Jump to content

Recommended Posts

  • Publishers
Posted

13 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Dark blue background with golden lines and glitter affect. Text reads USRC Awards.
Getty Images

University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.

The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.

Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.

The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.

A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A

Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.

USRC Awards

Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
Faculty Mentors: Jaewon Kim and Sandip Roy
Selected: 2025

Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
Faculty Mentor: Felix Ewere
Selected: 2025

Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
Faculty Mentor: Omid Beik
Selected: 2024

Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
Mitigating wildfires with drone released fire retardant pellets.
Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
Faculty Mentor: Janet McLarty-Schroeder
Selected: 2024

Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
Faculty Mentor: Sanjiban Choudhury, Susan Fussell
Selected: 2024
Crowdfunding Website

Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
Faculty Mentor: Fiona Spencer, Robert Breidenthal
Selected: 2024
Crowdfunding Website

Web Article: “Students win NASA grant to develop AI for safer aerial traffic

Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
An ocean-based fueling station and a survey drone that can refuel in remote areas.
Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
Faculty Mentor: Li Qiao
Selected: 2023
Crowdfunding Website

Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
Faculty Mentor: Xiangyu Meng
Selected: 2023
Crowdfunding Website

Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
Faculty Mentor: Cynthia Flores
Selected: 2023
Crowdfunding Website

Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
Faculty Mentor: Sergey V. Drakunov
Selected: 2023
Crowdfunding Website

Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge

AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
Creating new propeller blades and fixed wing design concepts that mimic the features of an
owl feather and provide substantial noise reduction benefits.
Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
Faculty Mentor: Bhisham Sharma
Selected: 2023
Crowdfunding Website

Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
Faculty Mentor: Woongkul Lee
Selected: 2023
Crowdfunding Website

LEADS team Website

UAM Contingency Diagnosis Toolkit (Ohio State University)
A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
Faculty Mentor: Martijn IJtsma
Selected: 2023
Crowdfunding Website

Project Website

Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge

Hybrid Quadplane Search and Rescue Missions (NC A&T University)
An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
Faculty Mentor: A. Homaifar
Selected: 2023
Crowdfunding Website

Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
An autonomous water sampling drone system.
Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
Faculty Mentor: Onur Bilgen
Selected: 2023
Crowdfunding Website

Project Website

Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
Faculty Mentor: John Lewandowski
Selected: 2023
Crowdfunding Website

Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine

Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
Faculty Mentor: Venkatesan Muthukumar
Selected: 2022

Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
Faculty Mentor: Adam Nokes
Selected: 2022
Crowdfunding Website

Project Website

Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge

Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
Faculty Mentor: Victor Maldonado 
Selected: 2022
Crowdfunding Website

Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies

Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
Faculty Mentor: Bo Zou
Selected: 2022
Crowdfunding Website

Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems

Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
Faculty Mentor: Naira Hovakimyan
Selected: 2022
Crowdfunding Website

Web Article: “NASA funds UAV traffic management research

AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
An aerostat enabled low-energy UAV payload delivery system
Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
Faculty Mentor: Suresh Advani
Selected: 2022
Crowdfunding Website

Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
Faculty Mentor: Edward DeMauro
Selected: 2022
Crowdfunding Website

Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge

A recorded STRATO USRC Tech Talk

Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
Faculty Mentor: Jane Cleland-Huang
Selected: 2021
Crowdfunding Website

Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology

Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
Faculty Mentor: Woongkul Lee
Selected: 2021
AIDED Crowdfunding Website

AIDED Project Website or Team Website

Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA

A recorded USRC Tech Talk

Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
Faculty Mentor: Christopher Williams
Selected: 2021
Crowdfunding Website

RAV-FAB Project Website

Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech

NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants

Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect

Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube

View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2

Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
Faculty Mentor: Atieh Moridi
Selected: 2021
Crowdfunding Website

AMAS Project Website

Web Article: “Students win NASA challenge with 3D-printer smart sensor

A recorded USRC Tech Talk on this topic

AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
A drone swarm system capable of carrying a payload in the air indefinitely
Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
Faculty Mentor: Jeff Eldredge
Selected: 2020
Crowdfunding Website

AVIATA Project Website

A recorded USRC Tech Talk on AVIATA

The recorded poster session at the TACP Showcase 2021

Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
Faculty Mentor: John Robbins
Selected: 2020
Crowdfunding Website

Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition

Follow the team’s progress at: https://www.facebook.com/Assured Autonomy

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
Extending drone delivery distance with a multi-mode hybrid delivery system
Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
Faculty Mentor: Onur Bilgen
Selected: 2020
Crowdfunding Website

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
Faculty Mentor: Kelly Griendling
Selected: 2020
Go to AVIS team site

A recorded USRC Tech Talk on AVIS

The recorded poster session at the TACP Showcase 2021

NASA Web Article

Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
Model and test powertrain to maximize the efficiency of hybrid airplanes
Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
Faculty Mentor: Paulo Iscold
Selected: 2019
A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

ATLAS Air Transportation (South Dakota State University)
A multipurpose, automated drone capable of comfortably lifting the weight of an average person
Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS

The recorded poster session at the TACP Showcase 2021

Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
A novel solution of enhanced GPS navigation for unmanned aerial vehicles
Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
Crowdfunding Website

A recorded USRC Tech Talk on this topic

The recorded poster session at the TACP Showcase 2021

UAV Traffic Information Exchange Network (Purdue University)
A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
Selected: 2018
Web Article: “Student-developed communication network for UAVs interests NASA
The recorded poster session at the TACP Showcase 2021

University Student Research Challenge

University Leadership Initiative

University Innovation Project

Transformative Aeronautics Concepts Program

Share

Details

Last Updated
Apr 03, 2025
Editor
Lillian Gipson
Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Swept Wing Flow Test model, known as SWiFT, with pressure sensitive paint applied, sports a pink glow under ultraviolet lights while tested during 2023 in a NASA wind tunnel at Langley Research Center in Virginia.NASA / Dave Bowman Many of us grew up using paint-by-number sets to create beautiful color pictures.
      For years now, NASA engineers studying aircraft and rocket designs in wind tunnels have flipped that childhood pastime, using computers to generate images from “numbers-by-paint” – pressure sensitive paint (PSP), that is.
      Now, advances in the use of high-speed cameras, supercomputers, and even more sensitive PSP have made this numbers-by-paint process 10,000 times faster while creating engineering visuals with 1,000 times higher resolution.
      So, what’s the big difference exactly between the “old” capability in use at NASA for more than a decade and the “new?”
      “The key is found by adding a single word in front of PSP, namely ‘unsteady’ pressure sensitive paint, or uPSP,” said E. Lara Lash, an aerospace engineer from NASA’s Ames Research Center in California’s Silicon Valley.
      With PSP, NASA researchers study the large-scale effects of relatively smooth air flowing over the wings and body of aircraft. Now with uPSP, they are able to see in finer detail what happens when more turbulent air is present – faster and better than ever before.
      In some cases with the new capability, researchers can get their hands on the wind tunnel data they’re looking for within 20 minutes. That’s quick enough to allow engineers to adjust their testing in real time.
      Usually, researchers record wind tunnel data and then take it back to their labs to decipher days or weeks later. If they find they need more data, it can take additional weeks or even months to wait in line for another turn in the wind tunnel.
      “The result of these improvements provides a data product that is immediately useful to aerodynamic engineers, structural engineers, or engineers from other disciplines,” Lash said.
      Robert Pearce, NASA’s associate administrator for aeronautics, who recently saw a demonstration of uPSP-generated data displayed at Ames, hailed the new tool as a national asset that will be available to researchers all over the country.
      “It’s a unique NASA innovation that isn’t offered anywhere else,” Pearce said. “It will help us maintain NASA’s world leadership in wind tunnel capabilities.”
      A technician sprays unsteady pressure sensitive paint onto the surface of a small model of the Space Launch System in preparation for testing in a NASA wind tunnel.NASA / Dave Bowman How it Works
      With both PSP and uPSP, a unique paint is applied to scale models of aircraft or rockets, which are mounted in wind tunnels equipped with specific types of lights and cameras.
      When illuminated during tests, the paint’s color brightness changes depending on the levels of pressure the model experiences as currents of air rush by. Darker shades mean higher pressure; lighter shades mean lower pressure.
      Cameras capture the brightness intensity and a supercomputer turns that information into a set of numbers representing pressure values, which are made available to engineers to study and glean what truths they can about the vehicle design’s structural integrity.
      “Aerodynamic forces can vibrate different parts of the vehicle to different degrees,” Lash said. “Vibrations could damage what the vehicle is carrying or can even lead to the vehicle tearing itself apart. The data we get through this process can help us prevent that.”
      Traditionally, pressure readings are taken using sensors connected to little plastic tubes strung through a model’s interior and poking up through small holes in key places, such as along the surface of a wing or the fuselage. 
      Each point provides a single pressure reading. Engineers must use mathematical models to estimate the pressure values between the individual sensors.
      With PSP, there is no need to estimate the numbers. Because the paint covers the entire model, its brightness as seen by the cameras reveals the pressure values over the whole surface.
      A four-percent scale model of the Space Launch System rocket is tested in 2017 using unsteady Pressure Sensitive Paint inside the 11-foot by 11-foot Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California.NASA / Dominic Hart Making it Better
      The introduction, testing, and availability of uPSP is the result of a successful five-year-long effort, begun in 2019, in which researchers challenged themselves to significantly improve the PSP’s capability with its associated cameras and computers.
      The NASA team’s desire was to develop and demonstrate a better process of acquiring, processing, and visualizing data using a properly equipped wind tunnel and supercomputer, then make the tool available at NASA wind tunnels across the country.
      The focus during a capability challenge was on NASA’s Unitary Plan Facility’s 11-foot transonic wind tunnel, which the team connected to the nearby NASA Advanced Supercomputing Facility, both located at Ames.
      Inside the wind tunnel, a scale model of NASA’s Space Launch System rocket served as the primary test subject during the challenge period.
      Now that the agency has completed its Artemis I uncrewed lunar flight test mission, researchers can match the flight-recorded data with the wind tunnel data to see how well reality and predictions compare.
      With the capability challenge officially completed at the end of 2024, the uPSP team is planning to deploy it to other wind tunnels and engage with potential users with interests in aeronautics or spaceflight.
      “This is a NASA capability that we have, not only for use within the agency, but one that we can offer industry, academia, and other government agencies to come in and do research using these new tools,” Lash said.
      NASA’s Aerosciences Evaluation and Test Capabilities portfolio office, an organization managed under the agency’s Aeronautics Research Mission Directorate, oversaw the development of the uPSP capability.
      Watch this uPSP Video
      About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      6 min read By Air and by Sea: Validating NASA’s PACE Ocean Color Instrument
      Article 1 week ago 3 min read NASA Intern Took Career from Car Engines to Cockpits
      Article 1 week ago 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 03, 2025 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Aerosciences Evaluation Test Capabilities Ames Research Center Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies
      View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to MacLean Engineering & Applied Technologies, LLC of Houston to provide simulation and advanced software services to the agency.
      The Simulation and Advanced Software Services II (SASS II) contract includes services from Oct. 1, 2025, through Sept. 30, 2030, with a maximum potential value not to exceed $150 million. The contract is a single award, indefinite-delivery/indefinite-quality contract with the capability to issue cost-plus-fixed-fee task orders and firm-fixed-price task orders.
      Under the five-year SASS II contract, the awardee is tasked to provide simulation and software services for space-based vehicle models and robotic manipulator systems; human biomechanical representations for analysis and development of countermeasures devices; guidance, navigation, and control of space-based vehicles for all flight phases; and space-based vehicle on-board computer systems simulations of flight software systems. Responsibilities also include astronomical object surface interaction simulation of space-based vehicles, graphics support for simulation visualization and engineering analysis, and ground-based and onboarding systems to support human-in-the-loop training.
      Major subcontractors include Tietronix Software Inc. in Houston and VEDO Systems, LLC, in League City, Texas.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      Chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Technology Johnson Space Center View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      2 Min Read NASA Announces Winners of 2025 Human Lander Challenge
      NASA’s Human Lander Challenge marked its second year on June 26, awarding $18,000 in prize money to three university teams for their solutions for long-duration cryogenic, or super chilled, liquid storage and transfer systems for spaceflight.
      Building on the crewed Artemis II flight test, NASA’s Artemis III mission will send astronauts to explore the lunar South Pole region with a human landing system and advanced spacesuits, preparing humanity to ultimately go to Mars. In-space propulsion systems that use cryogenic liquids as propellants must stay extremely cold to remain in a liquid state and are critical to mission success. The Artemis mission architecture will need these systems to function for several weeks or even months.
      Students and advisors with the 12 finalist teams for the 2025 Human Lander Challenge competed in Huntsville, Alabama, near the agency’s Marshall Space Flight Center between June 24-26. NASA/Charles Beason NASA announced Embry-Riddle Aeronautical University, Prescott as the overall winner and recipient of the $10,000 top prize award. Old Dominion University won second place and a $5,000 award, followed by Massachusetts Institute of Technology in third place and a $3,000 award.
      Before the winners were announced, 12 finalist teams selected in April gave their presentations to a panel of NASA and industry judges as part of the final competition in Huntsville. As part of the 2025 Human Lander Challenge, university teams developed systems-level solutions that could be used within the next 3-5 years for Artemis.
      NASA selected Embry-Riddle Aeronautical University, Prescott as the overall winner of NASA’s 2025 Human Lander Challenge Forum June 26. Lisa Watson-Morgan, manager of NASA’s Human Landing System Program, presented the awards at the ceremony. NASA/Charles Beason “Today’s Golden Age of Innovation and Exploration students are tomorrow’s mission designers, systems engineers, and explorers,” said Juan Valenzuela, main propulsion systems and cryogenic fluid management subsystems lead for NASA’s Human Landing System Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The Human Lander Challenge concepts at this year’s forum demonstrate the ingenuity, passion, and determination NASA and industry need to help solve long-duration cryogenic storage challenges to advance human exploration to deep space.”
      The challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 27, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge Artemis General Human Landing System Program Humans in Space Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Human Landing System
      Space Launch System (SLS)
      Marshall Space Flight Center manages the Space Launch System (SLS), an integrated super heavy lift launch platform enabling a new…
      Humans In Space
      Orion Capsule
      NASA’s Orion spacecraft is built to take humans farther than they’ve ever gone before. Orion will serve as the exploration…
      View the full article
  • Check out these Videos

×
×
  • Create New...