradores son la base de la NASA para la exploración del espacio profundo. Para más información sobre Artemis (en inglés), visita: https://www.nasa.gov/artemis -fin- Meira Bernstein / Rachel Kraft / María José Viñas Sede, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov Share Details Last Updated Dec 04, 2024 LocationNASA Headquarters Related TermsMissionsArtemisExploration Systems Development Mission DirectorateNASA Headquarters View the full article
-
NASA Artemis Campaign Leadership News Conference
-
A waxing gibbous moon rises over the blue glow of Earth’s horizon as the International Space Station orbited 264 miles above the Indian Ocean on Nov. 13, 2024.Credit: NASA NASA Administrator Bill Nelson and leadership will hold a news conference at 1 p.m. EST, Thursday, Dec. 5, at the agency’s headquarters in Washington to provide a briefing about the agency’s Artemis campaign. Watch the media event on NASA+. Learn how to stream NASA content through a variety of platforms, including social media. Participants include: NASA Administrator Bill Nelson NASA Deputy Administrator Pam Melroy NASA Associate Administrator Jim Free Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate, NASA Headquarters Amit Kshatriya, deputy associate administrator, Moon to Mars Program Office, Exploration Systems Development Mission Directorate Reid Wiseman, NASA astronaut and Artemis II commander Media interested in participating in-person or by phone must RSVP by 11 a.m. on Dec. 5 to: hq-media@mail.nasa.gov. The news conference will take place in the James E. Webb Auditorium at NASA Headquarters in the Mary W. Jackson building, 300 E St. SW, Washington. A copy of NASA’s media accreditation policy is online. Through the Artemis campaign, the agency will establish a long-term presence at the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. For more information about Artemis, visit: https://www.nasa.gov/artemis -end- Meira Bernstein / Rachel Kraft Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov Share Details Last Updated Dec 04, 2024 LocationNASA Headquarters Related TermsMissionsArtemisExploration Systems Development Mission DirectorateNASA Headquarters View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The UAVSAR underbelly pod is in clear view as NASA’s Gulfstream-III research aircraft banks away over Edwards AFBNASA On a changing planet, where phenomena like severe hurricanes, landslides, and wildfires are becoming more severe, scientists need data to assess and model disaster impacts and to potentially make predictions about hazards. NASA’s C-20A aircraft is a significant asset that can carry key instruments for understanding the science behind these phenomena. Based at NASA’s Armstrong Flight Research Center in Edwards, California, the C-20A is a military version of the Gulfstream III business jet and operates as an airborne science aircraft for a variety of Earth science research missions. In October, the plane was deployed to fly over areas affected by Hurricane Milton. With winds of up to 120 miles per hour, the hurricane hit the Florida coast as a category 3 storm, and produced lightning, heavy rainfall, and a series of tornadoes. In the aftermath of the storm, the C-20A was outfitted with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument to collect detailed data about the affected flood areas. “Our team focused specifically on inland river flooding near dense populations, collecting data that could help inform disaster response and preparation in the future,” said Starr Ginn, C-20A aircraft project manager. “By all indications, this rapid response to support Hurricane Milton recovery efforts was a successful coordination of efforts by science and aircraft teams.” The Uninhabited Aerial Vehicle Synthetic Aperture Radar, UAVSAR, is prepared for installation onto NASA’s C-20A aircraft. THE UAVSAR uses a technique called interferometry to detect and measure very subtle deformations in the Earth’s surface, and the pod is specially designed to be interoperable with unmanned aircraft in the future. It will gather data from Gabon, Africa in September of 2023.NASA/Steve Freeman The UAVSAR was developed by NASA’s Jet Propulsion Laboratory in Southern California, and uses a technique called interferometry to detect subtle changes to Earth’s surface. Interferometry uses the intersection of multiple wavelengths to make precise measurements. This detection system effectively measures the terrain changes or impacts before and after an extreme natural event. When flown onboard an aircraft, radars like the UAVSAR can also provide more detail than satellite radars. “Where satellite instruments might only get a measurement every one to two weeks, the UAVSAR can fill in points between satellite passes to calibrate ground-based instruments,” Ginn said. “It takes data at faster rates and with more precision. We can design overlapping flights in three or more directions to detect more textures and motions on the Earth’s surface. This is a big advantage over the one-dimensional line-of-sight measurement provided by a single flight.” The C-20A team also used the UAVSAR in October to investigate the Portuguese Bend landslide in Rancho Pales Verdes. The Portuguese Bend Landslide began in the mid- to late-Pleistocene period over 11,000 years ago. Though inactive for thousands of years, the landslide was reactivated in 1956 when a road construction project added weight to the top of it. Recently, the landslide has been moving at increasing rates during dry seasons. NASA’s JPL scientists, Xiang Li, Alexander Handwerger, Gilles Peltzer, and Eric Fielding have been researching this landslide progression using satellite-based instruments. “The high-resolution capability of UAVSAR is ideal for landslides since they have relatively small features,” said Ginn. “This helps us understand the different characteristics of the landslide body.” NASA flew an aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flew above California fires on Sept. 3 and 10, 2020.NASA/JPL-Caltech The C-20A airborne observatory also provided crucial insight for studies of wildfire. The Fire and Smoke Model Evaluation Experiment (FASMEE), a multi-agency experiment led by the U.S. Department of Agriculture’s Forest Service Pacific Northwest Research Station, included flights of the C-20A. This experiment studied fire behavior and smoke. “The airborne perspective allows FASMEE researchers to better understand fire behavior and smoke production,” said Michael Falkowski, program manager for NASA’s Applied Sciences Wildland Fire program. “Hopefully this data will help mitigate fire risk, restore degraded ecosystems, and protect human communities from catastrophic fire.” Airborne data can inform how scientists and experts understand extreme phenomena on the ground. Researchers on the FASMEE experiment will use the data collected from the UAVSAR instrument to map the forest’s composition and moisture to track areas impacted by the fire, and to study how the fire progressed. “We can explore how fire managers can use airborne data to help make decisions about fires,” added Jacquelyn Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley. Share Details Last Updated Dec 04, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterC-20AEarth ScienceEarth's AtmosphereJet Propulsion Laboratory Explore More 4 min read 2024 AGU Fall Meeting Hyperwall Schedule NASA Science at AGU Fall Meeting Hyperwall Schedule, December 9-12, 2024 Join NASA in the… Article 41 mins ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students Article 2 days ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists! This year, we’re giving thanks to you for Doing NASA Science! You and the millions… Article 1 week ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Earth Science Climate Change NASA is a global leader in studying Earth’s changing climate. Jet Propulsion Laboratory View the full article
-
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 4 min read 2024 AGU Fall Meeting Hyperwall Schedule NASA Science at AGU Fall Meeting Hyperwall Schedule, December 9-12, 2024 Join NASA in the Exhibit Hall (Booth #719) for Hyperwall Storytelling by NASA experts. Full Hyperwall Agenda below. ***Copies of the 2025 NASA Science Calendar will be distributed at the NASA Exhibit at the start of each day.*** MONDAY, DECEMBER 9 3:20 – 3:40 PM From Stars to Life: The Power of NASA Science Dr. Nicola Fox 3:40 – 4:00 PM NASA Planetary Science Division: 2024 Highlights Eric Ianson (PSD Deputy Director) 4:00 – 4:20 PM NASA Earth Science Overview Dr. Karen St. Germain 4:20 – 4:40 PM NASA Astrophysics: Looking Forward Dr. Mark Clampin 4:40 – 5:00 PM Helio Big Year Wind-Down and a Look Ahead Dr. Joseph Westlake 5:00 – 5:20 PM NASA Biological & Physical Sciences Overview Dr. Lisa Carnell 5:20 – 5:40 PM Astrobiology: The Science, The Program, and The Work Dr. Becky McCauley Rench TUESDAY, DECEMBER 10 10:15 – 10:30 AM Integration of Vantage Points and Approaches by NASA Earth Science Division Dr. Jack Kaye 10:30 – 10:45 AM Life after launch: A Snapshot of the First 9 Months of NASA’s PACE Mission Jeremy Werdell 10:45 – 11:00 AM Foundation Model in Earth Science: Towards Earth Science to Action Tsengdar Lee 11:15 – 11:30 AM NASA’s Office of the Chief Science Data Officer: Supporting a More Equitable, Impactful, and Efficient Scientific Future Kevin Murphy 11:30- 11:45 AM 30 Years of GLOBE: Advancing Earth System Science, Education, and Public Engagement Amy P. Chen 11:45 – 12:00 PM 2024 NASA Visualization Highlights Mark Subbarao 12:30 – 1:45 PM Grand Prize Winners of 2024 AGU Michael H. Freilich Student Visualization Competition Introductory Remarks from AGU & NASA Steve Platnick Thawing History: Retracing Arctic Expeditions in a Warming World Dylan Wootton Monitoring the Weather in Near Real-Time with Open-Access GOES-R Data Jorge Bravo Mitigating Agricultural Runoff with Tangible Landscape Caitlin Haedrich Earth Observation for Disaster Response: Highlighting Applied Products Patrick Kerwin 2:15 – 2:30 PM Water Science to Water Action John Bolten 2:30 – 2:45 PM Analyzing Space Weather at Mars Gina DiBraccio, Jamie Favors 2:45 – 3:00 PM NASA Airborne in the Arctic: An overview of the NASA Arctic Radiation-Cloud-aerosol-Surface-Interaction eXperiment (ARCSIX) Patrick Taylor 3:00 – 3:15 PM Science Activation and the 2023-24 Eclipses Lin Chambers 3:30 – 3:45 PM Tracking Extreme Fires in 2024 Douglas Morton 3:45 – 4:00 PM BioSCape: A Biodiversity Airborne Campaign in South Africa Anabelle Cardoso 4:00 – 4:15 PM U.S. Greenhouse Gas Center Lesley Ott 4:15 – 4:30 PM Data Governance and Space Data Ethics in the Era of AI: NASA Acres at the Leading Edge Alyssa Whitcraft, Todd Janzen 5:00 – 5:15 PM Global GEOS Forecasts of Severe Storms and Tornado Activity Across the United States William Putman 5:15 – 5:30 PM NASA Earth Action Empowering Health and Air Quality Communities John Haynes 5:30 – 5:45 PM The Habitable Worlds Observatory Megan Ansdell WEDNESDAY, DECEMBER 11 10:15 – 10:30 AM From Orbit to Earth: Exploring the LEO Science Digest Jeremy Goldstein 10:30 – 10:45 AM Hello, Hello Again: How Lunar Samples Introduced Us to the Solar System, and What We’ll Learn When We Meet Again Dr. Barbara Cohen 10:45 – 11:00 AM Planetary Defenders: How NASA Safeguards Earth from Asteroids Kelly Fast 11:15 – 11:30 AM Bringing Science Data Home Philip Baldwin 11:30 – 11:45 AM Fast-Tracking Earth System Science into Action: The Vision for the Integrated Earth System Observatory Cecile Rousseaux 11:45 – 12:00 PM A Decade of Monitoring Atmospheric CO2 from Space Junjie Liu 12:30 – 1:45 PM Grand Prize Winners of 2024 AGU Michael H. Freilich Student Visualization Competition Introductory Remarks from AGU & NASA Dr. Jack Kaye Photogrammetric Modeling and Remote Identification of Small Lava Tubes in the 1961 Lava Flow at Askja, Iceland Mya Thomas Monitoring Air Quality Using MODIS and CALIPSO Data in Conjunction with Socioeconomic Data to Map Air Pollution in Hampton Roads Virginia Marilee Karinshak Visualizing UAV-Based Detection and Severity Assessment of Brown Spot Needle Blight in Pine Forests Swati Singh Different Temperatures of a Solar Flare Crisel Suarez 2:15 – 2:30 PM Ancient and Modern Sun Gazing: New view of our star as seen by CODEX and upcoming missions MUSE, PUNCH and SunRISE Dr. Nicholeen Viall, Dr. Jeff Newmark 2:30 – 2:45 PM A Stroll Through The Universe of NASA Citizen Science Sarah Kirn 2:45 – 3:00 PM OSIRIS-REx Returned Samples from the Early Solar System Jason Dworkin 3:00 – 3:15 PM To the Moon, Together: Ensuring Mission Success in an Increasingly Busy Lunar Environment Therese Jones 3:30 – 3:45 PM What Goes Around Comes Around – Repeating Patterns in Global Precipitation George Huffman 3:45 – 4:00 PM Parker Solar Probe: Thriving, Surviving, and Exploring our Sun to Make Paradigm Shifting Discoveries Nour Rawafi, Betsy Congdon 4:00 – 4:15 PM Europa Clipper Curt Niebur 4:15 – 4:30 PM Roman Space Telescope and Exoplanets Rob Zellem 5:00 – 5:15 PM Mars Exploration: Present and Future Dr. Lindsay Hays 5:15 – 5:30 PM Superstorm: The surprise entry into the Helio Big Year celebration of the Sun, and possibly a foreshadowing of what’s to come during Solar Maximum Kelly Korrek 5:30 – 5:45 PM From EARTHDATA to Action: Enabling Earth Science Data to Serve Society Katie Baynes THURSDAY, DECEMBER 12 10:15 – 10:30 AM Geospace Dynamics Constellation: The Space Weather Rosetta Stone Katherine Garcia-Sage, Doug Rowland 10:30 – 10:45 AM Future of Magnetosphere to Ionosphere Coupling Lara Waldrop, Skyler Kleinschmidt, Sam Yee 10:45 – 11:00 AM NASA ESTO: Launchpad for Novel Earth Science Technologies Michael Seablom 11:00 – 11:15 AM From Leaf to Orbit: NASA Research Reveals the Changing Northern Landscape Dr. Liz Hoy 11:30 – 11:45 PM OpenET: Filling a Critical Data Gap in Water Management Forrest Melton 11:45 – 12:00 PM Dragonfly: Flights of Exploration Across Saturn’s Moon Titan, an Organic Ocean World Zibi Turtle 12:00 – 12:15 PM Venus and DAVINCI Natasha Johnson 12:15 – 12:30 PM IMAP: The Modern-Day Celestial Cartographer Prof. David J. McComas Share Details Last Updated Dec 04, 2024 Related Terms Earth Science View the full article
-
4 min read Expanded AI Model with Global Data Enhances Earth Science Applications On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.” AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks. Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires. One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning. Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts. Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.” The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society. For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science. Share Details Last Updated Dec 04, 2024 Related Terms Earth Science & Research Explore More 9 min read Towards Autonomous Surface Missions on Ocean Worlds Article 23 hours ago 5 min read NASA-Led Team Links Comet Water to Earth’s Oceans Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets… Article 23 hours ago 1 min read Coming Spring 2025: Planetary Defenders Documentary ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders… Article 23 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article