Jump to content

February’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part I


NASA

Recommended Posts

  • Publishers

2 min read

February’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part I

by Kat Troche of the Astronomical Society of the Pacific

Winter in the northern hemisphere offers crisp, clear (and cold!) nights to stargazers, along with better views of several circumpolar constellations. What does circumpolar mean when referring to constellations? This word refers to constellations that surround the north and south celestial poles without ever falling below the horizon. Depending on your latitude, you will be able to see up to nine circumpolar constellations in the northern hemisphere. Today, we’ll focus on three that have gems within: Auriga, Cassiopeia, and Ursa Minor. These objects can all be spotted with a pair of binoculars or a small to medium-sized telescope.

The counterclockwise constellations Auriga, Cassiopeia and Ursa Minor in the night sky, with four objects circled in yellow labeled: Pinwheel Cluster, Starfish Cluster, Owl Cluster, and Polaris
The counterclockwise circumpolar constellations Auriga, Cassiopeia, and Ursa Minor in the night sky, with four objects circled in yellow labeled: Pinwheel Cluster, Starfish Cluster, Owl Cluster, and Polaris.
Credit: Stellarium Web
  • The Pinwheel Cluster: Located near the edge of Auriga, this open star cluster is easy to spot with a pair of binoculars or small telescope. At just 25 million years old, it contains no red giant stars and looks similar to the Pleiades. To find this, draw a line between the stars Elnath in Taurus and Menkalinan in Auriga. You will also find the Starfish Cluster nearby.
  • The Owl Cluster: Located in the ‘W’ or ‘M’ shaped constellation Cassiopeia, is the open star cluster known as the Owl Cluster. Sometimes referred to as the E.T. Cluster or Dragonfly Cluster, this group of stars never sets below the horizon and can be spotted with binoculars or a small telescope.
A black and white image from the Hubble Telescope of the Polaris star system, showing three stars: Polaris A, Ab, and Polaris B.
A black and white image from the Hubble Telescope of the Polaris star system, showing three stars: Polaris A, Ab, and Polaris B.
Credit: NASA, ESA, N. Evans (Harvard-Smithsonian CfA), and H. Bond (STScI)
  • Polaris: Did you know that Polaris is a triple star system? Look for the North Star on the edge of Ursa Minor, and with a medium-sized telescope, you should be able to separate two of the three stars. This star is also known as a Cepheid variable star, meaning that it varies in brightness, temperature and diameter. It’s the closest one of its kind to Earth, making it a great target for study and conceptual art.
A black and white artist rendition of the Polaris star system, showing three stars: Polaris A, Ab, and Polaris B.
Artist’s Concept of Polaris System – Annotated
Credit: NASA, ESA, G. Bacon (STScI)

Up next, catch the King of the Planets before its gone for the season with our upcoming mid-month article on the Night Sky Network page through NASA’s website!

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Photographing faint objects close to bright stars is incredibly difficult. Yet, by combining data from ESA's Gaia space telescope with ESO’s GRAVITY instrument on the ground, scientists managed just that. They took the first pictures of so far unseen dim companions of eight luminous stars. The technique unlocks the tantalising possibility to capture images of planets orbiting close to their host stars.
      View the full article
    • By European Space Agency
      Image: Moving the Ariane 6 upper part to the launch pad for first flight View the full article
    • By NASA
      A collaboration between the MSFC Lightning Team, NOAA NESDIS, and the NASA ARSET (Applied Remote Sensing Training) team completed on 4/2/24 with the final installment of a three-part series focused on Lightning Observations and Applications. On 3/26/24, Part 1 was presented to an audience of people from around the globe focused on the background and history of lightning measurements. This presentation was given by Steven Goodman of Thunderbolt Technologies. Part 2 was titled” Overview of Current Lightning Data Products from Remote Sensing” and was given by MSFC Lightning lead Timothy Lang (ST11). This presentation focused a lot on NASA lightning missions, field campaigns, and data access and was given on 3/28/24. The final installment of the ARSET lightning series was given on 4/2/24 by Scott Rudlosky of NOAA NESDIS and Christopher Schultz (ST11) of MSFC. This third part focused specifically on the Geostationary Lightning Mapper and applications of the data for science, identify lightning hazards, and safety. The average total attendance was around 225 people per session. Schultz took a lead role in working with the ARSET team to identify the speakers, topics, and review materials for presentation. Each of the 6 sessions (2 per day per topic, 1.5 hours each session) were followed up with 10-15 questions from the audience. The ARSET team indicates that there is potential for additional lightning-based trainings going forward given the response to this first series.
      View the full article
    • By NASA
      2 min read
      June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III
      by Kat Troche of the Astronomical Society of the Pacific
      In our final installment of the stars around the North Star, we look ahead to the summer months, where depending on your latitude, the items in these circumpolar constellations are nice and high. Today, we’ll discuss Cepheus, Draco, and Ursa Major. These objects can all be spotted with a medium to large-sized telescope under dark skies.
      From left to right: Ursa Major, Draco, and Cepheus. Credit: Stellarium Web Herschel’s Garnet Star: Mu Cephei is a deep-red hypergiant known as The Garnet Star, or Erakis. While the star is not part of the constellation pattern, it sits within the constellation boundary of Cepheus, and is more than 1,000 times the size of our Sun. Like its neighbor Delta Cephei, this star is variable, but is not a reliable Cepheid variable. Rather, its brightness can vary anywhere between 3.4 to 5.1 in visible magnitude, over the course of 2-12 years.
      This composite of data from NASA’s Chandra X-ray Observatory and Hubble Space Telescope gives astronomers a new look for NGC 6543, better known as the Cat’s Eye nebula. This planetary nebula represents a phase of stellar evolution that our sun may well experience several billion years from now. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI The Cat’s Eye Nebula: Labeled a planetary nebula, there are no planets to be found at the center of this object. Observations taken with NASA’s Chandra X-ray Observatory and Hubble Space Telescopes give astronomers a better understanding of this complex, potential binary star, and how its core ejected enough mass to produce the rings of dust. When searching for this object, look towards the ‘belly’ of Draco with a medium-sized telescope.
      NASA’s Spitzer, Hubble, and Chandra space observatories teamed up to create this multi-wavelength view of the M82 galaxy. The lively portrait celebrates Hubble’s “sweet sixteen” birthday .X-ray data recorded by Chandra appears in blue; infrared light recorded by Spitzer appears in red; Hubble’s observations of hydrogen emission appear in orange, and the bluest visible light appears in yellow-green. Credit: NASA, ESA, CXC, and JPL-Caltech Bode’s Galaxy and the Cigar Galaxy: Using the arrow on the star map, look diagonal from the star Dubhe in Ursa Major. There you will find Bode’s Galaxy (Messier 81) and the Cigar Galaxy (Messier 82). Sometimes referred to as Bode’s Nebula, these two galaxies can be spotted with a small to medium-sized telescope. Bode’s Galaxy is a classic spiral shape, similar to our own Milky Way galaxy and our neighbor, Andromeda. The Cigar Galaxy, however, is known as a starburst galaxy type, known to have a high star formation rate and incredible shapes. This image composite from 2006 combines the power of three great observatories: the Hubble Space Telescope imaged hydrogen in orange, and visible light in yellow green; Chandra X-Ray Observatory portrayed X-ray in blue; Spitzer Space Telescope captured infrared light in red.
      Up next, we celebrate the solstice with our upcoming mid-month article on the Night Sky Network page through NASA’s website!
      View the full article
  • Check out these Videos

×
×
  • Create New...