Jump to content

NASA Names Acting Associate Administrator, More Leadership Changes


Recommended Posts

  • Publishers
Posted
nasa_meatball_4.png?w=1920
NASA logo. (Credit: NASA)

NASA acting Administrator Janet Petro announced Monday Vanessa Wyche will serve as the acting associate administrator for the agency at NASA Headquarters in Washington, effective immediately. Wyche, who had been the director of NASA’s Johnson Space Center in Houston, is detailed as Petro’s senior advisor leading the agency’s center directors and mission directorate associate administrators. She will act as the agency’s chief operating officer for about 18,000 civil servant employees and an annual budget of more than $25 billion. Stephen Koerner will become the acting center director of NASA Johnson.

The agency also named Jackie Jester as associate administrator for the Office of Legislative and Intergovernmental Affairs and announced Catherine Koerner, associate administrator for the agency’s Exploration Systems Development Mission Directorate will retire effective Friday, Feb. 28. Lori Glaze, currently the deputy associate administrator for Exploration Systems Development will become the mission directorate’s acting associate administrator.

“As we continue to advance our mission, it’s crucial that we have strong, experienced leaders in place,” Petro said. “Vanessa will bring exceptional leadership to NASA’s senior ranks, helping guide our workforce toward the opportunities that lie ahead, while Steve will continue to provide steadfast leadership at NASA Johnson. Jackie’s return to the agency will ensure we remain closely aligned with national priorities as we work with Congress. Cathy’s legacy is one of unwavering dedication to human spaceflight, and we are grateful for her years of service. Lori’s leadership will continue to build on that legacy as we push forward in our exploration efforts. These appointments reflect NASA’s unwavering commitment to excellence, and I have full confidence that each of these leaders will carry our vision forward with purpose, integrity, and a relentless drive to succeed.”

Prior to her new role, Wyche was the director NASA Johnson – home to America’s astronaut corps, Mission Control Center, International Space Station, Orion and Gateway Programs, and its more than 11,000 civil service and contractor employees. Her responsibilities included a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, mission control, commercialization of low Earth orbit, and leading NASA Johnson in exploring the Moon and Mars.

During her 35-year career, Wyche has served in several leadership roles, including Johnson’s deputy center director, director of Exploration Integration and Science Directorate, flight manager of several Space Shuttle Program missions, and executive officer in the Office of the Administrator. A native of South Carolina, Wyche earned a Bachelor of Science in Engineering and Master of Science in Bioengineering from Clemson University. 

As deputy director of NASA Johnson, Stephen Koerner, oversaw strategic workforce planning, serves as the Designated Agency Safety Health Officer, and supported the Johnson center director in mission reviews. Before his appointment in July 2021, Koerner held various leadership roles at NASA Johnson, including director of the Flight Operations Directorate, associate director, chief financial officer, deputy director of flight operations, and deputy director of mission operations.

In her new role as the associate administrator for the Office of Legislative and Intergovernmental Affairs, Jester will direct a staff responsible for managing and coordinating all communication with the U.S. Congress, as well as serve as a senior advisor to agency leaders on legislative matters.  

Jester rejoins the agency after serving as the senior director for government affairs at Relativity Space’s Washington office where she led policy engagement for the company. Prior to her time with Relativity, she served as a policy advisor at NASA and at the White House Office of Science and Technology Policy. She has served as a professional staff member for the U.S. Senate Committee on Commerce, Science, and Transportation. She has spent time in state government as the Chief Legislative Aide to a member of the Massachusetts House of Representatives. Jester has significant experience advising on space policy issues, aviation operations and safety policy, and has helped develop numerous pieces of legislation.

With a 34-year career at NASA, Catherine Koerner has been instrumental in leading NASA’s Exploration Systems Development Mission Directorate, overseeing the development of the agency’s deep space exploration approach. Previously, she was the deputy associate administrator for the mission directorate. Her extensive career at NASA includes roles such as the Orion program manager, director of the Human Health and Performance Directorate, former NASA flight director, several leadership positions within the International Space Station Program during its assembly phase and helping to foster a commercial space industry in low Earth orbit.

Glaze has a distinguished background in planetary science, previously serving as the director of NASA’s Planetary Science Division before joining Explorations Systems Development. Prior to her tenure at NASA Headquarters in Washington, she was the chief of the Planetary Geology, Geophysics and Geochemistry Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Deputy Director of Goddard’s Solar System Exploration Division. She has been a leading advocate for Venus exploration, serving as the principal investigator for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging mission. Glaze earned her Bachelor of Arts and Master of Science degrees in Physics from the University of Texas at Arlington and a doctorate in Environmental Science from Lancaster University in the United Kingdom. Her prior experience includes roles at the Jet Propulsion Laboratory and at Proxemy Research as Vice President and Senior Research Scientist.

For more about NASA’s missions, visit:

http://www.nasa.gov

-end-

Amber Jacobson / Kathryn Hambleton
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / kathryn.a.hambleton@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland.
      This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years.
      “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.”
      At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future.
      The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects.
      A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
    • By NASA
      NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
      “We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
      Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
      Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
      Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
      The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
      The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
      The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
      The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Amber Jacobson / Joshua Finch
      Headquarters, Washington
      202-358-1100
      amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
      “Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
      All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
      “Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
      Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
      The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity  is now the deepest robotic planetary subsurface thermal probe, drilling  up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars.  The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet.  The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure.  The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
      To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher 
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Media are invited to meet leaders in the space community during the 62nd annual Goddard Space Science Symposium, taking place from Wednesday, March 19, to Friday, March 21, at Martin’s Crosswinds in Greenbelt, Maryland. The symposium will also be streamed online.
      Hosted by the American Astronautical Society (AAS) in conjunction with NASA’s Goddard Space Flight Center in Greenbelt, the symposium examines the current state and future of space science and space exploration at large by convening leading minds across NASA, other government agencies, policy, academia, and industry – collectively navigating a path forward by identifying the opportunities and challenges ahead.
      This year’s theme, “Pathways and Partnerships for U.S. Leadership in Earth and Space Science,” highlights the evolving collaborative landscape between the public and private sectors, as well as how it is helping the United States remain and grow as a leading space power. 
      “Earth and space science are complex by nature, with a growing list of public and private enterprises carving out their space,” said Christa Peters-Lidard, co-chair of the symposium planning committee and Goddard’s director of sciences and exploration. “It’s an exciting time as we work to determine the future trajectory of space exploration in this new era, and the Goddard Space Science Symposium is an instrumental tool for gathering the insights of leading experts across a broad spectrum.”
      AAS President Ron Birk and Goddard Deputy Center Director Cynthia Simmons will deliver the symposium’s opening remarks on March 19, followed by panels on enabling science and exploration from the Moon to Mars and navigating space science and exploration policy. Greg Autry, associate provost for space commercialization and strategy at the University of Central Florida, will deliver the keynote address. The first day will conclude with an industry night reception.
      The second day of the symposium on Thursday, March 20, will feature panels on enhancing U.S. economic leadership through science, the Habitable Worlds Observatory, and the confluence of public science and the private sector. Gillian Bussey, deputy chief science officer for the U.S. Space Force, will serve as the luncheon speaker.
      Panels on the third and final day, March 21, will discuss integrating multi-sector data to advance Earth and space science, the Heliophysics Decadal Survey, and the space weather enterprise. Mark Clampin, acting deputy associate administrator for the NASA Science Mission Directorate, will provide the luncheon address.
      Media interested in arranging interviews with NASA speakers should contact Jacob Richmond, Goddard acting news chief.
      For more information on the Goddard Space Science Symposium and the updated program, or to register as a media representative, visit https://astronautical.org/events/goddard.
      For more information on NASA’s Goddard Space Flight Center, visit https://www.nasa.gov/goddard.
      Media Contact:
      Jacob Richmond
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 18, 2025 EditorJamie AdkinsLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...