Jump to content

LIVE launch of the SpaceX CRS-26 cargo Dragon resupply craft to the International Space Station


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Olympics on the International Space Station
    • By Space Force
      Col. Nick Hague and his crewmates from the NASA SpaceX Crew-9 mission met with Airmen and Guardians to speak with and give thanks to representatives of military units who make manned spaceflight missions possible.

      View the full article
    • By NASA
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, AlabamaSierra Space An element of a NASA-funded commercial space station, Orbital Reef, under development by Blue Origin and Sierra Space, recently completed a full-scale ultimate burst pressure test as part of the agency’s efforts for new destinations in low Earth orbit.
      NASA, Sierra Space, and ILC Dover teams conducting a full-scale ultimate burst pressure test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Video Credits: Sierra Space This milestone is part of a NASA Space Act Agreement awarded to Blue Origin in 2021. Orbital Reef includes elements provided by Sierra Space, including the LIFE (Large Integrated Flexible Environment) habitat structure.
      A close-up view of Sierra Space’s LIFE habitat, which is fabricated from high-strength webbings and fabric, after the pressurization to failure experienced during a burst test.Sierra Space Teams conducted the burst test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The inflatable habitat is fabricated from high-strength webbings and fabric that form a solid structure once pressurized. The multiple layers of soft goods materials that make up the shell are compactly stowed in a payload fairing and inflated when ready for use, enabling the habitat to launch on a single rocket.
      A close-up view of a detached blanking plate from the Sierra Space’s LIFE habitat structure following its full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The plate is used to test the concept of a habitat window.Sierra Space “This is an exciting test by Sierra Space for Orbital Reef, showing industry’s commitment and capability to develop innovative technologies and solutions for future commercial destinations,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Every successful development milestone by our partners is one more step to achieving our goal of enabling commercial low Earth orbit destinations and expanding the low Earth orbit marketplace.”
      Dr. Tom Marshburn, Sierra Space chief medical officer, speaks with members of the Sierra Space team following the burst test.Sierra Space The pressurization to failure during the test demonstrated the habitat’s capabilities and provided the companies with critical data supporting NASA’s inflatable softgoods certification guidelines, which recommend a progression of tests to evaluate these materials in relevant operational environments and understand the failure modes.
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama.Sierra Space Demonstrating the habitat’s ability to meet the recommended factor of safety through full-scale ultimate burst pressure testing is one of the primary structural requirements on a soft goods article, such as Sierra Space’s LIFE habitat, seeking flight certification.

      Prior to this recent test, Sierra Space conducted its first full-scale ultimate burst pressure test on the LIFE habitat at Marshall in December 2023. Additionally, Sierra Space previously completed subscale tests, first at NASA’s Johnson Space Center in Houston and then at Marshall as part of ongoing development and testing of inflatable habitation architecture.
      Sierra Space’s LIFE habitat on the test stand at NASA’s Marshall Space Flight Center ahead of a burst test. The LIFE habitat will be part of Blue Origin’s commercial destination, Orbital Reef.Sierra Space NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.

      NASA’s goal is to achieve a strong economy in low Earth orbit where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space
      Keep Exploring Discover More Topics From NASA
      Commercial Destinations in Low Earth Orbit
      Low Earth Orbit Economy Latest News
      Humans In Space
      Marshall Space Flight Center
      View the full article
    • By NASA
      11 Min Read Former Space Communications, Navigation Interns Pioneer NASA’s Future
      Interns from the SCaN Internship Project visiting NASA's Wallops Flight Facility in Wallops Island, Virginia. Credits: NASA For over a decade, NASA’s SCaN (Space Communications and Navigation) Internship Project alumni have played important roles in extending the agency’s long-term vision for exploration. For National Intern Day on Thursday, July 25, previous program interns reflect on their journeys to and through NASA and offer advice for current and future interns. 
      Every summer interns join NASA’s SIP (SCaN Internship Project) program to advance the capabilities of the agency’s Deep and Near Space Networks that enable missions to communicate and navigate. 
      The SIP intern program develops the future workforce that will imagine, maintain, and operate the next generation of communications and navigation systems. In addition to interns’ main projects, which can range from network engineering and orbital mathematics to mission awareness campaigns and graphic design, SIP interns participate in programming that enhances their professional development and networking skills. 
      Justin Long
      Justin Long was a SIP intern in 2017 while earning his degree in electrical engineering.
      Before he applied for an internship, Long was set on working in space communications at NASA and looked out for opportunities to deepen his aerospace experience. Long attributes his work at the University of Alaska Fairbanks’ CubeSat lab for his acceptance into the intern program, as well as his university’s unique partnership with NASA.
      “On my morning walks, I would pass by several of the Near Space Network ground stations operated by the Alaska Satellite Facility at the University of Alaska Fairbanks,” Long said. “At the time I was working on a ground station for our CubeSat program, so I went to intern.nasa.gov and searched anything space communications-related.”
      Long was selected for a project at NASA’s Wallops Flight Facility in Virginia focused on ground station improvements to the agency’s Near Space Network. In addition to looking at hardware upgrades for NASA-owned ground stations, Long also explored opportunities to expand the network by integrating commercial and university assets.
      Justin Long, 2017 SCaN Internship Project (SIP) Intern Courtesy of Justin Long Now, Long works as a telecommunications engineer at NASA Goddard, designing antennas and communication systems for spacecraft. His experience with ground stations at NASA Wallops influences his work on spacecraft today.
      “Working on communications systems means figuring out what the end-to-end system for a spacecraft looks like, from the radio to the antenna,” Long said. “The internship prepared me to answer questions about how we’re transmitting the data, how fast we can transmit it, and how much data we can receive in one day.”
      The major difference between his current role and his intern project is that the hardware he is developing will fly on a spacecraft rather than remain on Earth as part of a ground station antenna. Long will also test his hardware to ensure it functions as expected in orbit. The reward for this rigorous testing is the knowledge that the communications hardware he designed is a critical part of ensuring the spacecraft’s successful operation.
      “There is nothing more exciting than working hands-on with a spacecraft,” Long said. “Getting to see the hardware integrated onto the spacecraft — watching the whole thing come together — is my favorite part of the job.”
      While Long’s internship allowed him to come into his current position with a broader knowledge base than other engineers at his level of experience, he stresses that the networking opportunities he had with SIP were more important than the intern project itself.
      “Even if you have an internship that’s not directly in your field of expertise, the opportunity to network with NASA professionals and meet different groups can have impact on your career,” Long said. “I’m still in contact with people I met as an intern.”
      Thomas Montano
      Thomas Montano was completing his bachelor’s degree in electrical engineering during his SIP internships in 2019 and 2020. In his current role as an electrical engineer in NASA’s Search and Rescue office at Goddard, Montano supports human spaceflight recovery efforts as well as the development of a lunar search and rescue system.
      Thomas Montano during Artemis II Underway Recovery Test 10.NASA Montano was initially interested in digital signal processing and communication systems, so he decided to apply for a SCaN internship.
      “It wasn’t really a contest between NASA and other internship programs,” Montano said. “I got to work on cool projects. I got to work with cool people. Goddard is just a place that makes you want to do better and learn things.”
      Montano’s first internship was rewriting a software tool for running link budgets, a log of signal gains and losses in a radio communications system. In his second internship, Montano developed a virtual model of the physical transmission environment for lunar communications systems that could combine with the link budget tool to create an end-to-end communication channel simulation.
      Both tools continue to be used at the agency today, though Montano’s current position has shifted his focus to the special realities of human spaceflight. Now, Montano is helping NASA test location beacons for the Artemis II astronauts. He describes meeting the Artemis crew while practicing capsule recovery on a U.S. Navy ship as an exciting and sobering reminder of the importance of his work.
      “Nothing can top putting boots on the ground,” Montano said. “Meeting the crew made the work all the more real. My work isn’t hypothetical or theoretical. These are real people going to the Moon. My system cannot fail. The search and rescue system cannot go down. Failure really is not an option.”
      Nothing can top putting boots on the ground. Meeting the Artemis crew mad the work all the more real.
      THomas Montano
      Electrical Engineer at NASA's Goddard Space Flight Center
      Montano advises new interns to explore the center, ask questions, and learn how the agency works. He encourages anyone considering an internship to apply. 
      “The biggest reason that people don’t get NASA internships is because they don’t apply,” he said. “They count themselves out, and that’s nonsense. If you have good qualifications, go submit your résumé.”
      Katrina Lee
      Before becoming the engagement coordinator for NASA’s Commercialization, Innovation, and Synergies (CIS) office at Goddard, Katrina Lee was a communications intern with SIP.
      For her project, Lee wrote promotional materials highlighting NASA’s then-upcoming LCRD (Laser Communications Relay Demonstration), which launched Dec. 7, 2021. The role required her to research the science behind laser communications and understand the role the technology is playing in advancing communications at NASA. The following summer, Lee applied her experience to writing and producing promotional materials for Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) — LCRD’s first in-space user.
      When Lee first joined the program in 2021, she was planning to work in national security. Her internship experience shifted her attention to pursuing a degree in marketing and business. She also joined her student newspaper as a contributing writer.
      “The project I was covering resonated with me. I learned that I was really interested in writing and communications,” said Lee. “I homed in on my interest in public-facing opportunities to share very technical information in a digestible way.”
      Katrina Lee, SCaN Internship Project (SIP) Intern Summer 2021 and 2022.Courtesy of Katrina Lee In her current role, Lee applies the skills she developed as an intern to promote the Near Space Network’s commercialization opportunities. In addition to writing promotional and informational material, Lee manages event logistics, plans and guides center tours for the public and potential partners, attends conferences, and generates ideas for promoting the CIS office.
      Lee’s work gives her special insight into the continuing development of the Near Space Network.
      “I get to see the future of space exploration in real time,” Lee said. “There’s a greater emphasis on collaboration than we’ve seen in the past, and that collaboration is going to help space communications capabilities go further than ever before.”
      When Lee reflects on what aspects of her internship were most important, she returns to the value of her work and her mentor-mentee relationship.
      “I felt challenged here,” Lee said. “It was an opportunity to build confidence and learn from your mistakes beside someone who wants you to succeed. It really helped me grow as a professional.”
      Lee advises new interns and students considering an internship to remember that mistakes are a valuable part of the experience. “No one at NASA expects you to know everything right away,” Lee said. “They recognize that you’re an intern and you are here to learn. This is a place where you can learn something new every day.”
      Unsh Rawal
      Unsh Rawal joined SIP in 2022 as a rising high school senior. He came to the program with a passion for robotics and a desire to expand his interests and try new things.
      Rawal’s project contributed to the development of an interface that allows students to control robots over local and remote wireless connections. The interface is part of an educational activity for Amateur Radio on the International Space Station (ARISS) exploring telerobotics, or the distant remote control of a robot.
      Unsh Rawal, SCaN Internship Project (SIP) Intern Summer 2022.Courtesy of Unsh Rawal Rawal continued to develop his project with ARISS beyond his internship. He spent the past winter porting the activity’s code to a Raspberry Pi, a palm-sized minicomputer, while broadening its functionality. His work is key to ARISS’s efforts to distribute accessible, interactive educational tools.
      Rawal hopes to return to the intern program to continue his NASA project alongside his educational pursuits. While Rawal came to the intern program planning to pursue a degree in robotics, his project ignited his passion for a new field. “I learned a lot about networking, gained UI and API experience, learned about sockets,” he said. “I learned I really enjoy computer science.”
      When asked to share his advice with interns new to the program, Rawal recommends scheduling regular meetings with your project mentor.
      “Having consistent meetings with the people supervising the project helps you stay on track and better understand the project requirements,” Rawal said. “They’re an opportunity to learn new things from someone willing to give you one-on-one guidance.”
      Lindsay White
      Lindsay White was a SIP intern in 2018 and 2019 before joining NASA’s Pathways program in 2020. She completed her internship while earning her master’s degree in electrical engineering, specifically applied electromagnetics.
      During her SIP internship, White programmed software-defined radios, a communication system where computer software is used to replace physical radio hardware like modulators and amplifiers, to create test benches for the development of novel signals. That internship evolved into learning more about Field Programmable Gate Arrays (FPGAs) in her second summer, a customizable hardware that can be reconfigured into different digital circuits. White then applied her FPGA knowledge to laser communications missions.
      White’s first summer in the internship program confirmed that she wanted to work for NASA. “The environment is so welcoming and supportive,” she said. “People want to answer your questions and help you. I enjoyed the work I was doing and learned a ton.”
      White sees a direct relationship between the work she completed as an intern and her current role as a signal analysis engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The work I do now is an evolution of all the work I did as an intern. I’m applying the skills I gained by working in laser communications to my current work in radio communications.”
      Lindsay White, SCaN Internship Project (SIP) Intern in 2018 and 2019.NASA White works on the digital signal processing inside the Mars Sample Return mission’s radio, as well as a research and development project called Universal Space Transponder Lite, a flexible, modular radio with a broad series of potential applications. Sometimes even she is surprised by the importance of her role to NASA’s commitment to space exploration.
      “The impact is astonishing,” White said. “My work is essential to a Mars mission. Something I’m touching is going to end up on Mars.”
      The impact is astonishing. My work is essential to a Mars mission. Something I'm touching is going to end up on Mars.
      Lindsay White
      Signal Analysis Engineer at NASA's Jet Propulsion Laboratory
      White advises incoming interns to use their time in the program to develop their understanding of the agency’s personnel and projects. “SIP provides an opportunity to talk with people you otherwise wouldn’t meet,” said White. “Learning the different things NASA is working on can be even more important than hitting stretch goals on your technical project.”
      White’s advice for students considering a SIP internship is straightforward: “Do it! Even if you don’t have a technical background, there’s a spot for you at NASA.”
      By Korine Powers
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASASCaN @NASASCaN@NearSpaceNet More about the SCaN Internship Program, including how to apply Explore More
      6 min read Meet the NASA Interns Advancing Space Communications & Navigation
      NASA celebrates National Intern Day and all the interns who are shaping the future of…
      Article 12 months ago 6 min read From Quantum Optics to Increased Risk Posture: Student Innovations at NASA
      Article 6 years ago 6 min read NASA Celebrates World Quantum Day
      On today’s World Quantum Day, NASA celebrates its on-going quantum research being done across the…
      Article 1 year ago Share
      Details
      Last Updated Jul 25, 2024 EditorKatherine SchauerContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Space Communications & Navigation Program Communicating and Navigating with Missions Goddard Space Flight Center Space Communications Technology View the full article
    • By NASA
      On July 23, 1999, space shuttle Columbia took to the skies on its 26th trip into space, to deliver its heaviest payload ever – the Chandra X-ray Observatory. The STS-93 crew included Commander Eileen M. Collins, the first woman to command a space shuttle mission, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine “Cady” G. Coleman, Steven A. Hawley, and Michel A. Tognini of the French Space Agency (CNES). On the mission’s first day, they deployed Chandra, the most powerful X-ray telescope. With a planned five-year lifetime, Chandra continues its observations after a quarter century. For the next four days, the astronauts worked on twenty secondary middeck payloads and conducted Earth observations. The successful five-day mission ended with a night landing.

      Left: The STS-93 crew patch. Middle: Official photo of the STS-93 crew of Eileen M. Collins, left, Steven A. Hawley, Jeffrey S. Ashby, Michel A. Tognini of France, and Catherine “Cady” G. Coleman. Right: The patch for the Chandra X-ray Observatory.
      Tognini, selected by CNES in 1985 and a member of NASA’s class of 1995, received the first assignment to STS-93 in November 1997. He previously flew aboard Mir as a cosmonaut researcher, spending 14 days aboard the station in 1992. On March 5, 1998, First Lady Hilary R. Clinton announced Collins’ assignment as the first woman space shuttle commander in a ceremony at the White House together with President William J. “Bill” Clinton. NASA announced the rest of the crew the same day. For Collins, selected in the class of 1990, STS-93 represented her third space mission, having previously served as pilot on STS-63 and STS-84. Ashby, a member of the class of 1994, made his first flight aboard STS-93, while Coleman, selected in 1992, made her second flight, having flown before on STS-73. Hawley made his fifth flight, having previously served as a mission specialist on STS-41D, STS-61C, STS-31, and STS-82. He has the distinction of making the last flight by any member of his class of 1978, more than 21 years after his selection.

      Left: Schematic of the Chandra X-ray Observatory showing its major components. Right: Diagram of the trajectory Chandra took to achieve its final operational 64-hour orbit around the Earth – IUS refers to the two burns of the Inertial Upper Stage and IPS to the five burns of Chandra’s Integral Propulsion System.
      Because the Earth’s atmosphere absorbs X-ray radiation emitted by cosmic sources, scientists first came up with the idea of a space-based X-ray telescope in the 1970s. NASA launched its first X-ray telescope called Einstein in 1978, but scientists needed a more powerful instrument, and they proposed the Advanced X-ray Astrophysics Facility (AXAF). After a major redesign of the telescope in 1992, in 1998 NASA renamed AXAF the Chandra X-ray Observatory after Indian American Nobel Prize-winning theoretical physicist Subrahmanyan Chandrasekhar who made significant contributions to our knowledge about stars, stellar evolution, and black holes. Chandra, the third of NASA’s four Great Observatories, can detect X-ray sources 100 times fainter than any previous X-ray telescope. At 50,162 pounds including the Inertial Upper Stage (IUS) it used to achieve its operational orbit, Chandra remains the heaviest payload ever launched by the space shuttle, and at 57 feet long, it took up nearly the entire length of the payload bay. It has far exceeded its expected five-year lifetime, still returning valuable science after 25 years.

      Left: The STS-93 crew during the Terminal Countdown Demonstration Test. Middle: The Chandra X-ray Observatory loaded into Columbia’s payload bay. Right: Liftoff of Columbia on the STS-93 mission carrying the Chandra X-ray Observatory and the first woman shuttle commander.
      Columbia returned to KSC following its previous flight, the STS-90 Neurolab mission, in May 1998. Workers in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter and removed the previous payload. With all four orbiters at KSC at the same time, workers temporarily stowed Columbia in the Vehicle Assembly Building (VAB), returning it to the OPF for final preflight processing on April 15, 1999. Rollover of Columbia from the OPF to the VAB took place on June 2, where workers mated it with an external tank and two solid rocket boosters. Following integrated testing, the stack rolled out to Launch Pad 39B on June 7. The crew participated in the Terminal Countdown Demonstration Test on June 24. Workers placed Chandra in Columbia’s payload bay three days later.
      On July 23, 1994, Columbia thundered into the night sky from KSC’s Launch Pad 39B to begin the STS-93 mission. Two previous launch attempts on July 20 and 22 resulted in scrubs due to a faulty sensor and bad weather, respectively. As Columbia rose into the sky, for the first time in shuttle history a woman sat in the commander’s seat. Far below, problems arose that could have led to a catastrophic abort scenario. During the engine ignition sequence, a gold pin in Columbia’s right engine came loose, ejected with great force by the rapid flow of hot gases, and struck the engine’s nozzle, punching holes in three of its hydrogen cooling tubes. Although small, the hydrogen leak caused the engine’s controller to increase the flow of oxidizer, making the engine run hotter than normal. Meanwhile, a short-circuit knocked out the center engine’s digital control unit (DCU) and the right engine’s backup DCU. Both engines continued powered flight without a redundant DCU, with a failure in either causing a catastrophic abort. Although this did not occur, the higher than expected oxidizer usage led to main engine cutoff occurring 1.5 seconds early, leaving Columbia in a lower than planned orbit. The shuttle’s Orbiter Maneuvering System engines made up for the deficit. The harrowing events of the powered flight prompted Ascent Flight Director John P. Shannon to comment, “Yikes! We don’t need any more of these.”

      Left: Eileen M. Collins, the first woman shuttle commander, shortly after reaching orbit. Right: First time space flyer STS-93 Pilot Jeffrey S. Ashby, shortly after reaching space.
      After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts prepared for the mission’s primary objective, deployment of Chandra, and also began activating some of the middeck experiments.

      Left: The Chandra X-ray Observatory in Columbia’s payload bay shortly after reaching orbit. Middle: Chandra raised to the deployment angle. Right: Chandra departs Columbia.
      Coleman had prime responsibility for deploying Chandra. After initial checkout of the telescope by ground teams, the astronauts tilted Chandra and the IUS to an angle of 29 degrees. After additional checks, they tilted it up to the release angle of 58 degrees. A little over seven hours after launch, Coleman deployed the Chandra/IUS stack. Collins and Ashby flew Columbia to a safe distance, and about an hour after deployment, the IUS fired its first stage engine for about two minutes, followed by a two-minute burn of the second stage. This placed Chandra in a temporary elliptical Earth orbit with a high point of 37,200 miles. After separation of the IUS, Chandra used its own propulsion system over the next 10 days to raise its altitude to 6,214 miles by 86,992 miles, its operational orbit, circling the Earth every 64 hours. For the next four days of the mission, the astronauts operated about 20 middeck experiments, including a technology demonstration of a treadmill vibration isolation system planned for the International Space Station.

      Left: Michel A. Tognini works with the Commercial Generic Bioprocessing Apparatus. Middle: Jeffrey S. Ashby checks the status of the Space Tissue Lab experiment. Right: Catherine G. Coleman harvests plants from the Plant Growth in Microgravity experiment.

      Left: Catherine G. Coleman, left, and Michel A. Tognini pose near the Lightweight Flexible Solar Array Hinge technology demonstration experiment. Middle: Stephen A. Hawley checks the status of the Micro Electromechanical Systems experiment. Right: Tognini places samples of the Biological Research in Canisters experiment into a gaseous nitrogen freezer.

      Left: Eileen M. Collins runs on the Treadmill Vibration Isolation System. Middle: Stephen A. Hawley, left, and Michel A. Tognini operate the Southwest Ultraviolet Imaging System instrument. Right: Inflight photograph of the STS-93 crew.

      A selection of the STS-93 crew Earth observation photographs. Left: Laguna Verde in Chile. Middle left: Sunrise over the Mozambique Channel. Middle right: Darling River and lakes in Australia. Right: The Society Islands of Bora Bora, Tahaa, and Raiatea.

      Left: Eileen M. Collins prepares to bring Columbia home. Middle: Columbia streaks through the skies over NASA’s Johnson Space Center in Houston during reentry. Right: Collins guides Columbia to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.

      Left: Three holes visible in the hydrogen cooling tubes of Columbia’s right main engine, seen after landing. Middle: The STS-93 crew pose in front of Columbia on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: Eileen M. Collins addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-93 crew, as Vice President Albert “Al” A. Gore and other dignitaries listen.
      At the end of five days, the astronauts finished the last of the experiments and prepared for the return to Earth. On July 28, they closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Collins piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing the 12th night landing of the shuttle program. The crew had flown 80 orbits around the Earth in 4 days, 22 hours, and 50 minutes. Columbia wouldn’t fly again until March 2002, the STS-109 Hubble Servicing Mission-3B. A postflight investigation into the cause of the short on ascent that led to two DCUs failing revealed a wire with frayed insulation, likely caused by workers inadvertently stepping on it, that rubbed against a burred screw head that had likely been there since Columbia’s manufacture. The incident resulted in significant changes to ground processes during shuttle inspections and repairs. With regard to the pin ejected during engine ignition that damaged the hydrogen cooling tubes, investigators found that those pins never passed any acceptance testing. Since STS-93 marked the last flight of that generation of main engines, newer engines incorporated a different configuration, requiring no design or other changes.
      Enjoy the crew narrate a video about the STS-93 mission. Read Hawley’s recollections of the STS-93 mission in his oral history with the JSC History Office.
      Explore More
      11 min read 45 Years Ago: Space Shuttle Enterprise Completes Launch Pad Checkout
      Article 9 hours ago 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Article 2 days ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
      Article 1 week ago
      View the full article
  • Check out these Videos

×
×
  • Create New...