Jump to content

Meltwater runoff from Greenland becoming more erratic


Recommended Posts

Greenland meltwater runoff

As world leaders and decision-makers join forces at COP26 to accelerate action towards the goals of the Paris Agreement, new research, again, highlights the value of satellite data in understanding and monitoring climate change. This particular new research, which is based on measurements from ESA’s CryoSat mission, shows that extreme ice melting events in Greenland have become more frequent and more intense over the past 40 years, raising sea levels and the risk of flooding worldwide.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4236-4238: One More Time… for Contact Science at Mammoth Lakes
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on July 4, 2024, Sol 4234 of the Mars Science Laboratory Mission, at 16:38:50 UTC. This image of the Mammoth Lakes 2 drill fines and drill hole was taken from about 25 centimeters (about 10 inches) above the surface. Earth planning date: Friday, July 5, 2024
      Curiosity will drive away from the Mammoth Lakes drill location on the second sol of this three-sol weekend plan, but before she does, the team will take the opportunity for one last chance at contact science in this interesting region of the Gediz Vallis deposit. The team have noticed distinct troughs surrounding many of the bright-toned, pitted blocks in this area and have been wanting to get closer imaging with MAHLI before driving away. We were unable to do this with powdered Mammoth Lakes still in the drill stem but, having dumped any remaining material in the previous plan, Curiosity is free to use her arm again for contact science, and hence the MAHLI camera. We will take images from about 30 centimeters (about 12 inches) away from the block (“Glacier Notch”) with MAHLI. Unfortunately, “Glacier Notch” was too close to the rover to be able to fit the turret in for APXS to examine the chemistry, so we had to choose a different target: “Lake Ediza” is an example of gray material that rims the Mammoth Lakes drill block.
      We also have one last chance for ChemCam and Mastcam in this immediate area. We will acquire ChemCam passive spectra of the Mammoth Lakes powdered material surrounding the drill hole (we collected APXS data and MAHLI images of the drill fines in the previous plan) and LIBS on a darker-toned target, “Zumwalt Meadow.” These targets will be documented by Mastcam. The long-distance imaging capabilities of ChemCam will also be utilized to examine nearby ridge and trough-like forms.
      There are also a slew of atmospheric/environmental observations planned. Before we drive away, we will take advantage of being parked in the same spot while drilling to monitor any changes in the immediate environment by re-imaging a couple of areas previously captured on multiple occasions by Mastcam. Other atmospheric observations include a Navcam line-of-sight mosaic, Navcam dust devil, zenith, and suprahorizon movies, a ChemCam passive sky, and Mastcam taus.
      After the drive, MARDI will image the terrain beneath the wheels and ChemCam will autonomously select a target to analyze with LIBS. Standard REMS, DAN and RAD activities round out the plan.
      The team are looking forward to a new workspace when we return for planning on Monday, and continued investigation of the Gediz Vallis deposit.
      Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Jul 06, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!


      Article


      3 days ago
      5 min read Sols 4232-4233: Going For a Ride, Anyone?


      Article


      4 days ago
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
      The inlet into to the SAM instrument open and awaiting sample delivery. This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4226 (2024-06-26 11:06:46 UTC). Earth Planning Date: Friday, June 28, 2024
      After reviewing results from the Evolved Gas Analysis (EGA) experiment that were downlinked yesterday afternoon (Sols 4226-4228: A Powerful Balancing Act), the SAM team decided they’d like to go ahead with a second experiment to analyze the Mammoth Lakes 2 drilled sample. This experiment is known as the Gas Chromatograph/Mass Spectrometer (GCMS) experiment.
      SAM, whose full name is Sample Analysis at Mars, is actually a suite of three different analytical instruments that are used to measure the composition of gases which come off drilled samples as we bake them in SAM’s ovens. The three analytical instruments are called a gas chromatograph, quadrupole mass spectrometer, and tunable laser spectrometer. Each one is particularly suited for measuring specific kinds of compounds in the gases, and these include things like water, methane, carbon, or organic (carbon-containing) molecules. In the EGA experiment that we ran in our last plan, we baked the Mammoth Lakes 2 sample and measured the gas compositions using the tunable laser spectrometer and quadrupole mass spectrometer. In this plan, we’ll deliver a new pinch of sample to the SAM oven and then measure the composition of the gases that are released using the gas chromatograph and quadrupole mass spectrometer. By running both experiments, we’ll have a more thorough understanding of the materials that are in this rock.
      The SAM GCMS experiment takes a lot of power to run, so it will be the focus of today’s three-sol plan. However, we still managed to fit in some other science activities around the experiment, including a ChemCam RMI mosaic of some far-off ridges, a ChemCam LIBS observation of a nodular target named “Trail Lakes,” environmental monitoring activities, and a couple Mastcam mosaics to continue imaging the terrain around the rover. Should be another fun weekend of science in Gale crater!
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 01, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By Space Force
      Pituffik Space Base hosted King Frederik X, king of the Kingdom of Denmark, his wife, Queen Mary, queen of the Kingdom of Denmark, and Greenland’s Prime Minister Múte Bourup Egede, June 29.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Kepler mission enabled the discovery of thousands of exoplanets, revealing a deep truth about our place in the cosmos: there are more planets than stars in the Milky Way galaxy. The road to this fundamental change in our understanding of the universe, however, required almost 20 years of persistence before the mission became a reality with its selection in 2001.
      The Kepler spacecraft at Ball Aerospace & Technologies Corp. in Boulder, Colorado. The Kepler mission surveyed a region of the Milky Way galaxy, discovering the first Earth-size exoplanets and determining that there are more planets than stars in our galaxy.NASA/JPL-Caltech/Ball Astronomers had assumed, but still had not confirmed, the existence of exoplanets when the mission concept that would become Kepler was first suggested in 1983. It wasn’t until the 1990s that the first confirmations of planets orbiting stars outside of our solar system were made, most of them gas giants orbiting close to their host star, not at all similar to what we know from our own solar system.
      When Kepler launched in 2009, fewer than 400 exoplanets had been discovered. Today, there are more than 5,500 confirmed exoplanets and over half of them were discovered from Kepler data. Many of these confirmed exoplanets reside in the so-called “habitable zone” of their star, making them prime candidates for future observations to uncover more of the universe’s mysteries, including the potential for life.
      The Kepler mission was designed to address the questions “How prevalent are other worlds?” and “How unique is our solar system?” Even if Kepler had found the opposite—that exoplanets were rare—Kepler still would have been an historic mission since the question it addressed was so scientifically profound.
      This image shows the Kepler telescope’s “first light”—a full field of view of an expansive star-rich patch of sky in the constellations Cygnus and Lyra stretching across 100 square degrees. The 42 individual rectangles are due to the charge-coupled devices (CCDs) with a total of 95 megapixels.NASA/J.Jenkins Earlier versions of the mission proposal had been rejected four times beginning in 1992. Back then, the mission was known as the FRequency of Earth-Sized Inner Planets (FRESIP). After its second rejection in 1994, team members David Koch, Jill Tarter, and Carl Sagan, suggested the name change from FRESIP to Kepler.
      One of the technical changes made to the 1994 proposal before the 1996 submission included changing the orbit from the Lagrange L2 point to a heliocentric orbit. This allowed Kepler to use reaction wheels for pointing the spacecraft, which reduced the thruster fuel consumption and saved on cost.
      This wasn’t enough to convince NASA. To address concerns about the mission as proposed, two major demonstrations, one each after the 1996 and 1998 rejections, followed. The demonstrations reduced the risk that gave some reviewers pause and provided the Kepler team the opportunity to refine their operations.
      Kepler team member Jeff Van Cleve in the Precision Photometry Lab at Ames Research Center in February 2007. The apparatus behind him is the Kepler Testbed Facility, a system mock-up that provided a key demonstration of Kepler’s capability.NASA/Ames The first demonstration showed that the continuous, automatic monitoring of thousands of stars was possible. For that demonstration, an instrument called the Vulcan photometer was installed at Lick Observatory in California, which radioed its data to NASA’s Ames Research Center in California’s Silicon Valley for automated analysis. The second demonstration (following the 1998 rejection) was the construction of the Kepler Testbed Facility.
      The testbed proved that existing charge-coupled device (CCD) technology no different from a consumer digital camera could achieve the precision necessary to detect Earth-size planets in the midst of the various kinds of noise expected in the whole system, from vibrations to image motion to cosmic ray strikes. The Kepler team at Ames built an intricate simulated sky and Ball Aerospace, the industry partner throughout the many years of proposals and the mission itself, built the numerical simulator for the demonstration. The testbed from the laboratory at Ames is now on display at the Smithsonian National Air and Space Museum.
      The 42 CCDs of the Kepler focal plane are approximately one square foot in size. There are four fine guidance modules in the corners of the focal plane that are much smaller CCDs compared to the 42 CCDs used for science. Those smaller CCDs were used to track Kepler’s position and relay that information to its guidance system to keep the spacecraft accurately pointed. NASA/Kepler mission These demonstrations finally put the remaining concerns to rest. In 2001, Kepler was selected more than 17 years after its principal investigator, William Borucki, had written a paper that considered a space-based photometer for detecting Earth-size planets with his colleague Audrey Summers of the Theoretical and Planetary Studies Branch in the Space Science Division at Ames.
      In the eight years between selection and launch on March 6, 2009, the mission responded to a number of challenges and changes that were largely beyond the team’s control, such as NASA instituting a policy that required either NASA’s Goddard Spaceflight Center in Greenbelt, Maryland or the Jet Propulsion Laboratory in Southern California to manage planetary missions, changes in accounting requirements, and increasing launch costs. Those pieces of Kepler’s story are told in detail in the latest book from the NASA History Office, NASA’s Discovery Program: The First Twenty Years of Competitive Planetary Exploration.
      Download the NASA's Discovery Program E-Book Share
      Details
      Last Updated Mar 05, 2024 Related Terms
      NASA History Exoplanets Kepler / K2 Explore More
      4 min read 65 Years Ago: Pioneer 4 Reaches for the Moon
      Article 1 day ago 22 min read Women’s History Month: Celebrating Women Astronauts 2024
      Article 4 days ago 4 min read NASA Center Boosted YF-12 Supersonic Engine Research
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      NASA History
      Exoplanets
      Overview Most of the exoplanets discovered so far are in a relatively small region of our galaxy, the Milky Way.…
      Universe
      Discover the universe: Learn about the history of the cosmos, what it’s made of, and so much more.
      Discovery Program
      View the full article
    • By NASA
      Dr. Natasha Batalha, an astronomer at NASA’s Ames Research Center in California’s Silicon Valley, says collaborating with her teams is one of the best parts of her job.UC Santa Cruz, UC Regents Science is often portrayed as a solitary affair, where discoveries are made by lone geniuses toiling in isolation. But Dr. Natasha Batalha, an astronomer at NASA’s Ames Research Center in California’s Silicon Valley, says solving problems with the people around her is one of the best parts of her job.
       “Oh, man, working with people is all I do!” said Batalha, whose current research involves using NASA’s James Webb Space Telescope to study exoplanets, planets outside our solar system that orbit other stars.
      Batalha’s work explores hot, Jupiter-like exoplanets; smaller, rocky exoplanets more similar to Earth; and brown dwarfs, mysterious objects smaller than a star but huge compared to the biggest planets. A single question has driven her since she was a kid: “Does life exist beyond Earth?”
      It’s a lofty question, bigger than any one scientist. And that’s the point.
      “I love being part of a larger community,” she said, “We’re working together to try to solve this question that people have been asking for centuries.”
      However, the particular joy of belonging wasn’t always present in Batalha’s life.
      When she was 10, her family moved from Brazil to the U.S., where she was met with culture shock, pressure to assimilate, and a language barrier. She thinks the latter is partly why she gravitated toward the universal language of math.
      Eventually, her interests and strengths took shape around astronomy. When she chose to study physics in college, followed by a dual PhD in astronomy and astrobiology, her parents – who are also scientists – helped fill in for the community she was otherwise lacking.
      “In high school, I watched female students drop out of my physics classes,” Batalha said. “The honors physics track in college was devoid of women and people of color. I didn’t feel I had a community in my college classes.”
      Her mother, Natalie Batalha, is an astronomer who served as project scientist for NASA’s Kepler space telescope– the mission that taught us there are more planets than stars. Natasha’s father is a LatinX physicist. Both her parents had already faced similar challenges in their careers, and having their example to look at of people who had successfully overcome those barriers helped her push on.  
      “I identify as female and LatinX, which are both underrepresented groups in STEM,” she said, “but I also have a ton of privilege because my parents are in the field. That gave me a dual perspective on how powerful community is.”
      I love being part of a larger community. We’re working together to try to solve this question that people have been asking for centuries.
      Natasha Batalha
      NASA Astronomer
      Since then, empowering her own science community has been a focus of Batalha’s work.
      She builds open-source tools, like computer programs for interpreting data, that are available to all. They help scientists use Webb’s exoplanet data to study what climates they may have, the behavior of clouds in their atmospheres, and the chemistry at work there.
      “I saw how limiting closed toolsets could be for the community, when only an ‘inner circle’ had access to them,” Batalha said. “So, I wanted to create new tools that would put everyone on the same footing.”
      Batalha herself recently used Webb to explore the skies of exoplanet WASP-39 b, a hot gas giant orbiting a star 700 light-years away. She is part of the team that found carbon dioxide and sulfur dioxide there, marking the first time either was detected in an exoplanet atmosphere. Now, she is turning to the difficult-to-discern characteristics of smaller, cooler planets.
      Dr. Natasha Batalha has been hooked on the search for life beyond Earth since elementary school.UC Santa Cruz, UC Regents Batalha says she’s exactly where her 6th-grade self imagined she would be. In elementary school, she read a biography of NASA astronaut Sally Ride and was hooked by an idea it contained: that in 20 years the kids reading those words could be the ones pioneering the search for life on Mars.
      Today’s youth belong to the Artemis Generation, who will explore farther than people have ever gone before. The Artemis program will send the first woman and first person of color to the lunar surface. Missions over time will build a presence at the Moon to unlock a new era of science and prepare for human missions to Mars and beyond. Along the way, scientists will continue to search for signs of life beyond Earth, an endeavor building on the work of many generations and relying on those in the future to carry on the search. 
      “That’s something really rewarding about my work at NASA,” she said. “These questions have been asked throughout human history and, by joining the effort to answer them, you’re taking the baton for a while, before passing it on to someone else.”
      View the full article
  • Check out these Videos

×
×
  • Create New...