Jump to content

Donut-shaped spheres disrupt NASA's Stereo Lasco C3 satellite near the sun


Recommended Posts

Posted
On December 25, 2024, NASA's Stereo Lasco C3 satellite captured an extraordinary phenomenon near the sun. In a split second, the satellite's imaging was disrupted by what appeared to be a swarm of spherical objects hurtling through space at incredible speeds. 

donut%20shaped%20UFO%20sun%20(1).jpg

Speculation surrounds the event, with some suggesting it could be a meteor debris field. However, the unusual appearance of the objects has raised questions. Could debris naturally form into such perfectly round shapes, each featuring a dark center that resembles donut-shaped UFOs? 

donut%20shaped%20UFO%20sun%20(2).jpg

This event might be a natural occurrence, however, with all the recent strange sightings of unknown drones, UFOs, and orbs combined with predictions from several specialists that something significant might happen soon in the realm of the UFO phenomena, one might wonder if these mysterious spheres are connected to something larger on the horizon?

donut%20shaped%20UFO%20sun%20(3).jpg


View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:00:40 Back in 2023, we reported on Solar Orbiter’s discovery of tiny jets near the Sun’s south pole that could be powering the solar wind. The team behind this research has now used even more data from the European Space Agency’s prolific solar mission to confirm that these jets exist all over dark patches in the Sun’s atmosphere, and that they really are a source of not only fast but also slow solar wind.
      The newfound jets can be seen in this sped-up video as hair-like wisps that flash very briefly, for example within the circled regions of the Sun's surface. In reality they last around one minute and fling out charged particles at about 100 km/s.
      The surprising result is published today in Astronomy & Astrophysics, highlighting how Solar Orbiter’s unique combination of instruments can unveil the mysteries of the star at the centre of our Solar System.
      The solar wind is the never-ending rain of electrically charged particles given out by the Sun. It pervades the Solar System and its effects can be felt on Earth. Yet despite decades of study, its origin remained poorly understood. Until now.
      The solar wind comes in two main forms: fast and slow. We have known for decades that the fast solar wind comes from the direction of dark patches in the Sun’s atmosphere called coronal holes – regions where the Sun’s magnetic field does not turn back down into the Sun but rather stretches deep into the Solar System.
      Charged particles can flow along these ‘open’ magnetic field lines, heading away from the Sun, and creating the solar wind. But a big question remained: how do these particles get launched from the Sun in the first place?
      Building upon their previous discovery, the research team (led by Lakshmi Pradeep Chitta at the Max Planck Institute for Solar System Research, Germany) used Solar Orbiter’s onboard ‘cameras’ to spot more tiny jets within coronal holes close to the Sun’s equator.
      By combining these high-resolution images with direct measurements of solar wind particles and the Sun’s magnetic field around Solar Orbiter, the researchers could directly connect the solar wind measured at the spacecraft back to those exact same jets.
      What’s more, the team was surprised to find not just fast solar wind coming from these jets, but also slow solar wind. This is the first time that we can say for sure that at least some of the slow solar wind also comes from tiny jets in coronal holes – until now, the origin of the solar wind had been elusive.
      The fact that the same underlying process drives both fast and slow solar wind comes as a surprise. The discovery is only possible thanks to Solar Orbiter’s unique combination of advanced imaging systems, as well as its instruments that can directly detect particles and magnetic fields.
      The measurements were taken when Solar Orbiter made close approaches to the Sun in October 2022 and April 2023. These close approaches happen roughly twice a year; during the next ones, the researchers hope to collect more data to better understand how these tiny jets ‘launch’ the solar wind.
      Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. This research used data from Solar Orbiter’s Extreme Ultraviolet Imager (EUI), Polarimetric and Helioseismic Imager (PHI), Solar Wind Plasma Analyser (SWA) and Magnetometer (MAG). Find out more about the instruments Solar Orbiter is using to reveal more about the Sun.
      Read our news story from 2023 about how Solar Orbiter discovered tiny jets that could power the solar wind
      Read more about how Solar Orbiter can trace the solar wind back to its source region on the Sun
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 
      NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 
      “The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  
      What Are Distributed Space Missions? 
      Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  
      Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  
      Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 
      The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 
      Experimenting With DSA in Low Earth Orbit
      The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  
      “We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  
      The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 
      During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   
      Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 
      “Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit  
      The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   
      The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  
      The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 
      Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read NASA Awards Contract for Airborne Science Flight Services Support
      Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
      Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      STMD Small Spacecraft Technology
      Starling
      View the full article
    • By NASA
      3 Min Read How Does the Sun Behave? (Grades K-4)
      This article is for students grades K-4.
      The Sun is a star. It is the biggest object in our solar system. The Sun is about 93 million miles away from Earth and about 4.5 billion years old. The Sun affects Earth’s weather, seasons, climate, and more. Let’s learn about how the Sun behaves.
      Why is the Sun warm and bright?
      The Sun is a giant ball made of hydrogen and helium gases. Deep in the center of the Sun, hydrogen atoms are pressed together. This forms helium. When this happens, energy is released. That energy is the heat and light we feel and see all the way here on Earth.
      Hydrogen atoms are pressed together to form helium. This releases energy in the form of heat and light. Does the Sun ever change?
      Sometimes, the Sun is very active. It gives off a lot of energy. Other times, it is quieter. It gives off less energy. This pattern is called the solar cycle. One solar cycle lasts about 11 years.
      Scientists call the time when the Sun is active “solar maximum.” During this time, we see darker, cooler spots on the Sun’s surface. These are called sunspots. When the Sun is less active, scientists call that “solar minimum.”
      Scientists call the time when the Sun is active “solar maximum.” When the Sun is less active, scientists call that “solar minimum.” Does the Sun have a north pole?
      Yes! Just like Earth, the Sun has north and south magnetic poles. But every 11 years, the Sun’s poles flip. North becomes south and south becomes north.
      Every 11 years, the Sun’s poles flip. North becomes south and south becomes north. What is space weather?
      Space weather includes things like solar wind, solar storms, and solar flares. When the Sun is active, these things can have an impact on Earth and in space.
      Let’s learn more about space weather and how it affects our planet.
      What is solar wind?
      The solar wind is a constant wave of particles flowing out into space from the Sun’s surface. It travels deep into space. When the solar wind reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. These are called auroras or the northern and southern lights.
      When the solar wind from the Sun reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. What are solar storms and solar flares?
      The Sun’s magnetic fields are always moving. They twist and stretch. Sometimes they snap and reconnect. When this happens, it releases a burst of energy. This can cause a solar storm.
      Solar storms can include solar flares. A solar flare is a blast of light and energy from the Sun’s surface. They usually erupt near sunspots. Solar flares happen more often during solar maximum and less often during solar minimum.  
      A solar flare is a blast of light and energy from the Sun’s surface. How does space weather affect Earth?
      Earth is protected from most space weather. Our atmosphere and magnetic field act like a shield. But strong solar storms can still cause problems. Areas might lose electricity. Radios might not work. Satellites can be damaged. NASA keeps an eye on space weather. If strong storms are predicted, teams work to protect spacecraft and astronauts in space.

      How are we learning more about the Sun?
      A space probe is a robot that explores space. They often visit other planets, moons, or asteroids and comets that also orbit the Sun. NASA’s Parker Solar Probe launched to the Sun in 2018. The Parker Solar Probe is on a special mission. It flies very close to the Sun to collect information. This will help scientists learn new things about the Sun and how it affects life on Earth.
      Visit these websites to read more about the Sun:
      https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/menu/sun/ https://www.nasa.gov/stem-content/our-very-own-star-the-sun/ Read NASA Knows: How Does the Sun Behave? (Grades 5-8).

      Explore More for Students Grades K-4
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) Planetary Defence Office is closely monitoring the recently discovered asteroid 2024 YR4, which has a very small chance of impacting Earth in 2032.
       This page was last updated on 29 January 2025.
      View the full article
    • By European Space Agency
      Hisdesat, Spain's premier provider of secure satellite communications, is set to launch its SpainSat Next Generation I (SNG I) satellite aboard a SpaceX Falcon 9 rocket on 29 January from Cape Canaveral, Florida at 20:34 EST (30 January at 02:34 CET). The European Space Agency (ESA)-supported satellite will provide more cost-effective, adaptable and secure communication services for governments and emergency response teams across Europe, North and South America, Africa, the Middle East and up to Singapore in Asia.
      View the full article
  • Check out these Videos

×
×
  • Create New...