Jump to content

Making Humans a Multiplanetary Species


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Not only Lyrans but also Dracos, Pleiadians, Martians, Venusians, Agarthans and Nibiran Anunnaki came to Earth. 
      Below is an excerpt from “MARDUK: ANUNNAKI KING OF EARTH” By Sasha Alex Lessin, Ph.D. (Anthropology) & Janet Kira Lessin CEO, Aquarian Radio 

      In Blue Blood, True Blood, Stewart Swerdlow writes that some four billion years ago the Humans of the Lyran System (except Plieadian Atlans) fled then created the Galactic Federation of 110 scattered planets to fight Reptilians from the Draco System. The androgynous Draco Reptilians energize themselves with human flesh and fear hormones. 
      Survivors of the initial Draco attacks rocketed to Mars and a (now extinct) planet called Maldek in the Solaris System and "to Orion, Tau Ceti, Pleiades, Procyon, Antares, Alpha Centauri, Aquarius and dozens of other solar systems." One group of Lyran refugees to the Pleiades, the Atlans, refused to join the Federation and fight the Dracos. Atlans wanted, instead of a federation of refugees, to restore the ancient civilization in Lyrans enjoyed before the Dracos invaded. Atlans, like most Lyrans, were blue-eyed and blond or green-eyed and red-haired. 
      Dracos lived within and controlled a hollowed-out, planet-sized comet with a rock core. They guided to kill the Lyrans who fled to Maldek and Mars. "Gravity on Maldek was denser than Mars" so Maldekians "developed a thicker frame and a more aggressive attitude." The Maldekians threatened the Martians. The Martians got a defense shield machine from the beings of Khoom a planet of Sirius A to defend themselves against the Maldekians and the Draco comet heading for our sun. 
      The Dracos within intended for the comet to end up as Venus, between Mercury and Earth. From Venus they’d control the whole Solaris System. 
      Maldekians tracked the Draco comet heading for them and Mars and convinced the Martians to let them, albeit reluctantly, join them underground on Mars where they secured themselves and the shield device the Khooms gave them. 
      Dracos who rode inside the comet shattered Maldek with a weapon or the comet's gravitational force. Maldek’s fragments now make up the Kuiper Belt of asteroids between Mars and Jupiter. 
      After the comet killed Maldek it neared Mars. The comet’s gravity pulled most oxygen, surface ice and water off Mars and into space. Under the Martian surface Maldekian refugees and Martians quarreled. 
      As the comet continued toward the sun, it neared Earth. Earth, then entirely ice- and ocean-covered; its only intelligent lifeforms were nontechnological and aquatic. The comet’s gravity melted enough of Earth’s ice and drew off enough of its water-cover to raise two continents--Lemura (Mu) centered on what would become the Pacific Basin and Atlantis, centered on what would become the Atlantic Ocean Basin. 
      The Draco comet moved on past the Earth toward the Sun and settled into an orbit between Earth and Mercury. The sun vaporized the comet’s ice into a cloudy cover for the ex-comet, which now orbited as the planet Venus. The Reptilians within Venus surfaced and built seven domed cities on the Venutian surface from which to launch their conquest of the Solar System and annhiliation of its Lyran Refugees.
      The story continues at http://wp.me/p1TVCy-4eb The video below shows how they came to Earth.
        View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Graphic depiction of A revolutionary approach to interplanetary space travel: Studying Torpor in Animals for Space-health in Humans (STASH). Color images (top) and thermal images (bottom) show a model hibernation organism requiring low environmental temperatures for torpor study.Ryan Sprenger Ryan Sprenger
      Fauna Bio Inc.
      The use of non-model organisms in medical research is an expanding field that has already made a significant impact on human health. Insights gleaned from the study of unique mammalian traits are being used to develop novel therapeutic agents. The remarkable phenotype of mammalian hibernation confers unique physiologic and metabolic benefits that are being actively investigated for potential human health applications on Earth. These benefits also hold promise for mitigating many of the physical and mental health risks of space travel. The essential feature of hibernation is an energy-conserving state called torpor, which involves an active and often deep reduction in metabolic rate from baseline homeostasis. Additional potential benefits include the preservation of muscle and bone despite prolonged immobilization and protection against radiation injury. Despite this remarkable potential, the space-based infrastructure needed to study torpor in laboratory rodents does not currently exist, and hibernation in microgravity has never been studied. This is a critical gap in our understanding of hibernation and its potential applications for human spaceflight. We propose to remedy this situation through the design and implementation of STASH, a novel microgravity hibernation laboratory for use aboard the ISS. Some unique and necessary design features include the ability to maintain STASH at temperatures as low as 4°C, adjustable recirculation of animal chamber air enabling the measurement of metabolism via oxygen consumption, and measurement of real-time total ventilation, body temperature, and heart rate. The STASH unit will also feature animal chamber sizes that will accommodate the expected variety of future hibernating and non-hibernating species, boosting its applicability to a variety of studies on the ISS by enabling real-time physiological measurements. The STASH unit is being designed in collaboration with BioServe Space Technologies to be integrated into the Space Automated Biological Laboratory (SABL) unit. This will allow for the achievable and practical application of this research to advance our understanding of both hibernation and mammalian physiology in space. The short-term goals of the STASH project are novel investigations into the basic science of hibernation in a microgravity environment, laying the foundation for application of its potential benefits to human health. These include determining whether hibernation provides the expected protection against bone and muscle loss. The medium-term goals of the project begin developing translational applications of hibernation research. These include using STASH both for testing bioactive molecules that mimic the transcriptional signatures of hibernation and for evaluating methods of inducing synthetic torpor for their ability to provide similar protection. As a long-term goal, during a crewed mission to Mars, human synthetic torpor could act as a relevant countermeasure that would change everything for space exploration, mitigating or eliminating every hazard included in NASA’s RIDGE acronym for the hazards of space travel: Space Radiation, Isolation and Confinement, Distance from Earth, Gravity Fields, and Hostile/Closed Environments. Research performed using STASH will be an essential first step toward acquiring fundamental knowledge about the ability of hibernation to lessen the health risks of space. This knowledge will inform development of both biomimetic drug countermeasures and the future infrastructure needed to support torpor-enabled human astronauts engaged in interplanetary missions. We feel that STASH is the epitome of the high-risk, high-reward projects for which NIAC was established.
      2024 Phase I Selection
      Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By European Space Agency
      Video: 02:02:28 One giant planet. Three icy moons. An eight-year journey. One special spacecraft.
      Building a mission to Jupiter took years of planning and thousands of people. Now that Juice is finally en route to its destination, we go behind the scenes to discover the story of the making of Juice.
      The film features exclusive interviews with scientists and engineers from across Europe, as well as backstage footage from the planning, testing and launch of this once-in-a-generation mission.
      Follow the final three years of Juice’s life on Earth. Discover why the mission was named Juice, how teams working on the spacecraft handled the COVID-19 pandemic, and why the spacecraft carries a special plaque dedicated to Galileo. Join Juice as it gets assembled, probed and tested to be certain that it is ready for Jupiter. And experience the emotion as Juice is put into a rocket and launched into space, marking the beginning of its 12-year adventure in the Solar System.
      View the full article
    • By NASA
      The SpaceX-29 commercial resupply spacecraft will deliver numerous physical sciences and space biology experiments, along with other cargo, to the International Space Station. The research aboard this resupply services mission will help researchers learn how humans, and the plants needed to sustain them, can thrive in deep space.
      The biological and physical sciences investigations headed to the Space Station are:
      Plant Water Management-5 and 6 (PWM-5 and 6)
      NASA has grown plants on the Space Station even without the help of gravity. But microgravity does present challenges and affects Space Station plants’ ability to receive adequate hydration and nutrition. The Plant Water Management-5 and 6 (PWM-5 and 6) investigation uses the physical properties of fluids, such as surface tension and wetting, as a mechanism to provide hydration and aeration for plants. Results could advance understanding of the physical aspects of fluid flow and inform designs of fluid delivery systems for reduced gravity environments.
      Plant Water Management (PWM) Harness and Soil Test Article. NASA Plant Habitat-06 (PH-06)
      Plant Habitat-06 investigates whether the spaceflight environment affects the ability of tomato plants to defend themselves against disease-causing microorganisms. The study will investigate whether a hormone called salicylic acid is involved in processes that regulate plant immune system function in microgravity. Results could support the development of strategies to minimize crop loss and low produce quality in future space agricultural settings caused by harmful microbes.
      Rodent Research-20 (RR-20)
      Extended missions to the Moon and Mars require a critical understanding on the impact of spaceflight to reproductive health for female astronauts. Throughout the course of three shuttle missions, alterations in ovarian function were detected in female mice that could potentially lead to fertility issues. This latest mission to the International Space Station (RR-20) will further probe whether space-flown female mice have temporary or permanent alterations to their reproductive capability and whether dysfunctional hormone signaling is linked with bone loss.
      Bacterial Adhesion and Corrosion (BAC)
      Polymicrobial Biofilm Growth and Control during Spaceflight, Bacterial Adhesion and Corrosion (BAC) is a joint space biology and physical sciences payload that explores conditions of multi-species biofilms in microgravity. Microorganisms in biofilms can become resistant to traditional cleaning chemicals, leading to contamination of water treatment systems and potential health risks to astronauts. This investigation identifies bacterial genes used during biofilm growth and examines whether these biofilms can corrode stainless steel, in addition to evaluating the effectiveness of silver-based disinfectants.
      View the full article
    • By European Space Agency
      In a groundbreaking development, researchers from the University of Leeds have unveiled a neural network that can swiftly and accurately chart the expanse of large Antarctic icebergs in satellite images, accomplishing the task in a mere 0.01 seconds. This novel approach is in stark contrast to the laborious and time-consuming manual efforts needed previously.
      View the full article
  • Check out these Videos

×
×
  • Create New...