Jump to content

NASA’s Educational CubeSats: Small Satellites, Big Impact


NASA

Recommended Posts

  • Publishers
daili-deployment-1.jpg?w=893
The CubeSats from NASA’s ELaNa 38 mission were deployed from the International Space Station on Jan. 26, 2022. Seen here is the deployment of The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI).
NASA

Despite their small size, the satellites launching through NASA’s CubeSat Launch Initiative (CSLI) missions have a big impact, creating access to space for many who might not otherwise have the opportunity. One recent mission tells the story of four teams of researchers and engineers who conceived, built, launched, and collected data from these shoebox-sized satellites, helping them answer a host of questions about our planet and the universe.

The teams’ CubeSats launched as part of the ELaNa 38 (Educational Launch of Nanosatellites) mission, selected by CSLI and assigned to the mission by NASA’s Launch Services Program. A little more than a month after launching aboard SpaceX’s 24th commercial resupply services mission from NASA’s Kennedy Space Center in Florida, the CubeSats were deployed from the International Space Station on Jan. 26, 2022.

Being selected by CSLI was an inspirational once-in-a-lifetime opportunity for more than 100 undergraduate students who worked on ELaNA 38’s Get Away Special Passive Attitude Control Satellite (GASPACS) CubeSat.

“None of us had ever worked on a project like this, much less built a satellite on our own,” said Jack Danos, team coordinator of Utah State University’s Get Away Special, or GAS Team. “When we first heard the audio beacon from our satellite in orbit, we all cheered.”

It took the GAS Team nearly a decade to develop and build GASPACS – the team’s first CubeSat – with many team members graduating in the process. But the team’s focus remained the same – to deploy and photograph a meter-long inflatable boom, known as the AeroBoom, from its CubeSat in Low Earth orbit.

gaspacs-hq1.jpeg?w=2048
A photograph taken by the GASPACS CubeSat shows the AeroBoom fully deployed.
Utah State University

“When we saw that first photo come through, we were blown away, speechless,” Danos said. “This had been a decade of work and learning everything required for a real satellite mission – a lot of us got skills that we never could have gotten in a normal school environment.”

The team of college students who built Georgia Tech’s Tethering and Ranging mission (TARGIT) developed it to test an imaging LiDAR system capable of detailed topographic mapping from orbit. TARGIT’s students machined the CubeSat components themselves and integrated several new technologies into the final flight system.

“CSLI was a great window into how NASA works and the formal processes to ensure the hardware that gets launched meets requirements,” said Dr. Brian Gunter, principal investigator on the Georgia Institute of Technology TARGIT CubeSat. “Our spacecraft would not have made it to orbit without this program.”

targitcubesat.jpg?w=286
Georgia Tech’s Tethering and Ranging CubeSat engaged over 100 students at the university and overcame obstacles presented by the global pandemic to get to launch.
Georgia Institute of Technology

Prior to launch, the Georgia Tech team worked closely with NASA’s CSLI team, gained considerable industry experience, and delivered a flight-ready spacecraft, even after COVID forced a full shutdown of activity for an extended period, during which many key team members graduated.

“Just getting the spacecraft ready and delivered was the greatest achievement for the group and was a nice example of teamwork and resiliency from the students,” Gunter said.

Not all ELaNa 38’s CubeSats were student-built. With the goal of studying processes affecting Earth’s upper atmosphere and ionosphere, The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI) CubeSat employed an ambitious forward sunshade that was key to DAILI’s ability to examine atmospheric variations during daytime. As perhaps the most sophisticated sunshade ever flown on a CubeSat, it reduced intense scattered light from the Sun, the Earth’s surface, and low-altitude clouds by a factor of almost a trillion.

DAILI Cubesat.
The Aerospace Corporation’s DAILI featured an ambitious sunshade that helped the CubeSat examine minute variations in the atmosphere.
The Aerospace Corporation

“Not only did we have a shade that occupied over half of the space we had on the CubeSat – we also needed room for the optics, the detector, and for the CubeSat bus,” said Dr. James Hecht, senior scientist at Ionospheric and Atmospheric Sciences at Aerospace and DAILI principal investigator. “The effectiveness of the shade depended greatly on the length of the shade to the angular field of view of DAILI. It was a challenge, but it worked.”

Rounding out the ELaNa 38 flight was the Passive Thermal Coating Observatory Operating in Low Earth Orbit (PATCOOL) satellite, sponsored by NASA’s Launch Services Program and developed by the Advanced Autonomous Multiple Spacecraft Laboratory at the University of Florida. PATCOOL tested a highly reflective surface coating called “solar white” to measure its efficiency as way to passively cool components in space.

PATCOOL CubeSat.
PATCOOL during its development at the Advanced Autonomous Multiple Spacecraft Laboratory at the University of Florida
University of Florida

Through ELaNa 38’s four small satellites, hundreds of individuals – many developing and launching spacecraft for the first time – achieved access to space. For NASA, increasing access to space and making data and innovations accessible to all also serves to reinforce the future of the country’s space industry.

“This is an opportunity that you just can’t get anywhere else – the ability to send something into space, get the ride paid for, and form relationships within the industry,” Danos said. “There are so many members of the team that went into the space industry after the mission – a mission we literally couldn’t have done without NASA’s CSLI.”

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      “Houston, Tranquility Base here, the Eagle has landed.” “That’s one small step for [a] man, one giant leap for mankind.” “Magnificent desolation.” Three phrases that recall humanity’s first landing on and exploration of the lunar surface. In July 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed humanity’s first landing on the Moon. They fulfilled President John F. Kennedy’s national goal, set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. Scientists began examining the first Moon rocks two days after the Apollo 11 splashdown while the astronauts began a three-week postflight quarantine.

      Just another day at the office. Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch.

      Left: Buzz, Mike, and Neil study their flight plans one more time. Middle: Neil and Buzz in the Lunar Module simulator. Right: Mike gets in some flying a few days before launch.

      Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14.

      Left: The crew. Middle: The patch. Right: The crew conquer the Moon, a TIME LIFE photograph.

      Left: Breakfast, the most important meal if you’re going to the Moon. Middle: Proper attire for lunar travel. Right: Wave good-bye to all your friends and supporters before you head for the launch pad.

      Left: Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown. Middle: Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky. Right: Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear.

      Left: Lady Bird, LBJ, and VP Agnew in the VIP stands. Right: A million more camped out along the beaches to see the historic launch.

      July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A.

      Left: The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky. Middle: First stage separation for Apollo 11. Right: Made it to orbit!

      Left: Hey, don’t forget your LM! Middle: Buzz in the LM: “S’allright?” “S’allright!” Right: As the world turns smaller.

      Left: Hello Moon! Middle left: Hello Earth! Middle right: See you soon, Columbia! Right: See you soon, Eagle! Happy landing!

      July 20, 1969. Left: Magnificent desolation, from Buzz’s window after landing. Middle: Neil takes THE first step. Right: First image taken from the lunar surface.

      Left: Neil grabs a contingency sample, just in case. Middle left: Buzz joins the party. Middle right: Neil and Buzz read the plaque. Right: Buzz sets up the solar wind experiment.

      Left: Buzz and Neil set up the flag. Middle left: Neil takes that famous photo of Buzz. Middle right: You know, this famous photo! Right: Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil.

      Left: Buzz had the camera for a while and snapped one of the few photos of Neil on the surface. Middle left: Buzz, the seismometer, and the LM. Middle right: The LM and the laser retroreflector. Right: One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection.

      Neil took a stroll to Little West Crater and took several photos, spliced together into this pano.

      Left: Neil after the spacewalk, tired but satisfied. Middle left: Ditto for Buzz. Middle right: The flag from Buzz’s window before they went to sleep. Right: The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight.

      July 21, 1969. Left: Liftoff, the Eagle has wings again! Middle left: Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it. Middle right: On the way home, the Moon gets smaller. Right: And the Earth gets bigger.

      July 24, 1969. Left: Splashdown, as captured from a recovery helicopter. Middle: Upside down in Stable 2, before balloons inflated to right the spacecraft. Right: Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft.

      Left: Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft. Middle: Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory. Right: The same scene, taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo.

      Left: Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind. Middle left: NASA engineer John Hirasaki filmed the astronauts as they entered the MQF. Middle right: Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window. Right: Neil, playing the ukelele, Buzz, and Mike inside the MQF.

      Follow the Moon rocks from the Hornet to Ellington AFB. Left: NASA technician receives the first box of Moon rocks from the MQF’s transfer lock. Middle Left: Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston. Middle right: Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later. Right: Senior NASA managers hold the first box of Moon rocks.

      July 25, 1969. Follow the Moon rocks from Ellington to the glovebox in the Lunar Receiving Laboratory (LRL). Left: NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC. Middle right: In the LRL, technicians at MSC unpack the first box of Moon rocks. Middle right: Technicians weigh the box of Moon rocks. Right: The first box of Moon rocks inside a glovebox.

      July 26, 1969. Follow the Moon rocks in the LRL glovebox. Left: The first box of Moon rocks has been unwrapped. Middle: The box has been opened, revealing the first lunar samples. Right: The first rock to be documented, less than 48 hours after splashdown.

      July 26, 1969. Follow the astronauts from Hornet to Honolulu. Left: Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu. Middle left: Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier. Middle right: A large welcome celebration for the Apollo 11 astronauts. Right: The MQF seen through a lei.

      Follow the astronauts from Pearl Harbor to Ellington AFB. Left: Workers truck the MQF from Pearl Harbor to nearby Hickam AFB. Middle left: Workers load the MQF onto a cargo plane at Hickam for the flight to Houston. Middle right: During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF. Right: Workers unload the MQF at Houston’s Ellington AFB.

      July 27, 1969. Follow the astronauts from Ellington to working in the LRL. Left: At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS. Middle left: The MQF docks at the LRL. Middle right: Neil, Mike, and Buzz address the workers inside the LRL. Right: It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL.

      Follow the spacecraft from splashdown to Hawaii. Left: Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet. Middle left: The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other items. Center: U.S. Marines guard Columbia aboard the Hornet. Middle right: Columbia brought on deck as Hornet docks in Pearl Harbor. Right: NASA engineers safe Columbia on Ford Island in Honolulu.

      July 31, 1969. Follow the spacecraft from Hawaii to the LRL. Left: Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston. Middle: Columbia arrives outside the LRL, where the MQF is still docked. Right: Hirasaki opens the hatch to Columbia in the LRL.
      To be continued …
      News from around the world in July 1969:
      July 1 – Investiture of Prince Charles, age 21, as The Prince of Wales.
      July 3 – 78,000 attend the Newport Jazz Festival in Newport, Rhode Island.
      July 4 – John Lennon and the Plastic Ono Band release the single “Give Peace a Chance.”
      July 11 – David Bowie releases the single “Space Oddity.”
      July 11 – The Rolling Stones release “Honky Tonk Woman.”
      July 14 – “Easy Rider,” starring Dennis Hopper, Peter Fonda, and Jack Nicholson, premieres.
      July 18 – NASA Administrator Thomas O. Paine approves the “dry” workshop concept for the Apollo Applications Program, later renamed Skylab.
      July 26 – Sharon Sites Adams becomes the first woman to solo sail the Pacific Ocean.
      July 31 – Mariner 6 makes close fly-by of Mars, returning photos and data.
      Explore More
      13 min read 15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station
      Article 18 hours ago 9 min read 45 Years Ago: Skylab Reenters Earth’s Atmosphere
      Article 5 days ago 8 min read 30 Years Ago: STS-65, the Second International Microgravity Lab Mission
      Article 6 days ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An aerial view of Palmyra Atoll, where animal tracking data now being studied by NASA’s Internet of Animals project was collected using wildlife tags by partners at The Nature Conservancy, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and several universities.The Nature Conservancy/Kydd Pollock Anchoring the boat in a sandbar, research scientist Morgan Gilmour steps into the shallows and is immediately surrounded by sharks. The warm waters around the tropical island act as a reef shark nursery, and these baby biters are curious about the newcomer. They zoom close and veer away at the last minute, as Gilmour slowly makes her way toward the kaleidoscope of green sprouting from the island ahead.
      Gilmour, a scientist at NASA’s Ames Research Center in California’s Silicon Valley, conducts marine ecology and conservation studies using data collected by the U.S. Geological Survey (USGS) from animals equipped with wildlife tags. Palmyra Atoll, a United States marine protected area, provides the perfect venue for this work.
      A juvenile blacktip reef shark swims toward researchers in the shallow waters around Palmyra Atoll.The Nature Conservancy/Kydd Pollock A collection of roughly 50 small islands in the tropical heart of the Pacific Ocean, the atoll is bursting with life of all kinds, from the reef sharks and manta rays circling the shoreline to the coconut crabs climbing palm branches and the thousands of seabirds swooping overhead. By analyzing the movements of dolphins, tuna, and other creatures, Gilmour and her collaborators can help assess whether the boundaries of the marine protected area surrounding the atoll actually protect the species they intend to, or if its limits need to shift.
      Launched in 2020 by The Nature Conservancy and its partners – USGS, NOAA (National Oceanic and Atmospheric Administration), and several universities – the project team deployed wildlife tags at Palmyra in 2022, when Gilmour was a scientist with USGS.
      Now with NASA, she is leveraging the data for a study under the agency’s Internet of Animals project. By combining information transmitted from wildlife tags with information about the planet collected by satellites – such as NASA’s Aqua, NOAA’s GOES (Geostationary Operational Environmental Satellite) satellites, and the U.S.-European Jason-3 – scientists can work with partners to draw conclusions that inform ecological management.
      The Palmyra Atoll is a haven for biodiversity, boasting thriving coral reef systems, shallow waters that act as a shark nursery, and rich vegetation for various land animals and seabirds. In the Landsat image above, a small white square marks the research station, where scientists from all over the world come to study the many species that call the atoll home.NASA/Earth Observatory Team “Internet of Animals is more than just an individual collection of movements or individual studies; it’s a way to understand the Earth at large,” said Ryan Pavlick, then Internet of Animals project scientist at NASA’s Jet Propulsion Laboratory in Southern California, during the project’s kickoff event.

      The Internet of Animals at Palmyra

      “Our work at Palmyra was remarkably comprehensive,” said Gilmour. “We tracked the movements of eight species at once, plus their environmental conditions, and we integrated climate projections to understand how their habitat may change. Where studies may typically track two or three types of birds, we added fish and marine mammals, plus air and water column data, for a 3D picture of the marine protected area.”
      Tagged Yellowfin Tuna, Grey Reef Sharks, and Great Frigatebirds move in and out of a marine protected area (blue square), which surrounds the Palmyra Atoll (blue circle) in the tropical heart of the Pacific. These species are three of many that rely on the atoll and its surrounding reefs for food and for nesting.NASA/Lauren Dauphin Now, the NASA team has put that data into a species distribution model, which combines the wildlife tracking information with environmental data from satellites, including sea surface temperature, chlorophyll concentration, and ocean current speed. The model can help researchers understand how animal populations use their habitats and how that might shift as the climate changes.
      Preliminary results from Internet of Animals team show that the animals tracked are moving beyond the confines of the Palmyra marine protected area. The model identified suitable habitats both in and around the protected zone – now and under predicted climate change scenarios – other researchers and decisionmakers can utilize that knowledge to inform marine policy and conservation.
      Research scientist Morgan Gilmour checks on a young great frigatebird in its nest. The marine protected area around Palmyra Atoll protects these birds’ breeding grounds.UC Santa Barbara/Devyn Orr Following a 2023 presidential memorandum, NOAA began studying and gathering input on whether to expand the protected areas around Palmyra and other parts of the Pacific Remote Islands Marine National Monument. Analysis from NASA’s Internet of Animals could inform that and similar decisions, such as whether to create protected “corridors” in the ocean to allow for seasonal migrations of wildlife. The findings and models from the team’s habitat analysis at Palmyra also could help inform conservation at similar latitudes across the planet.
      Beyond the Sea: Other Internet of Animals Studies
      Research at Palmyra Atoll is just one example of work by Internet of Animals scientists.
      Claire Teitelbaum, a researcher with the Bay Area Environmental Research Institute based at NASA Ames, studies avian flu in wild waterfowl, investigating how their movement may contribute to transmission of the virus to poultry and other domestic livestock.
      Teams at Ames and JPL are also working with USGS to create next-generation wildlife tags and sensors. Low-power radar tags in development at JPL would be lightweight enough to track small birds. Ames researchers plan to develop long-range radio tags capable of maximizing coverage and transmission of data from high-flying birds. This could help researchers take measurements in hard-to-reach layers of the atmosphere.
      With the technology brought together by the Internet of Animals, even wildlife can take an active role in the study of Earth’s interacting systems, helping human experts learn more about our planet and how best to confront the challenges facing the natural world.
      To learn more about the Internet of Animals visit: https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/
      The Internet of Animals project is funded by NASA and managed at NASA’s Jet Propulsion Laboratory in Southern California. The team at NASA’s Ames Research Center in California’s Silicon Valley is part of the NASA Earth Exchange, a Big Data initiative providing unique insights into Earth’s systems using the agency’s supercomputers at the center. Partners on the project include the U.S. Geological Survey, The Nature Conservancy, the National Oceanic and Atmospheric Administration, the Yale Center for Biodiversity and Global Change, Stanford University, University of Hawaii, University of California Santa Barbara, San Jose State University, University of Washington, and the Max Planck Institute for Animal Behavior.


      For Researchers
      The research collaboration’s dataset from Palmyra is available in open access: Palmyra Bluewater Research Marine Animal Telemetry Dataset, 2022-2023 Related research from Morgan Gilmour’s team was published in the journal Global Ecology and Conservation in June 2022: “Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios.”
      Media Contacts
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jul 10, 2024 Related Terms
      General Ames Research Center Ames Research Center's Science Directorate Oceans Explore More
      1 min read NASA Technology Soars at Selfridge Air Show
      Article 1 day ago 1 min read NASA Glenn Welcomes Summer Student Interns 
      Article 1 day ago 7 min read Spectral Energies developed a NASA SBIR/STTR-Funded Tech that Could Change the Way We Fly
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT
      The Heliophysics Big Year (HBY) is a global celebration of the Sun’s influence on Earth and the entire solar system. It began with the Annular Solar Eclipse on Oct. 14, 2023, continued through the Total Solar Eclipse on Apr. 8, 2024, and will conclude with Parker Solar Probe’s closest approach to the Sun in December 2024.
      Challenged by the NASA Heliophysics Division to participate in as many Sun-related activities as possible, the NASA Heliophysics Education Activation Team (NASA HEAT) has been hosting a monthly webinar for formal and informal educators, science communicators, and other heliophysics enthusiasts to promote the understanding of heliophysics in alignment with monthly HBY themes. Each webinar’s content is designed with the Framework of Heliophysics Education in mind and maps directly to the Next Generation Science Standards (NGSS). Using the three main questions that heliophysicists investigate as a foundation, NASA HEAT cross-referenced heliophysics topics with the NGSS Disciplinary Core Ideas to create NGSS-aligned “heliophysics big ideas.” In each webinar, three math problems related to the theme are presented for beginner, intermediate, and advanced level learners. On average, there have been 30 attendees per webinar.
      Register for upcoming webinars:
      7/16/24 Physical and Mental Health
      8/20/24 Back to School
      9/17/24 Environment and Sustainability
      10/15/24 Solar Cycle and Solar Max
      11/19/24 Bonus Science
      12/17/24 Parker’s Perihelion
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A coronal mass ejection on Feb. 27, 2000 taken by SOHO LASCO C2. SOHO/ESA/NASA Share








      Details
      Last Updated Jul 09, 2024 Editor NASA Science Editorial Team Related Terms
      2023 Solar Eclipse 2024 Solar Eclipse Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science Activation The Sun Explore More
      2 min read NASA’s Neurodiversity Network Interns Speak at National Space Development Conference


      Article


      23 hours ago
      3 min read NASA Mission to Study Mysteries in the Origin of Solar Radio Waves


      Article


      1 day ago
      1 min read NASA Science Activation Teams Present at National Rural STEM Summit


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Video: 00:05:13 Ariane 6 is the newest rocket in a series that has, for five decades, been launching Europe towards the stars. Building on all the knowledge, expertise and technology developed over the years, Ariane 6 will be versatile, modular, and European.
      Guaranteeing Europe’s access to space for the next years, Ariane 6 in two versions, with either two or four boosters attached depending on the ‘oomph’ the mission requires. Versatile, its upper stage can reignite multiple times during a single flight, placing any spacecraft into any orbit – including constellations – saving a final boost to return and burn up in Earth’s atmosphere. Modular, it will be continuously adapted to the needs of the future space sector.
      Four organisations take care of the Ariane 6 programme: ESA at the head, ArianeGroup as the main contractor, CNES who designed and built the launchpad and ArianeSpace who sell the launches.
      13 countries contribute, thousands of Europeans have worked on it, and every one of us will benefit from the Earth observation, science, technologies and services it will make possible.
      View the full article
    • By NASA
      Firefly Aerospace’s Alpha rocket leaves a glowing trail above the skies of Vandenberg Space Force Base in California on July 3, 2024. Firefly Aerospace/Trevor Mahlmann As part of NASA’s CubeSat Launch Initiative, Firefly Aerospace launched eight small satellites on July 3 aboard the company’s Alpha rocket. Named “Noise of Summer,” the rocket successfully lifted off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:04 p.m. PDT.
      The CubeSat missions were designed by universities and NASA centers and cover science that includes climate studies, satellite technology development, and educational outreach to students.
      Firefly Aerospace completed its Venture-Class Launch Services Demonstration 2 contract with this launch. The agency’s venture-class contracts offer launch opportunities for new providers, helping grow the commercial launch industry and leading to cost-effective competition for future NASA missions.
      NASA’s CubeSat Launch Initiative provides a low-cost way for universities, non-profits, science centers, and other researchers to conduct science and technology demonstrations in space.
      Image Credit: Firefly Aerospace/Trevor Mahlmann
      View the full article
  • Check out these Videos

×
×
  • Create New...