Members Can Post Anonymously On This Site
Scientists spot hidden companions of bright stars
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
“I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
“It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
“It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
What’s Next for Plume Testing
Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-122
Share
Details
Last Updated Sep 11, 2024 Related Terms
Mars Jet Propulsion Laboratory Explore More
5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
Mars was once a very wet planet as is evident in its surface geological features.…
Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
For some people, working for NASA is a lifelong dream. For others, it is an interesting and perhaps unexpected opportunity that comes up at just the right time and place.
Everything from family ties and influential teachers to witnessing human spaceflight history and enjoying sci-fi entertainment has helped bring people of all backgrounds together at NASA’s Johnson Space Center in Houston. Several of them recently shared their inspiration to join the NASA team.
***
“As a kid, I always had my head up looking at the stars. I loved astronomy and seeing videos of humans walking on the Moon fascinated me! I wanted to be the first female to walk on the Moon. When Star Wars came out, I wanted to build my own R2-D2 that could explore the galaxies. I was curious how things worked (so I could build a robot) and a cousin told me about engineering. That was the name for what I wanted to do! So, I went to the High School for Engineering Professions in Houston. The guidance counselor there told me about an opportunity to apply for a summer internship with NASA as a junior. I got in and I’ve worked with NASA as much as I could since I was 16 years old – internships and full-time positions. I may not get the chance to be an astronaut and walk on the Moon, but I know I will play a role in helping achieve that dream for another female and a person of color!”
– Alicia Baker, engineering project manager for Portable Life Support System test support, JSC Engineering, Technology, and Science (JETS) Contract
Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos “My dad was an aerospace engineer with Lockheed Martin. I went to take your kid to work day and got to stand in front of a booster engine. I’ve wanted to work in the space industry ever since. I almost didn’t enter the field after getting my aerospace degree, but I was fortunate to take an Intro to Human Spaceflight class during my last quarter of college. Without that class and the professor (who had worked at Johnson) I wouldn’t be here today. I’m so glad my path led me here. Johnson is such a great place to be, and I can look back and tell little Margaret that we did it!”
– Margaret Kennedy, aerospace systems engineer, Engineering Directorate Crew and Thermal Systems Division
Margaret Kennedy and her dad visited Space Center Houston when she started her job at NASA’s Johnson Space Center in October 2019.Image courtesy of Margaret Kennedy “In first grade, my teacher organized a ‘Space Week’ in which we learned about outer space. Her sons – who were studying engineering in college – came and launched model rockets for us. I knew from that point on that I wanted to work at NASA when I grew up.”
– Krista Farrell, International Space Station attitude determination and control officer and motion control systems instructor; Boeing Starliner guidance, navigation, and control instructor
Krista Farrell (center) stands with members of the Expedition 71 crew. From left: NASA astronauts Jeannette Epps, Matt Dominick, and Mike Barratt; Roscosmos cosmonaut Alexander Grebenkin; and NASA astronaut Tracy C. Dyson. NASA/Josh Valcarcel “I didn’t think I would ever work for NASA. But multiple professors in college encouraged me to challenge myself and do some space research. I realized that it was something that I was very passionate about. Thanks to my research work for the Europa Clipper as an undergraduate student, I got my first internship at NASA and subsequently an offer to join the Pathways Program. Now I am part of a small group of engineers that solve entry, descent, and landing problems for multiple missions on Earth, the Moon, and Mars.”
– Sergio Sandoval, guidance engineer, Engineering Directorate Flight Mechanics and Trajectory Design Branch
Sergio Sandoval helps staff a NASA table during a Johnson Space Center community engagement event.Image courtesy of Sergio Sandoval
“Dad would take me to the viewing room of the original Mission Operations Control Room (MOCR) during the Apollo era. He was one of the people supporting MOCR in the Staff Support Room. I have worked at Johnson for 27 years [as a contractor] for Lockheed Martin, Hamilton Sundstrand, and Jacobs Technology.”
– David Fanelli, software engineer, Energy Systems Test Area
“In early 1969, when I was a boy, my uncle visited the Johnson Space Center and brought back astronaut and mission photos of the recently completed Apollo 8 lunar orbiting mission. Those photos, coupled with a Saturn V rocket model I assembled, and the Time Life records and books about the Apollo space program my parents purchased for me, sparked my imagination. I knew I wanted to work for NASA one day. It wasn’t until many years later that that dream became a reality, when I joined NASA’s co-op program for college students during my second attempt to become an aeronautical engineer. After I graduated college, I began working full time as a civil servant engineer at Johnson.”
– David Fletcher, NASA lead, Gateway-Ready Avionics Integration Lab
David Fletcher (center) with his daughters Jessica (left) and Erica (right). Image courtesy of David Fletcher
“I remember watching Star Trek and Star Wars as a kid with my dad. I found some of his college notes in a box one day and thought the small, neat print on graph paper pads was really pretty. He went to the University of Texas at Austin to study astrophysics and engineering, but he never got to finish. Fast forward to 2022 and I find myself in Houston for an unknown amount of time, so I decided to go out and make some friends. I met a woman at a Geeky Game Night, and I learned that she was a food scientist at NASA! After talking some more, she told me to send her my resume. Later that week I received a call to set up an interview. I’m still in awe of how that one chance connection led me to my childhood dream of working at NASA.”
– Kristin Dillon, document/IT specialist, Space Food Systems Laboratory
“I grew up in a small agricultural village in India. My first introduction to spaceflight was reading Russian cosmonauts’ translated accounts of the Apollo-Soyuz Test Project as a young girl. I am still not sure whether my father picked that book for me on a whim or with a grand dream for his daughter, but it certainly had me hooked. However, I found my true calling to make human spaceflight safer and more efficient after witnessing the Columbia mishap. India, at the time, did not have a human spaceflight program. Thus started a 20-year-long grand adventure of seeking opportunities, pursuing them, immigrating to the United States, and finding my path to NASA, which culminated in a Pathways internship at Johnson.”
– Poonampreet Kaur Josan, three-time Pathways intern, currently supporting the Human Health and Performance Directorate Habitability and Human Factors Branch
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Artist David Bowen works on “tele-present wind,” featuring grass stalks that move in response to Martian wind data previously collected by NASA’s Perseverance rover mission. Behind him sits JPL data systems architect Rishi Verma.NASA/JPL-Caltech Works in ‘Blended Worlds: Experiments in Interplanetary Imagination,’ an exhibit in Glendale, California, help shrink the universe into something tangible.
The universe is vast and filled with countless worlds, but a new exhibit at the Brand Library & Art Center in Glendale, California, aims to shrink time and space. For “Blended Worlds: Experiments in Interplanetary Imagination,” artists collaborated with scientists and engineers from NASA’s Jet Propulsion Laboratory to create cross-disciplinary works that help illuminate the universe by bringing art and science together.
On view from Sept. 21, 2024, to Jan. 4, 2025, the exhibition is part of “PST ART: Art & Science Collide,” an event presented by the Getty and involving more than 70 exhibitions from museums and institutions across Southern California exploring the intersection of art and science.
“The magic of art is that it enhances our experiences and interactions with the world — and in this case, our universe,” said Dr. Laurie Leshin, director of JPL in Southern California. “We’re honored to work with great artists to bring the wonders of space to our community through this exhibition, which invites us all to be part of a grand journey of exploration and discovery.”
The 126 grass stalks of “tele-present wind” are attached to mechanical tilting devices that move in response to Martian wind data.NASA/JPL-Caltech David Bowen’s installation “tele-present wind” features grass stalks attached to tilting mechanical devices that move in response to Martian wind data previously collected by NASA’s Perseverance rover mission. Helping make the effort possible were Rishi Verma, a data systems architect at JPL, and José Antonio Rodríguez-Manfredi, the principal investigator of the Mars Environmental Dynamics Analyzer (MEDA) system on Perseverance.
For “Seismic Percussion,” artist Moon Ribas creates an interplanetary drum score by translating seismic data from Earth, the Moon, and Mars. For Mars data, JPL’s Verma worked with Nobuaki Fuji of the Institut de Physique du Globe de Paris, who collaborated on NASA’s now-retired InSight lander. Ceri Nunn, a JPL planetary scientist, assisted with moonquake data.
Also featured is a handwritten version of U.S. Poet Laureate Ada Limón’s “In Praise of Mystery: A Poem for Europa,” the poem she dedicated to NASA’s Europa Clipper mission, which is targeting an October launch and will make multiple flybys of Jupiter’s icy moon Europa. The poem has been etched onto a metal plate on the spacecraft and will ride with the orbiter on its long journey.
Additional works allow visitors to experience Earth’s wonders through scents, use sound to convey the vast distances between our planet and those beyond our solar system, and blend heartbeats and other Earthly sounds with sonified data from Europa’s magnetic field.
“We were looking to create imaginative opportunities for people to connect with each other as they connect with the awe-inspiring science being conducted today,” said David Delgado, a cultural strategist and the project lead at JPL. “I know this experience has really opened the eyes of everyone collaborating on the project, and we hope it does the same for people who come to see ‘Blended Worlds.’”
As part of PST ART, a number of public programs and community events will also accompany the “Blended Worlds” gallery exhibition, including “Blended Worlds: An Evening of Art, Theater, and Science” hosted by Reggie Watts at the Alex Theatre in Glendale on Oct. 5, and “Earth Data: The Musical,” an original musical developed by Theater Arts at Caltech exploring the challenges of climate research and science as a human pursuit at Caltech’s Ramo Auditorium Nov. 1 to 3.
Artists’ collaborations with JPL and the display of their works at Glendale’s Brand Library were made possible by the generous support of the Glendale Arts and Culture Commission and the Glendale Library, Arts & Culture Trust.
More About JPL
A division of Caltech in Pasadena, California, JPL began in 1936 and ultimately built and helped launch America’s first satellite, Explorer 1, in 1958. By the end of that year, Congress established NASA and JPL became a part of the agency. Since then, JPL has managed such historic missions as Voyager, Galileo, Cassini, the Mars Exploration Rover program, the Perseverance Mars rover, and many more.
More About Glendale Library, Arts & Culture
Founded in 1907, the Glendale Library, Arts & Culture Department includes eight neighborhood libraries including the Brand Library & Art Center, a regional visual arts and music library and performance venue housed in the historic 1904 mansion of Glendale pioneer Leslie C. Brand, and the Central Library, a 93,000-square-foot center for individuals and groups to convene, collaborate, and create. The department also serves as the chief liaison to the Glendale Arts and Culture Commission which works to continually transform Glendale into an ever-evolving arts destination. Glendale Library Arts & Culture is supported in part through the efforts of the Glendale Library Arts & Culture Trust (GLACT). For more information visit GlendaleLAC.org, or contact Library, Arts & Culture at 818-548-2021 or via email at LibraryInfo@GlendaleCA.gov. Follow on Instagram, Facebook, and X at @MyGlendaleLAC.
For more information about PST ART: Art & Science Collide, visit: pst.art
News Media Contact
Matthew Segal / Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307 / 626-314-4928
matthew.j.segal@jpl.nasa.gov / melissa.pamer@jpl.nasa.gov
2024-120
Share
Details
Last Updated Sep 09, 2024 Related Terms
Jet Propulsion Laboratory Explore More
5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
Article 2 weeks ago 6 min read Work Is Under Way on NASA’s Next-Generation Asteroid Hunter
Article 2 weeks ago 5 min read NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA’s Advanced Composite Solar Sail System is seen orbiting Earth in this 13-second exposure photograph, Monday, Sept. 2, 2024, from Arlington, Virginia. The mission team confirmed the spacecraft’s unique composite boom system unfurled its reflective sail on Thursday, Aug. 29, 2024, accomplishing a critical milestone in the agency’s demonstration of next-generation solar sail technology that will allow small spacecraft to “sail on sunlight.” Just as a sailboat is powered by wind in a sail, a spacecraft can use the pressure of sunlight on a solar sail for propulsion. This technology demonstration serves as a pathfinder for future missions powered by solar sail technology.NASA/Bill Ingalls Now that its reflective sail has deployed fully open in orbit, the Advanced Composite Solar Sail System can be seen in the night sky from many locations across the world!
Stargazers can join NASA’s #SpotTheSail campaign by using the NASA app on mobile platforms to find out when the spacecraft will be visible at their location. The app, which is free to use and available on iOS and Android, provides a location-specific schedule of upcoming sighting opportunities. A built-in augmented reality tool points users to the location of the spacecraft in real time.
Can you spot the solar sail? Share your viewing experience online using the hashtag #SpotTheSail for a chance to be featured on NASA’s website and social media channels.
Here’s how to use the sighting prediction tool:
Install and open the NASA app on an iOS or Android device. Tap on the “Featured” tab on the bottom navigation bar. Tap on the Advanced Composite Solar Sail System mission from the Featured Missions at the top of the screen. Tap on the “Sightings” tab on the bottom navigation bar. A list of all the upcoming sightings for your location will be displayed. If you are using an iOS device, you can tap on the “Sky View” link for an augmented reality guide to help you locate the spacecraft’s real-time location during the visible pass. NASA’s Advanced Composite Solar Sail System is testing new technologies in low Earth orbit, including a composite boom system that supports a four-piece sail. Not to be confused with solar panels, solar sails allow small spacecraft to “sail on sunlight,” eliminating the need for rocket fuel or other conventional propellants. This propulsion technology can enable low-cost deep space missions to increase access to space.
For ongoing mission updates, follow us on social media:
X: @NASAAmes, @NASA
Facebook: NASA Ames, NASA
Instagram: @NASAAmes, @NASA
NASA’s Ames Research Center in California’s Silicon Valley manages the Advanced Composite Solar Sail System project and designed and built the onboard camera diagnostic system. NASA’s Langley Research Center in Hampton, Virginia, designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology program office based at NASA Ames and led by the agency’s Space Technology Mission Directorate (STMD) in Washington, funds and manages the mission. NASA STMD’s Game Changing Development program developed the deployable composite boom technology. Rocket Lab USA, Inc of Long Beach, California, provided launch services. NanoAvionics provided the spacecraft bus.
View the full article
-
By NASA
NASA research mathematician Katherine Johnson is photographed at her desk at NASA Langley Research Center with a globe, or “Celestial Training Device,” in 1962. Credit: NASA / Langley Research Center NASA Administrator Bill Nelson will represent the agency during a Congressional Gold Medal ceremony at 3 p.m. EDT Wednesday, Sept. 18, recognizing the women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program.
Hosted by House Speaker Mike Johnson, the Congressional Gold Medal Ceremony will take place inside Emancipation Hall at the U.S. Capitol in Washington. Nelson is expected to be among the speakers.
The event will stream live on the speaker’s YouTube channel. The agency will share a direct link on this advisory in advance of the event.
Media without current congressional credentials on the Hill interested in participating in the event must RSVP by Sept. 13, to Abby Ronson at: abby.ronson@mail.house.gov.
Medal Information
Introduced by Rep. Eddie Bernice Johnson on Feb. 27, 2019, H.R.1396 – Hidden Figures Congressional Gold Medal Act – was signed into law later that year. Awards will include:
Congressional Gold Medal to Katherine Johnson, in recognition of her service to the United States as a mathematician Congressional Gold Medal to Dr. Christine Darden, for her service to the United States as an aeronautical engineer Congressional Gold Medals in commemoration of the lives of Dorothy Vaughan and Mary Jackson, in recognition of their service to the United States during the space race Congressional Gold Medal in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee for Aeronautics and NASA between the 1930s and the 1970s. For more information about NASA missions, visit:
https://www.nasa.gov
-end-
Meira Bernstein / Cheryl Warner
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.