Jump to content

25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory


Recommended Posts

  • Publishers
Posted

On July 23, 1999, space shuttle Columbia took to the skies on its 26th trip into space, to deliver its heaviest payload ever – the Chandra X-ray Observatory. The STS-93 crew included Commander Eileen M. Collins, the first woman to command a space shuttle mission, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine “Cady” G. Coleman, Steven A. Hawley, and Michel A. Tognini of the French Space Agency (CNES). On the mission’s first day, they deployed Chandra, the most powerful X-ray telescope. With a planned five-year lifetime, Chandra continues its observations after a quarter century. For the next four days, the astronauts worked on twenty secondary middeck payloads and conducted Earth observations. The successful five-day mission ended with a night landing.

The STS-93 crew patch Official photo of the STS-93 crew of Eileen M. Collins, left, Steven A. Hawley, Jeffrey S. Ashby, Michel A. Tognini of France, and Catherine “Cady” G. Coleman The patch for the Chandra X-ray Observatory
Left: The STS-93 crew patch. Middle: Official photo of the STS-93 crew of Eileen M. Collins, left, Steven A. Hawley, Jeffrey S. Ashby, Michel A. Tognini of France, and Catherine “Cady” G. Coleman. Right: The patch for the Chandra X-ray Observatory.

Tognini, selected by CNES in 1985 and a member of NASA’s class of 1995, received the first assignment to STS-93 in November 1997. He previously flew aboard Mir as a cosmonaut researcher, spending 14 days aboard the station in 1992. On March 5, 1998, First Lady Hilary R. Clinton announced Collins’ assignment as the first woman space shuttle commander in a ceremony at the White House together with President William J. “Bill” Clinton. NASA announced the rest of the crew the same day. For Collins, selected in the class of 1990, STS-93 represented her third space mission, having previously served as pilot on STS-63 and STS-84. Ashby, a member of the class of 1994, made his first flight aboard STS-93, while Coleman, selected in 1992, made her second flight, having flown before on STS-73. Hawley made his fifth flight, having previously served as a mission specialist on STS-41D, STS-61C, STS-31, and STS-82. He has the distinction of making the last flight by any member of his class of 1978, more than 21 years after his selection.

Schematic of the Chandra X-ray Observatory showing its major components Diagram of the trajectory Chandra took to achieve its final operational 64-hour orbit around the Earth – IUS refers to the two burns of the Inertial Upper Stage and IPS to the five burns of Chandra’s Integral Propulsion System
Left: Schematic of the Chandra X-ray Observatory showing its major components. Right: Diagram of the trajectory Chandra took to achieve its final operational 64-hour orbit around the Earth – IUS refers to the two burns of the Inertial Upper Stage and IPS to the five burns of Chandra’s Integral Propulsion System.

Because the Earth’s atmosphere absorbs X-ray radiation emitted by cosmic sources, scientists first came up with the idea of a space-based X-ray telescope in the 1970s. NASA launched its first X-ray telescope called Einstein in 1978, but scientists needed a more powerful instrument, and they proposed the Advanced X-ray Astrophysics Facility (AXAF). After a major redesign of the telescope in 1992, in 1998 NASA renamed AXAF the Chandra X-ray Observatory after Indian American Nobel Prize-winning theoretical physicist Subrahmanyan Chandrasekhar who made significant contributions to our knowledge about stars, stellar evolution, and black holes. Chandra, the third of NASA’s four Great Observatories, can detect X-ray sources 100 times fainter than any previous X-ray telescope. At 50,162 pounds including the Inertial Upper Stage (IUS) it used to achieve its operational orbit, Chandra remains the heaviest payload ever launched by the space shuttle, and at 57 feet long, it took up nearly the entire length of the payload bay. It has far exceeded its expected five-year lifetime, still returning valuable science after 25 years.

The STS-93 crew during the Terminal Countdown Demonstration Test The Chandra X-ray Observatory loaded into Columbia’s payload bay Liftoff of Columbia on the STS-93 mission carrying the Chandra X-ray Observatory and the first woman shuttle commander
Left: The STS-93 crew during the Terminal Countdown Demonstration Test. Middle: The Chandra X-ray Observatory loaded into Columbia’s payload bay. Right: Liftoff of Columbia on the STS-93 mission carrying the Chandra X-ray Observatory and the first woman shuttle commander.

Columbia returned to KSC following its previous flight, the STS-90 Neurolab mission, in May 1998. Workers in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter and removed the previous payload. With all four orbiters at KSC at the same time, workers temporarily stowed Columbia in the Vehicle Assembly Building (VAB), returning it to the OPF for final preflight processing on April 15, 1999. Rollover of Columbia from the OPF to the VAB took place on June 2, where workers mated it with an external tank and two solid rocket boosters. Following integrated testing, the stack rolled out to Launch Pad 39B on June 7. The crew participated in the Terminal Countdown Demonstration Test on June 24. Workers placed Chandra in Columbia’s payload bay three days later.

On July 23, 1994, Columbia thundered into the night sky from KSC’s Launch Pad 39B to begin the STS-93 mission. Two previous launch attempts on July 20 and 22 resulted in scrubs due to a faulty sensor and bad weather, respectively. As Columbia rose into the sky, for the first time in shuttle history a woman sat in the commander’s seat. Far below, problems arose that could have led to a catastrophic abort scenario. During the engine ignition sequence, a gold pin in Columbia’s right engine came loose, ejected with great force by the rapid flow of hot gases, and struck the engine’s nozzle, punching holes in three of its hydrogen cooling tubes. Although small, the hydrogen leak caused the engine’s controller to increase the flow of oxidizer, making the engine run hotter than normal. Meanwhile, a short-circuit knocked out the center engine’s digital control unit (DCU) and the right engine’s backup DCU. Both engines continued powered flight without a redundant DCU, with a failure in either causing a catastrophic abort. Although this did not occur, the higher than expected oxidizer usage led to main engine cutoff occurring 1.5 seconds early, leaving Columbia in a lower than planned orbit. The shuttle’s Orbiter Maneuvering System engines made up for the deficit. The harrowing events of the powered flight prompted Ascent Flight Director John P. Shannon to comment, “Yikes! We don’t need any more of these.”

Eileen M. Collins, the first woman shuttle commander, shortly after reaching orbit First time space flyer STS-93 Pilot Jeffrey S. Ashby, shortly after reaching space
Left: Eileen M. Collins, the first woman shuttle commander, shortly after reaching orbit. Right: First time space flyer STS-93 Pilot Jeffrey S. Ashby, shortly after reaching space.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts prepared for the mission’s primary objective, deployment of Chandra, and also began activating some of the middeck experiments.

The Chandra X-ray Observatory in Columbia’s payload bay shortly after reaching orbit Chandra raised to the deployment angle Chandra departs Columbia
Left: The Chandra X-ray Observatory in Columbia’s payload bay shortly after reaching orbit. Middle: Chandra raised to the deployment angle. Right: Chandra departs Columbia.

Coleman had prime responsibility for deploying Chandra. After initial checkout of the telescope by ground teams, the astronauts tilted Chandra and the IUS to an angle of 29 degrees. After additional checks, they tilted it up to the release angle of 58 degrees. A little over seven hours after launch, Coleman deployed the Chandra/IUS stack. Collins and Ashby flew Columbia to a safe distance, and about an hour after deployment, the IUS fired its first stage engine for about two minutes, followed by a two-minute burn of the second stage. This placed Chandra in a temporary elliptical Earth orbit with a high point of 37,200 miles. After separation of the IUS, Chandra used its own propulsion system over the next 10 days to raise its altitude to 6,214 miles by 86,992 miles, its operational orbit, circling the Earth every 64 hours. For the next four days of the mission, the astronauts operated about 20 middeck experiments, including a technology demonstration of a treadmill vibration isolation system planned for the International Space Station.

Michel A. Tognini works with the Commercial Generic Bioprocessing Apparatus Jeffrey S. Ashby checks the status of the Space Tissue Lab experiment Catherine G. Coleman harvests plants from the Plant Growth in Microgravity experiment
Left: Michel A. Tognini works with the Commercial Generic Bioprocessing Apparatus. Middle: Jeffrey S. Ashby checks the status of the Space Tissue Lab experiment. Right: Catherine G. Coleman harvests plants from the Plant Growth in Microgravity experiment.

Catherine G. Coleman, left, and Michel A. Tognini pose near the Lightweight Flexible Solar Array Hinge technology demonstration experiment Stephen A. Hawley checks the status of the Micro Electromechanical Systems experiment Tognini places samples of the Biological Research in Canisters experiment into a gaseous nitrogen freezer
Left: Catherine G. Coleman, left, and Michel A. Tognini pose near the Lightweight Flexible Solar Array Hinge technology demonstration experiment. Middle: Stephen A. Hawley checks the status of the Micro Electromechanical Systems experiment. Right: Tognini places samples of the Biological Research in Canisters experiment into a gaseous nitrogen freezer.

Eileen M. Collins runs on the Treadmill Vibration Isolation System Stephen A. Hawley, left, and Michel A. Tognini operate the Southwest Ultraviolet Imaging System instrument Inflight photograph of the STS-93 crew
Left: Eileen M. Collins runs on the Treadmill Vibration Isolation System. Middle: Stephen A. Hawley, left, and Michel A. Tognini operate the Southwest Ultraviolet Imaging System instrument. Right: Inflight photograph of the STS-93 crew.

Laguna Verde in Chile Sunrise over the Mozambique Channel Darling River and lakes in Australia The Society Islands of Bora Bora, Tahaa, and Raiatea
A selection of the STS-93 crew Earth observation photographs. Left: Laguna Verde in Chile. Middle left: Sunrise over the Mozambique Channel. Middle right: Darling River and lakes in Australia. Right: The Society Islands of Bora Bora, Tahaa, and Raiatea.

Eileen M. Collins prepares to bring Columbia home Columbia streaks through the skies over NASA’s Johnson Space Center in Houston during reentry Collins guides Columbia to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida
Left: Eileen M. Collins prepares to bring Columbia home. Middle: Columbia streaks through the skies over NASA’s Johnson Space Center in Houston during reentry. Right: Collins guides Columbia to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.

Three holes visible in the hydrogen cooling tubes of Columbia’s right main engine, seen after landing The STS-93 crew pose in front of Columbia on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida Eileen M. Collins addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-93 crew, as Vice President Albert “Al” A. Gore and other dignitaries listen
Left: Three holes visible in the hydrogen cooling tubes of Columbia’s right main engine, seen after landing. Middle: The STS-93 crew pose in front of Columbia on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: Eileen M. Collins addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-93 crew, as Vice President Albert “Al” A. Gore and other dignitaries listen.

At the end of five days, the astronauts finished the last of the experiments and prepared for the return to Earth. On July 28, they closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Collins piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing the 12th night landing of the shuttle program. The crew had flown 80 orbits around the Earth in 4 days, 22 hours, and 50 minutes. Columbia wouldn’t fly again until March 2002, the STS-109 Hubble Servicing Mission-3B. A postflight investigation into the cause of the short on ascent that led to two DCUs failing revealed a wire with frayed insulation, likely caused by workers inadvertently stepping on it, that rubbed against a burred screw head that had likely been there since Columbia’s manufacture. The incident resulted in significant changes to ground processes during shuttle inspections and repairs. With regard to the pin ejected during engine ignition that damaged the hydrogen cooling tubes, investigators found that those pins never passed any acceptance testing. Since STS-93 marked the last flight of that generation of main engines, newer engines incorporated a different configuration, requiring no design or other changes.

Enjoy the crew narrate a video about the STS-93 mission. Read Hawley’s recollections of the STS-93 mission in his oral history with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde “At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.
      The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
      The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde “Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.
      This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.
      Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Dark Matter Goddard Space Flight Center Goddard Technology NASA Centers & Facilities Technology The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
      Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 4 months ago View the full article
    • By NASA
      As Hubble marks three and a half decades of scientific breakthroughs and technical resilience, the “Hubble at 35 Years” symposium offers a platform to reflect on the mission’s historical, operational, and scientific legacy. Hubble’s trajectory—from early challenges to becoming a symbol of American scientific ingenuity—presents valuable lessons in innovation, collaboration, and crisis response. Bringing together scientists, engineers, and historians at NASA Headquarters ensures that this legacy informs current and future mission planning, including operations for the James Webb Space Telescope, Roman Space Telescope, and other next-generation observatories. The symposium not only honors Hubble’s transformative contributions but also reinforces NASA’s commitment to learning from the past to shape a more effective and ambitious future for space science.
      Hubble at 35 Years
      Lessons Learned in Scientific Discovery and NASA Flagship Mission Operations
      October 16–17, 2025
      James Webb Auditorium, NASA HQ, Washington, D.C.
      The giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery’s Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae on April 25, 1990.NASA The story of the Hubble Space Telescope confirms its place as the most transformative and significant astronomical observatory in history. Once called “the eighth wonder of the world” by a former NASA administrator, Hubble’s development since its genesis in the early 1970s and its launch, repair, and ultimate impact since 1990 provide ample opportunity to apply insights from its legacy. Scientists and engineers associated with groundbreaking discoveries have always operated within contexts shaped by forces including the government, private industry, the military, and the public at large. The purpose of this symposium is to explore the insights from Hubble’s past and draw connections that can inform the development of mission work today and for the future.
      Contact the Organizer Keep Exploring Discover More Topics From NASA
      Hubble’s 35th Anniversary
      Universe
      Humans In Space
      NASA History

      View the full article
    • By NASA
      Progress 92 Cargo Ship Launch
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By European Space Agency
      Video: 00:02:30 Two meteorological missions – Meteosat Third Generation Sounder-1 (MTG-S1) and the Copernicus Sentinel-4 mission – have launched on board a SpaceX Falcon 9 from Cape Canaveral in Florida, US.
      Both are world-class Earth observation missions developed with European partners to address scientific and societal challenges.  
      The MTG-S1 satellite will generate a completely new type of data product, especially suited to nowcasting severe weather events, with three-dimensional views of the atmosphere. It is the second in the MTG constellation to be prepared for orbit and is equipped with the first European operational Infrared Sounder instrument.
      Copernicus Sentinel-4 will be the first mission to monitor European air quality from geostationary orbit, providing hourly information that will transform how we predict air pollution across Europe, using its ultraviolet, visible, near-infrared light (UVN) spectrometer.
      View the full article
  • Check out these Videos

×
×
  • Create New...