Jump to content

55 Years Ago: Apollo 11’s One Small Step, One Giant Leap


Recommended Posts

  • Publishers
Posted

“Houston, Tranquility Base here, the Eagle has landed.” “That’s one small step for [a] man, one giant leap for mankind.” “Magnificent desolation.” Three phrases that recall humanity’s first landing on and exploration of the lunar surface. In July 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed humanity’s first landing on the Moon. They fulfilled President John F. Kennedy’s national goal, set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. Scientists began examining the first Moon rocks two days after the Apollo 11 splashdown while the astronauts began a three-week postflight quarantine.

Apollo 11 astronaut Neil A. Armstrong arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Michael Collins arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch
Just another day at the office. Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch.

Buzz, Mike, and Neil study their flight plans one more time Neil and Buzz in the Lunar Module simulator Mike gets in some flying a few days before launch
Left: Buzz, Mike, and Neil study their flight plans one more time. Middle: Neil and Buzz in the Lunar Module simulator. Right: Mike gets in some flying a few days before launch.

Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14
Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14.

The Apollo 11 crew The Apollo 11 patch The crew conquer the Moon, a TIME LIFE photograph
Left: The crew. Middle: The patch. Right: The crew conquer the Moon, a TIME LIFE photograph.

Breakfast, the most important meal if you’re going to the Moon Proper attire for lunar travel Apollo 11 crew. Wave good-bye to all your friends and supporters before you head for the launch pad
Left: Breakfast, the most important meal if you’re going to the Moon. Middle: Proper attire for lunar travel. Right: Wave good-bye to all your friends and supporters before you head for the launch pad.

Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear
Left: Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown. Middle: Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky. Right: Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear.

Lady Bird, LBJ, and VP Agnew in the VIP stands A million more camped out along the beaches to see the historic launch
Left: Lady Bird, LBJ, and VP Agnew in the VIP stands. Right: A million more camped out along the beaches to see the historic launch.

July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A
July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A.

The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky First stage separation for Apollo 11 orbit 1 low pressure system
Left: The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky. Middle: First stage separation for Apollo 11. Right: Made it to orbit!

Hey, don’t forget your LM! Buzz in the LM As the world turns smaller
Left: Hey, don’t forget your LM! Middle: Buzz in the LM: “S’allright?” “S’allright!” Right: As the world turns smaller.

crater king lunar earthrise columbia after undocking eagle after undocking
Left: Hello Moon! Middle left: Hello Earth! Middle right: See you soon, Columbia! Right: See you soon, Eagle! Happy landing!

view from lm after landing Neil takes THE first step First image taken from the lunar surface
July 20, 1969. Left: Magnificent desolation, from Buzz’s window after landing. Middle: Neil takes THE first step. Right: First image taken from the lunar surface.

Neil grabs a contingency sample, just in case Buzz joins the party Neil and Buzz read the plaque Buzz sets up the solar wind experiment
Left: Neil grabs a contingency sample, just in case. Middle left: Buzz joins the party. Middle right: Neil and Buzz read the plaque. Right: Buzz sets up the solar wind experiment.

Buzz and Neil set up the flag Neil takes that famous photo of Buzz saluting flag Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil
Left: Buzz and Neil set up the flag. Middle left: Neil takes that famous photo of Buzz. Middle right: You know, this famous photo! Right: Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil.

Buzz had the camera for a while and snapped one of the few photos of Neil on the surface Buzz, the seismometer, and the LM The LM and the laser retroreflector One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection
Left: Buzz had the camera for a while and snapped one of the few photos of Neil on the surface. Middle left: Buzz, the seismometer, and the LM. Middle right: The LM and the laser retroreflector. Right: One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection.

Neil took a stroll to Little West Crater and took several photos, spliced together into this pano
Neil took a stroll to Little West Crater and took several photos, spliced together into this pano.

Neil after the spacewalk, tired but satisfied aldrin post eva The flag from Buzz’s window before they went to sleep The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight
Left: Neil after the spacewalk, tired but satisfied. Middle left: Ditto for Buzz. Middle right: The flag from Buzz’s window before they went to sleep. Right: The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight.

Liftoff, the Eagle has wings again! Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it Moon departure earth approach
July 21, 1969. Left: Liftoff, the Eagle has wings again! Middle left: Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it. Middle right: On the way home, the Moon gets smaller. Right: And the Earth gets bigger.

Splashdown, as captured from a recovery helicopter Upside down in Stable 2, before balloons inflated to right the spacecraft Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft
July 24, 1969. Left: Splashdown, as captured from a recovery helicopter. Middle: Upside down in Stable 2, before balloons inflated to right the spacecraft. Right: Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft.

Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo
Left: Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft. Middle: Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory. Right: The same scene, taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo.

Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind NASA engineer John Hirasaki filmed the astronauts as they entered the MQF Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window Neil, playing the ukelele, Buzz, and Mike inside the MQF
Left: Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind. Middle left: NASA engineer John Hirasaki filmed the astronauts as they entered the MQF. Middle right: Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window. Right: Neil, playing the ukelele, Buzz, and Mike inside the MQF.

NASA technician receives the first box of Moon rocks from the MQF’s transfer lock Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later Senior NASA managers hold the first box of Moon rocks
Follow the Moon rocks from the Hornet to Ellington AFB. Left: NASA technician receives the first box of Moon rocks from the MQF’s transfer lock. Middle Left: Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston. Middle right: Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later. Right: Senior NASA managers hold the first box of Moon rocks.

NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC In the LRL, technicians at MSC unpack the first box of Moon rocks Technicians weigh the box of Moon rocks The first box of Moon rocks inside a glovebox
July 25, 1969. Follow the Moon rocks from Ellington to the glovebox in the Lunar Receiving Laboratory (LRL). Left: NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC. Middle right: In the LRL, technicians at MSC unpack the first box of Moon rocks. Middle right: Technicians weigh the box of Moon rocks. Right: The first box of Moon rocks inside a glovebox.

The first box of Moon rocks has been unwrapped The box has been opened, revealing the first lunar samples The first rock to be documented, less than 48 hours after splashdown
July 26, 1969. Follow the Moon rocks in the LRL glovebox. Left: The first box of Moon rocks has been unwrapped. Middle: The box has been opened, revealing the first lunar samples. Right: The first rock to be documented, less than 48 hours after splashdown.

Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier A large welcome celebration for the Apollo 11 astronauts The MQF seen through a lei
July 26, 1969. Follow the astronauts from Hornet to Honolulu. Left: Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu. Middle left: Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier. Middle right: A large welcome celebration for the Apollo 11 astronauts. Right: The MQF seen through a lei.

Workers truck the MQF from Pearl Harbor to nearby Hickam AFB Workers load the MQF onto a cargo plane at Hickam for the flight to Houston During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF Workers unload the MQF at Houston’s Ellington AFB
Follow the astronauts from Pearl Harbor to Ellington AFB. Left: Workers truck the MQF from Pearl Harbor to nearby Hickam AFB. Middle left: Workers load the MQF onto a cargo plane at Hickam for the flight to Houston. Middle right: During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF. Right: Workers unload the MQF at Houston’s Ellington AFB.

At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS The MQF docks at the LRL Neil, Mike, and Buzz address the workers inside the LRL It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL
July 27, 1969. Follow the astronauts from Ellington to working in the LRL. Left: At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS. Middle left: The MQF docks at the LRL. Middle right: Neil, Mike, and Buzz address the workers inside the LRL. Right: It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL.

Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other item U.S. Marines guard Columbia aboard the Hornet Columbia brought on deck as Hornet docks in Pearl Harbor NASA engineers safe Columbia on Ford Island in Honolulu
Follow the spacecraft from splashdown to Hawaii. Left: Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet. Middle left: The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other items. Center: U.S. Marines guard Columbia aboard the Hornet. Middle right: Columbia brought on deck as Hornet docks in Pearl Harbor. Right: NASA engineers safe Columbia on Ford Island in Honolulu.

Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston Columbia arrives outside the LRL, where the MQF is still docked Hirasaki opens the hatch to Columbia in the LRL
July 31, 1969. Follow the spacecraft from Hawaii to the LRL. Left: Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston. Middle: Columbia arrives outside the LRL, where the MQF is still docked. Right: Hirasaki opens the hatch to Columbia in the LRL.

To be continued …

News from around the world in July 1969:

July 1 – Investiture of Prince Charles, age 21, as The Prince of Wales.

July 3 – 78,000 attend the Newport Jazz Festival in Newport, Rhode Island.

July 4 – John Lennon and the Plastic Ono Band release the single “Give Peace a Chance.”

July 11 – David Bowie releases the single “Space Oddity.”

July 11 – The Rolling Stones release “Honky Tonk Woman.”

July 14 – “Easy Rider,” starring Dennis Hopper, Peter Fonda, and Jack Nicholson, premieres.

July 18 – NASA Administrator Thomas O. Paine approves the “dry” workshop concept for the Apollo Applications Program, later renamed Skylab.

July 26 – Sharon Sites Adams becomes the first woman to solo sail the Pacific Ocean.

July 31 – Mariner 6 makes close fly-by of Mars, returning photos and data.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
      Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
      Key Facts
      Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
      Details
      Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
      Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
      How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
      The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
      Fun Facts
      These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
      Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
      The Discoverers
      An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
      Universe



      Exoplanets



      Search for Life



      Exoplanet Catalog


      This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…

      View the full article
    • By NASA
      On March 24, 1975, the last in a long line of super successful Saturn rockets rolled out from the vehicle assembly building to Launch Pad 39B at NASA’s Kennedy Space Center in Florida. The Saturn IB rocket for the Apollo-Soyuz Test Project was the 19th in the Saturn class stacked in the assembly building, beginning in 1966 with the Saturn V 500F facilities checkout vehicle. Thirteen flight Saturn V rockets followed, 12 to launch Apollo spacecraft and one to place the Skylab space station into orbit. In addition, workers stacked four flight Saturn IB rockets, three to launch crews to Skylab and one for Apollo-Soyuz, plus another for the Skylab rescue vehicle that was not needed and never launched. Previously, workers stacked Saturn I and Saturn IB rockets on the pads at Launch Complexes 34 and 37. With the successful liftoff in July 1975, the Saturn family of rockets racked up a 100 percent success rate of 32 launches. 

      Workers lower the Apollo command and service modules onto the spacecraft adaptor.NASA Technicians in the assembly building replace the fins on the Saturn IB rocket’s first stage. NASA Workers in the assembly building prepare to lower the spacecraft onto its Saturn IB rocket.NASA Inspections of the Saturn IB rocket’s first stage fins revealed hairline cracks in several hold-down fittings and managers ordered the replacement of all eight fins. While the cracks would not affect the flight of the rocket they bore the weight of the rocket on the mobile launcher. Workers finished the fin replacement on March 16. Engineers in Kennedy’s spacecraft operations building prepared the Apollo spacecraft for its historic space mission. By early March, they had completed checkout and assembly of the spacecraft and transported it to the assembly building on March 17 to mount it atop the Saturn IB’s second stage. Five days later, they topped off the rocket with the launch escape system. 

      The final Saturn IB begins its rollout from the vehicle assembly building. NASA The Saturn IB passes by the Launch Control Center. NASA Apollo astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton pose in front of their Saturn IB during the rollout.NASA On March 23, workers edged the mobile transporter carrying the Saturn IB just outside the assembly building’s High Bay 1, where engineers installed an 80-foot tall lightning mast atop the launch tower. The next morning, the stack continued its rollout to Launch Pad 39B with the prime crew of Thomas  Stafford, Vance Brand, and Donald “Deke” Slayton and support crew members Robert Crippen and Richard Truly on hand to observe. About 7,500 people, including guests, dependents of Kennedy employees and NASA Tours patrons, watched as the stack moved slowly out of the assembly building on its five-mile journey to the launch pad.   

      Mission Control in Houston during the joint simulation with Flight Director Donald Puddy in striped shirt and a view of Mission Control in Moscow on the large screen at left. NASA A group of Soviet flight controllers in a support room in Mission Control in Houston during the joint simulation. NASA On March 20, flight controllers and crews began a series of joint simulations for the joint mission scheduled for July 1975. For the six days of simulations, cosmonauts Aleksei Leonov and Valeri Kubasov and astronauts Stafford, Brand, and Slayton participated in the activity in spacecraft simulators in their respective countries, with both control centers in Houston and outside Moscow fully staffed as if for the actual mission. The exercises simulated various phases of the mission, including the respective launches, rendezvous and docking, crew transfers and joint operations, and undocking. 

      Astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton in a boilerplate Apollo command module preparing for the water egress training. NASA Stafford, left, Slayton, and Brand in the life raft during water egress training. NASA Astronauts Stafford, Brand and Slayton participated in a water egress training activity on March 8,  completing the exercise in a water tank in Building 260 at NASA’s Johnson Space Center in Houston. The astronauts practiced egressing from their spacecraft onto a lift raft and being lifted up with the use of a Billy Pugh rescue net. They practiced wearing their flight coveralls as well as their spacesuits. 

      Explore More
      5 min read 50 Years Ago: Preparing the Final Saturn Rocket for Flight
      Article 2 months ago 6 min read 45 Years Ago: Soyuz and Apollo Launch
      Article 5 years ago 8 min read 45 Years Ago: Historic Handshake in Space
      Article 5 years ago View the full article
    • By NASA
      On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

      In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

      Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

      The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 
      Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
      Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 
      Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

      During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
      Explore More
      5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
      Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
      Article 2 months ago 6 min read Artemis I Mission Control at a Glance
      Article 3 years ago View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read
      Celebrating 25 Years of Terra
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
      Terra anniversary banner Image credit: NASA Nasa personnel gather to celebrate Terra’s 25th anniversary at the Goddard Visitor Center. Image credit: NASA On December 18, 2024, Terra—the first EOS Flagship mission celebrated the 25th anniversary of its launch from Vandenberg Space Force (then Air Force) Base. Some 70 individuals gathered at the Goddard Space Flight Center’s (GSFC) Visitor Center to celebrate this remarkable achievement for the venerable mission – with 75 more participating virtually. 
      The gathering began with a reception culminating with some informal remarks in the main area of the Visitor’s Center outside the auditorium from Marc Dinardo [Lockheed Martin, emeritus] who was involved in the design of Terra. He explained that – at the time it was being built in the 1990s – Terra represented a “big step forward” for Lockheed Martin compared to projects the company had done prior to this. He discussed several engineering feats, e.g., fitting spacecraft components into the Atlas rocket used to launch Terra, moving from tape recorders to solid state recorders for data storage, the (at the time) novel thermal system developed to reject heat and protect instruments, and the direct broadcast capabilities.
      After the initial remarks, the in-person participants moved into the auditorium where they heard from representatives from Senior management [both from NASA Headquarters and GSFC] as well as from several key figures in Terra’s long history. Each speaker gave brief remarks and shared their perspectives on Terra’s development and achievements. Short summaries of each presentation follow below.
      Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division] began by noting that this feels like a family celebration.  She said her first  personal experience with Terra was submitting a proposal as a young scientist to do research that would use data from Terra. At that time the idea of studying Earth as a system of systems was brand new.  She had no idea at that time that more than a quarter-century later, she’d be involved  in planning the “next generation” Earth System Observatory (ESO). 
      Shawn Domagal-Goldman [Deputy Director of the Sciences and Exploration Directorate] spoke about how some of the biggest science questions we try to answer are interdisciplinary and cross-instrument, spanning missions and generations, and that the expertise and diverse skillsets of those who have worked on the Terra team over the past 25 years embodies this goal.
      Tom Neumann [GSFC—Deputy Director of Earth Science Division (GSFC)] reflected on his early involvement in the Terra–Aqua–Aura proposal reviews. He noted the sheer number of people involved in the mission and the logistical challenges that organizing that size group presented at the time.  He also commented on the feeling of family surrounding the Team and how this surely contributed to its remarkable achievements over the past 25 years.
      Guennadi Kroupnik [Canadian Space Agency—Director General of Space Utilization] extended congratulations to NASA and Terra team for 25 years of operations. He commented that this “six year” mission has endured far beyond what was planned. Canada’s contribution was the Measurement of Pollution in the Troposphere (MOPITT) instrument with Jim Drummond [University of Toronto] as Principal Investigator. Kroupnik noted that MOPITT Is longest continuously running instrument in Canadian history. He is pleased that CSA has been able to partner with NASA on Terra and looks forward to future collaboration on the Atmospheric Observing System (AOS), which is one of the missions planned as part of ESO.
      Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] spoke of Terra’s remarkable scientific accomplishments, the creativity of the team, and the intentional emphasis placed on validating the data, and the creativity of the Team. He also noted that the direct broadcast capability was extremely useful and led to many applications. Kaye remarked that the late Yoram Kauffman referred to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) as the “zoom lens of Terra.”
      Miguel Román [GSFC—Deputy Director for Atmospheres] described himself as a “child of Terra,” as he began his science career at around the same time that Terra launched and has been involved in various capacities ever since. Román recalled the launch taking place near vineyards, where the team celebrated the successful launch with local wine, to finally sharing a bottle of wine with the late Piers Sellers (who served as the first Terra project scientist) at one of the final gatherings Piers threw before he passed from cancer. Román also mentioned the Our Changing Planet book that four Earth Scientists – including former EOS Senior Project Scientist and Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team Leader Michael King and former Aqua Project Scientist Claire Parkinson—both GSFC emeritus – collaborated to write that was published in 2007. This book made use of numerous images and data from Terra’s five instruments – as well as other EOS data.
      Kurt Thome [GSFC—Terra Project Scientist] rounded out the presentations, emphasizing again what several have stated in their individual comments – the Terra Team truly is a family. He commented that he’s only been leading the mission for the past ten years and that his work builds on the shoulders of those who came before him. In particular, he acknowledged the slide Miguel Román showed briefly during his presentation that honored those who were part of the Terra family who have passed away – e.g., Piers Sellers, Yoram Kauffman. 
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide
      NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. Full image below. Credits:
      NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies.
      The observations indicate that the well-studied planets of HR 8799 are rich in carbon dioxide gas. This provides strong evidence that the system’s four giant planets formed much like Jupiter and Saturn, by slowly building solid cores that attract gas from within a protoplanetary disk, a process known as core accretion.
      The results also confirm that Webb can infer the chemistry of exoplanet atmospheres through imaging. This technique complements Webb’s powerful spectroscopic instruments, which can resolve the atmospheric composition.
      “By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, like carbon, oxygen, and iron, in these planets’ atmospheres,” said William Balmer, of Johns Hopkins University in Baltimore. “Given what we know about the star they orbit, that likely indicates they formed via core accretion, which is an exciting conclusion for planets that we can directly see.”
      Balmer is the lead author of the study announcing the results published today in The Astrophysical Journal. Balmer and their team’s analysis also includes Webb’s observation of a system 97 light-years away called 51 Eridani.
      Image A: HR 8799 (NIRCam Image)
      NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) Image B: 51 Eridani (NIRCam Image)
      Webb’s NIRCam (Near-Infrared Camera) captured this image of 51 Eridani b (also referred to as 51 Eri b), a cool, young exoplanet that orbits 890 million miles from its star, similar to Saturn’s orbit in our solar system. The 51 Eridani system is 97 light-years from Earth. This image includes filters representing 4.1-micron light as red. The background red in this image is not light from other planets, but a result of light subtraction during image processing. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) HR 8799 is a young system about 30 million years old, a fraction of our solar system’s 4.6 billion years. Still hot from their tumultuous formation, the planets within HR 8799 emit large amounts of infrared light that give scientists valuable data on how they formed.
      Giant planets can take shape in two ways: by slowly building solid cores with heavier elements that attract gas, just like the giants in our solar system, or when particles of gas rapidly coalesce into massive objects from a young star’s cooling disk, which is made mostly of the same kind of material as the star. The first process is called core accretion, and the second is called disk instability. Knowing which formation model is more common can give scientists clues to distinguish between the types of planets they find in other systems.
      “Our hope with this kind of research is to understand our own solar system, life, and ourselves in the comparison to other exoplanetary systems, so we can contextualize our existence,” Balmer said. “We want to take pictures of other solar systems and see how they’re similar or different when compared to ours. From there, we can try to get a sense of how weird our solar system really is—or how normal.”
      Image C: Young Gas Giant HR 8799 e (NIRCam Spectrum)
      This graph shows a spectrum of one of the planets in the HR 8799 system, HR 8799 e. Spectral fingerprints of carbon dioxide and carbon monoxide appear in data collected by Webb’s NIRCam (Near-Infrared Camera). NASA, ESA, CSA, STScI, J. Olmsted (STScI) Of the nearly 6,000 exoplanets discovered, few have been directly imaged, as even giant planets are many thousands of times fainter than their stars. The images of HR 8799 and 51 Eridani were made possible by Webb’s NIRCam (Near-Infrared Camera) coronagraph, which blocks light from bright stars to reveal otherwise hidden worlds.
      This technology allowed the team to look for infrared light emitted by the planets in wavelengths that are absorbed by specific gases. The team found that the four HR 8799 planets contain more heavy elements than previously thought.
      The team is paving the way for more detailed observations to determine whether objects they see orbiting other stars are truly giant planets or objects such as brown dwarfs, which form like stars but don’t accumulate enough mass to ignite nuclear fusion.
      “We have other lines of evidence that hint at these four HR 8799 planets forming using this bottom-up approach” said Laurent Pueyo, an astronomer at the Space Telescope Science Institute in Baltimore, who co-led the work. “How common is this for planets we can directly image? We don’t know yet, but we’re proposing more Webb observations to answer that question.”
      “We knew Webb could measure colors of the outer planets in directly imaged systems,” added Rémi Soummer, director of STScI’s Russell B. Makidon Optics Lab and former lead for Webb coronagraph operations. “We have been waiting for 10 years to confirm that our finely tuned operations of the telescope would also allow us to access the inner planets. Now the results are in and we can do interesting science with it.”
      The NIRCam observations of HR 8799 and 51 Eridani were conducted as part of Guaranteed Time Observations programs 1194 and 1412 respectively.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Roberto Molar Candanosa
      Johns Hopkins University, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Video: Eclipse/Coronagraph Animation
      Video: Exploring Star and Planet Formation
      Learn more about gas giants
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Mar 17, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Gas Giant Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
  • Check out these Videos

×
×
  • Create New...