Jump to content

Recommended Posts

  • Publishers
Posted

13 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Dark blue background with golden lines and glitter affect. Text reads USRC Awards.
Getty Images

University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.

The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.

Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.

The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.

A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A

Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.

USRC Awards

Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
Faculty Mentors: Jaewon Kim and Sandip Roy
Selected: 2025

Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
Faculty Mentor: Felix Ewere
Selected: 2025

Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
Faculty Mentor: Omid Beik
Selected: 2024

Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
Mitigating wildfires with drone released fire retardant pellets.
Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
Faculty Mentor: Janet McLarty-Schroeder
Selected: 2024

Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
Faculty Mentor: Sanjiban Choudhury, Susan Fussell
Selected: 2024
Crowdfunding Website

Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
Faculty Mentor: Fiona Spencer, Robert Breidenthal
Selected: 2024
Crowdfunding Website

Web Article: “Students win NASA grant to develop AI for safer aerial traffic

Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
An ocean-based fueling station and a survey drone that can refuel in remote areas.
Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
Faculty Mentor: Li Qiao
Selected: 2023
Crowdfunding Website

Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
Faculty Mentor: Xiangyu Meng
Selected: 2023
Crowdfunding Website

Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
Faculty Mentor: Cynthia Flores
Selected: 2023
Crowdfunding Website

Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
Faculty Mentor: Sergey V. Drakunov
Selected: 2023
Crowdfunding Website

Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge

AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
Creating new propeller blades and fixed wing design concepts that mimic the features of an
owl feather and provide substantial noise reduction benefits.
Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
Faculty Mentor: Bhisham Sharma
Selected: 2023
Crowdfunding Website

Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
Faculty Mentor: Woongkul Lee
Selected: 2023
Crowdfunding Website

LEADS team Website

UAM Contingency Diagnosis Toolkit (Ohio State University)
A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
Faculty Mentor: Martijn IJtsma
Selected: 2023
Crowdfunding Website

Project Website

Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge

Hybrid Quadplane Search and Rescue Missions (NC A&T University)
An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
Faculty Mentor: A. Homaifar
Selected: 2023
Crowdfunding Website

Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
An autonomous water sampling drone system.
Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
Faculty Mentor: Onur Bilgen
Selected: 2023
Crowdfunding Website

Project Website

Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
Faculty Mentor: John Lewandowski
Selected: 2023
Crowdfunding Website

Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine

Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
Faculty Mentor: Venkatesan Muthukumar
Selected: 2022

Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
Faculty Mentor: Adam Nokes
Selected: 2022
Crowdfunding Website

Project Website

Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge

Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
Faculty Mentor: Victor Maldonado 
Selected: 2022
Crowdfunding Website

Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies

Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
Faculty Mentor: Bo Zou
Selected: 2022
Crowdfunding Website

Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems

Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
Faculty Mentor: Naira Hovakimyan
Selected: 2022
Crowdfunding Website

Web Article: “NASA funds UAV traffic management research

AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
An aerostat enabled low-energy UAV payload delivery system
Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
Faculty Mentor: Suresh Advani
Selected: 2022
Crowdfunding Website

Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
Faculty Mentor: Edward DeMauro
Selected: 2022
Crowdfunding Website

Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge

A recorded STRATO USRC Tech Talk

Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
Faculty Mentor: Jane Cleland-Huang
Selected: 2021
Crowdfunding Website

Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology

Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
Faculty Mentor: Woongkul Lee
Selected: 2021
AIDED Crowdfunding Website

AIDED Project Website or Team Website

Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA

A recorded USRC Tech Talk

Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
Faculty Mentor: Christopher Williams
Selected: 2021
Crowdfunding Website

RAV-FAB Project Website

Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech

NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants

Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect

Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube

View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2

Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
Faculty Mentor: Atieh Moridi
Selected: 2021
Crowdfunding Website

AMAS Project Website

Web Article: “Students win NASA challenge with 3D-printer smart sensor

A recorded USRC Tech Talk on this topic

AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
A drone swarm system capable of carrying a payload in the air indefinitely
Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
Faculty Mentor: Jeff Eldredge
Selected: 2020
Crowdfunding Website

AVIATA Project Website

A recorded USRC Tech Talk on AVIATA

The recorded poster session at the TACP Showcase 2021

Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
Faculty Mentor: John Robbins
Selected: 2020
Crowdfunding Website

Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition

Follow the team’s progress at: https://www.facebook.com/Assured Autonomy

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
Extending drone delivery distance with a multi-mode hybrid delivery system
Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
Faculty Mentor: Onur Bilgen
Selected: 2020
Crowdfunding Website

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
Faculty Mentor: Kelly Griendling
Selected: 2020
Go to AVIS team site

A recorded USRC Tech Talk on AVIS

The recorded poster session at the TACP Showcase 2021

NASA Web Article

Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
Model and test powertrain to maximize the efficiency of hybrid airplanes
Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
Faculty Mentor: Paulo Iscold
Selected: 2019
A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

ATLAS Air Transportation (South Dakota State University)
A multipurpose, automated drone capable of comfortably lifting the weight of an average person
Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS

The recorded poster session at the TACP Showcase 2021

Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
A novel solution of enhanced GPS navigation for unmanned aerial vehicles
Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
Crowdfunding Website

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

UAV Traffic Information Exchange Network (Purdue University)
A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
Selected: 2018
Web Article: “Student-developed communication network for UAVs interests NASA
The recorded poster session at the TACP Showcase 2021

University Student Research Challenge

University Leadership Initiative

University Innovation Project

Transformative Aeronautics Concepts Program

Share

Details

Last Updated
Apr 03, 2025
Editor
Lillian Gipson
Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Bastion Technologies Inc. of Houston to provide safety and mission assurance services for the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      The Safety and Mission Assurance II (SMAS II) award is a performance-based, indefinite-delivery/indefinite-quantity contract with a maximum potential value of $400 million. A phase-in period begins Monday, followed by a base ordering period of four years with options to extend services through March 2034.
      Under the contract, Bastion will provide services for a wide range of activities including system safety, reliability, maintainability, software assurance, quality engineering and assurance, independent assessment, institutional safety, and pressure systems.
      The work will support various spaceflight and science missions, research and development projects, hardware fabrication and testing, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, and Stennis Space Center in Bay St. Louis, Mississippi. Tasks also will be performed at NASA’s Kennedy Space Center in Florida, contractor facilities, and other sites supported by Marshall’s Safety and Mission Assurance Directorate.
      The SMAS II contract is a small business set-aside, which levels the playing field for qualified small businesses to compete for and win federal contracts.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 15, 2025 LocationNASA Headquarters Related Terms
      Marshall Space Flight Center Kennedy Space Center Michoud Assembly Facility NASA Centers & Facilities Stennis Space Center View the full article
    • By NASA
      Credit: NASA NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.  
      The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.
      This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jan Wittry
      Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      Share
      Details
      Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center View the full article
    • By NASA
      CSA (Canadian Space Agency) astronaut Jeremy Hansen, alongside NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch, will launch on the Artemis II mission early next year. The crew will participate in human research studies to provide insights about how the body performs in deep space as part of this mission. Credit: (NASA/James Blair) A sweeping collection of astronaut health studies planned for NASA’s Artemis II mission around the Moon will soon provide agency researchers with a glimpse into how deep space travel influences the human body, mind, and behavior.
      During an approximately 10-day mission set to launch in 2026, NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will collect and store their saliva, don wrist monitors that track movement and sleep, and offer other essential data for NASA’s Human Research Program and other agency science teams. 
      “The findings are expected to provide vital insights for future missions to destinations beyond low Earth orbit, including Mars,” said Laurie Abadie, an aerospace engineer for the program at NASA’s Johnson Space Center in Houston, who strategizes about how to carry out studies on Artemis missions. “The lessons we learn from this crew will help us to more safely accomplish deep space missions and research,” she said.
      One study on the Artemis II mission, titled Immune Biomarkers, will explore how the immune system reacts to spaceflight. Another study, ARCHeR (Artemis Research for Crew Health and Readiness), will evaluate how crew members perform individually and as a team throughout the mission, including how easily they can move around within the confined space of their Orion spacecraft. Astronauts also will collect a standardized set of measurements spanning multiple physiological systems to provide a comprehensive snapshot of how spaceflight affects the human body as part of a third study called Artemis II Standard Measures. What’s more, radiation sensors placed inside the Orion capsule cells will collect additional information about radiation shielding functionality and organ-on-a-chip devices containing astronaut cells will study how deep space travel affects humans at a cellular level.
      “Artemis missions present unique opportunities, and challenges, for scientific research,” said Steven Platts, chief scientist for human research at NASA Johnson.
      Platts explained the mission will need to protect against challenges including exposure to higher radiation levels than on the International Space Station, since the crew will be farther from Earth.
      “Together, these studies will allow scientists to better understand how the immune system performs in deep space, teach us more about astronauts’ overall well-being ahead of a Mars mission, and help scientists develop ways to ensure the health and success of crew members,” he said.
      Another challenge is the relatively small quarters. The habitable volume inside Orion is about the size of a studio apartment, whereas the space station is larger than a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. That limitation affects everything from exercise equipment selection to how to store saliva samples.
      Previous research has shown that spaceflight missions can weaken the immune system, reactivate dormant viruses in astronauts, and put the health of the crew at risk. Saliva samples from space-based missions have enabled scientists to assess various viruses, hormones, and proteins that reveal how well the immune system works throughout the mission.
      But refrigeration to store such samples will not be an option on this mission due to limited space. Instead, for the Immune Biomarkers study, crew members will supply liquid saliva on Earth and dry saliva samples in space and on Earth to assess changes over time. The dry sample process involves blotting saliva onto special paper that’s stored in pocket-sized booklets.
      “We store the samples in dry conditions before rehydrating and reconstituting them,” said Brian Crucian, an immunologist with NASA Johnson who’s leading the study. After landing, those samples will be analyzed by agency researchers.
      For the ARCHeR study, participating crew members will wear movement and sleep monitors, called actigraphy devices, before, during, and after the mission. The monitors will enable crew members and flight controllers in mission control to study real-time health and behavioral information for crew safety, and help scientists study how crew members’ sleep and activity patterns affect overall health and performance. Other data related to cognition, behavior, and team dynamics will also be gathered before and after the mission.
      “Artemis missions will be the farthest NASA astronauts have ventured into space since the Apollo era,” said Suzanne Bell, a NASA psychologist based at Johnson who is leading the investigation. “The study will help clarify key mission challenges, how astronauts work as a team and with mission control, and the usability of the new space vehicle system.” 
      Another human research study, Artemis II Standard Measures, will involve collecting survey and biological data before, during, and after the Artemis II mission, though blood collection will only occur before and after the mission. Collecting dry saliva samples, conducting psychological assessments, and testing head, eye, and body movements will also be part of the work. In addition, tasks will include exiting a capsule and conducting simulated moonwalk activities in a pressurized spacesuit shortly after return to Earth to investigate how quickly astronauts recover their sense of balance following a mission.
      Crew members will provide data for these Artemis II health studies beginning about six months before the mission and extending for about a month after they return to Earth.
      NASA also plans to use the Artemis II mission to help scientists characterize the radiation environment in deep space. Several CubeSats, shoe-box sized satellites that will be deployed into high-Earth orbit during Orion’s transit to the Moon, will probe the near-Earth and deep space radiation environment. Data gathered by these CubeSats will help scientists understand how best to shield crew and equipment from harmful space radiation at various distances from Earth.
      Crew members will also keep dosimeters in their pockets that measure radiation exposure in real time. Two additional radiation-sensing technologies will also be affixed to the inside of the Orion spacecraft. One type of device will monitor the radiation environment at different shielding locations and alert crew if they need to seek shelter, such as during a solar storm. A separate collection of four radiation monitors, enabled through a partnership with the German Space Agency DLR, will be placed at various points around the cabin by the crew after launch to gather further information.
      Other technologies also positioned inside the spacecraft will gather information about the potential biological effects of the deep space radiation environment. These will include devices called organ chips that house human cells derived from the Artemis II astronauts, through a project called AVATAR (A Virtual Astronaut Tissue Analog Response). After the Artemis II lands, scientists will analyze how these organ chips responded to deep space radiation and microgravity on a cellular level.
      Together, the insights from all the human research science collected through this mission will help keep future crews safe as humanity extends missions to the Moon and ventures onward to Mars.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, the International Space Station and Artemis missions, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives the program’s quest to innovate ways that keep astronauts healthy and mission ready as human space exploration expands to the Moon, Mars, and beyond.
      Explore More
      9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 20 hours ago 5 min read NASA’s Northrop Grumman CRS-23 Infographics & Hardware
      Article 20 hours ago 4 min read NASA Uses Colorado Mountains for Simulated Artemis Moon Landing Course
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, complete the signing of a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025NASA/Mark Knopp As NASA inspires the world through discovery in a new era of innovation and exploration, NASA’s Langley Research Center in Hampton, Virginia, and Embry-Riddle Aeronautical University are working together to advance research, educational opportunities, and workforce development to enable the next generation of aerospace breakthroughs.
      The collaborative work will happen through a Space Act Agreement NASA Langley and Embry-Riddle signed during a ceremony held Thursday at NASA Langley. The agreement will leverage NASA Langley’s aerospace expertise and Embry-Riddle’s specialized educational programs and research to drive innovation in aerospace, research, education, and technology, while simultaneously developing a highly skilled workforce for the future of space exploration and advanced air mobility.
      Dr. Trina Marsh Dyal, NASA Langley’s acting center director, and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle, presided over the ceremony.
      “NASA Langley values opportunities to partner with colleges and universities on research and technology demonstrations that lay the foundation for tomorrow’s innovations,” said Dyal. “These collaborations play an essential role in advancing aeronautics, space exploration, and science initiatives that benefit NASA, industry, academia, and the nation.”
      In addition to forging a formal partnership between NASA Langley and Embry-Riddle, the agreement lays the framework to support Embry-Riddle’s development of an Augmented Reality tool by using NASA sensor technology and data. Augmented Reality uses computer-generated elements to enhance a user’s real-world environment and can help users better visualize data. Incorporating model and lunar landing data from Navigation Doppler Lidar, a technology developed at NASA Langley, this tool will enhance visualization and training for entry, descent, and landing, and deorbit, descent, and landing systems — advancing our capabilities for future Moon and Mars missions.
      NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, sign a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025.NASA/Mark Knopp “As we work to push the boundaries of what is possible and solve the complexities of a sustained human presence on the lunar surface and Mars, this partnership with Embry-Riddle will not only support NASA’s exploration goals but will also ensure the future workforce is equipped to maintain our nation’s aerospace leadership,” Dyal said.
      Embry-Riddle educates more than 30,000 students through its residential campuses in Daytona Beach, Florida, and Prescott, Arizona, and through online programs offered by its
      Worldwide Campus, which counts more than 100 locations across the globe, including a site at Naval Station Norfolk in Virginia.
      “We are thrilled that this partnership with NASA Langley is making it possible for our faculty, students, and staff to engage with NASA talent and collaborate on cutting-edge aerospace applications and technology,” said Ernst. “This partnership also presents an incredible opportunity for our students to augment direct research experiences, enhancing career readiness as they prepare to take on the aerospace challenges of tomorrow.”
      NASA is committed to partnering with a wide variety of domestic and international partners, in academia, industry, and across the government, to successfully accomplish its diverse missions, including NASA’s Artemis campaign which will return astronauts to the Moon and help pave the way for future human missions to Mars.
      For more information on programs at NASA Langley, visit:

      https://nasa.gov/langley

      Brittny McGraw
      NASA Langley Research Center
      Share
      Details
      Last Updated Sep 11, 2025 Related Terms
      Langley Research Center Explore More
      4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago 4 min read Strap In! NASA Aeroshell Material Takes Extended Space Trip
      Article 2 weeks ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 2 weeks ago View the full article
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...