Jump to content

Hughes JUPITER 3 Mission Control Audio


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      For the first time in more than 50 years, NASA was able to collect data from new science instruments and technology demonstrations on the Moon. The data comes from the first successful landing of a delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
      The six instruments ceased science and technology operations eight days after landing in the lunar South Pole region aboard Intuitive Machines’ Odysseus, meeting pre-launch projected mission operations. Known as IM-1, this was the first U.S. soft landing on the Moon in decades, touching down on Feb. 22, proving commercial vendors can deliver instruments designed to expand the scientific and technical knowledge on the Moon.
      Aboard the lunar lander, NASA science instruments measured the radio noise generated by the Earth and Sun. Technology instruments, aided Intuitive Machines in navigating to the Moon and gathered distance and speed (velocity) of the lander as touched down on the lunar surface.
      “This mission includes many firsts. This is the first time in over 50 years that an American organization has landed instruments on the surface of the Moon,” said Joel Kearns, deputy association administrator for exploration of NASA’s Science Mission Directorate in Washington. “This mission also provides evidence of the Commercial Lunar Payload Services model, that NASA can purchase the service of sending instruments to the Moon and receiving their data back. Congratulations to the entire Intuitive Machines team and our NASA scientists and engineers for this next leap to advance exploration and our understanding of Earth’s nearest neighbor.”
      During transit from Earth to the Moon, all powered NASA instruments received data and completed transit checkouts.
      During descent, the Radio Frequency Mass Gauge and Navigation Doppler Lidar collected data during the lander’s powered descent and landing. After landing, NASA payload data was acquired consistent with the communications and other constraints resulting from the lander orientation. During surface operations, the Radio-wave Observations at the Lunar Surface of the Photoelectron Sheath and Lunar Node-1 were powered on, performed surface operations, and have received data. The Stereo Cameras for Lunar Plume-Surface Studies was powered on and captured images during transit and several days after landing but was not successfully commanded to capture images of the lander rocket plume interaction with the lunar surface during landing. The Laser Retroreflector Array is passive and initial estimates suggest it is accessible for laser ranging from the Lunar Reconnaissance Orbiter’s Lunar Orbiter Laser Altimeter to create a permanent location marker on the Moon. “The bottom line is every NASA instrument has met some level of their objectives, and we are very excited about that,” said Sue Lederer, project scientist for CLPS. “We all worked together and it’s the people who really made a difference and made sure we overcame challenges to this incredible success – and that is where we are at today, with successes for all of our instruments.” 
      NASA and Intuitive Machines co-hosted a news conference non Feb. 28 to provide a status update on the six NASA instruments that collected data on the IM-1 mission. Mission challenges and successes were discussed during the briefing, including more than approximately 500 megabytes of science, technology, and spacecraft data downloaded and ready for analysis by NASA and Intuitive Machines.
      The first images from this historical mission are now available and showcase the orientation of the lander along with a view of the South Pole region on the Moon. Odysseus is gently leaning into the lunar surface, preserving the ability to return scientific data. After successful transmission of images to Earth, Intuitive Machines continues to gain additional insight into Odysseus’ position on the lunar surface. All data gathered from this mission will aid Intuitive Machines in their next two CLPS contracts that NASA has previously awarded.
      For more information about the agency’s Commercial Lunar Payload Services initiative, visit: 
      https://www.nasa.gov/clps
      Odysseus’ landing captured a leg, as it performed its primary task, absorbing first contact with the lunar surface. With the lander’s liquid methane and liquid oxygen engine still throttling, it provided stability.Credit: Intuitive Machines Taken on Tuesday, Feb. 27, Odysseus captured an image using its narrow-field-of-view camera.Credit: Intuitive Machines Keep Exploring Discover More Topics From NASA
      Commercial Lunar Payload Services
      Artemis
      Commercial Space
      Humans In Space
      View the full article
    • By NASA
      An extra-tropical cyclone seen in the Pacific Ocean off the coast of Japan on March 10, 2014, by NASA’s GPM Microwave Imager.Credit: NASA NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
      From peering into hurricanes to tracking El Niño-related floods and droughts to aiding in disaster responses, the Global Precipitation Measurement (GPM) mission has had a busy decade in orbit. As the GPM mission team at NASA and the Japan Aerospace Exploration Agency (JAXA) commemorates its Feb. 27, 2014 launch, here are 10 highlights from the one of the world’s most advanced precipitation satellites.

      First Images Available from NASA-JAXA Global Rain and Snowfall Satellite
      Less than a month after launch, NASA and JAXA released the first images captured by the GPM Core Observatory. It measured precipitation falling inside a March 10, 2014, cyclone over the northwest Pacific Ocean, approximately 1,000 miles east of Japan.
      Read the Full Article NASA Releases First Global Rainfall and Snowfall Map from New Mission
      Combining data from a constellation of satellites that together observe every part of the world roughly every three hours, the GPM team mapped how rain and snow storms move around the planet. As scientists have worked to understand all the elements of Earth’s climate and weather systems – and how they could change in the future – GPM has provided comprehensive and consistent measurements of precipitation.
      Read the Full Article GPM Satellite Sees First Atlantic Hurricane
      The GPM Core Observatory flew over Hurricane Arthur five times between July 1 to 5, 2014 – the first time a precipitation-measuring satellite was able to follow a hurricane through its full life cycle with high-resolution measurements. In the July 3 image, Arthur was just off the coast of South Carolina. GPM data showed that the hurricane was asymmetrical, with spiral arms (rain bands) on the eastern side of the storm but not on the western side.
      Read the Full Article NASA Working with Partners to Provide Response to Harvey
      In 2017, NASA used assets and expertise from across the agency to help respond to Hurricane Harvey in southern Texas. The agency’s GPM mission team produced rainfall accumulation graphics and unique views of the structure of Harvey during various phases of development and landfall.
      Read the Full Article Predicting Floods 
      Predicting floods is notoriously tricky, as the events depend on a complex mixture of rainfall, soil moisture, the recent history of precipitation, and much more. Snowmelt and storm surges can also contribute to unexpected flooding. With funding from NASA, researchers developed a tool that maps flood conditions across the globe.
      Read the Full Article NASA, Pacific Disaster Center Increase Landslide Hazard Awareness
      A NASA-based team built a new tool to examine the risk of landslides. They developed a machine learning model that combines data on ground slope, soil moisture, snow, geological conditions, distance to faults, and the latest near real-time precipitation data from NASA’s IMERG product (part of the GPM mission). The model has been trained on a database of historical landslides and the conditions surrounding them, allowing it to recognize patterns that indicate a landslide is likely.
      Read the Full Article NASA Measures Raindrop Sizes From Space to Understand Storms
      For the first time, scientists collected three-dimensional snapshots from space of raindrops and snowflakes around the world. With this detailed global dataset, scientists started to improve rainfall estimates from satellite data and in numerical weather forecast models. This is particularly helpful for understanding and preparing for extreme weather events.
      This is a conceptual image showing how the size and distribution of raindrops varies within a storm. Blues and greens represent small raindrops that are 0.5-3mm in size. Yellows, oranges, and reds represent larger raindrops that are 4-6mm in size. A storm with a higher ratio of yellows, oranges, and reds will contain more water than a storm with a higher ratio of blues and greens.Credit: NASA Goddard Read the Full Article NASA Maps El Niño’s Shift on U.S. Precipitation
      The GPM team amassed and analyzed data to show the various changes in precipitation across the United States due to the natural weather phenomenon known as El Niño.
      Read the Full Article Using Satellites to Predict Malaria Outbreaks
      University researchers turned to data from NASA’s fleet of Earth-observing satellites to track environmental events that typically precede a malaria outbreak. With NASA funding and a partnership with the Peruvian government, they worked to develop a system to help forecast potential malaria outbreaks down to the neighborhood level and months in advance. This gave authorities a tool to help prevent outbreaks from happening.
      Read the Full Article Two Decades of Rain, Snowfall from NASA’s Precipitation Missions
      NASA’s Precipitation Measurement Missions (PMM) – including GPM and the Tropical Rainfall Measurement Mission ­– have together collected rain and snowfall from space for more than 20 years. Since 2019, scientists have been able to access PMM’s multi-satellite record as one dataset.
      Read the Full Article View the full article
    • By NASA
      5 min read
      Night-Shining Cloud Mission Ends; Yields High Science Results for NASA
      NASA’s Aeronomy of Ice in the Mesosphere (AIM) mission, seen in this visualization, contributed to NASA’s understanding of the region that borders between Earth’s atmosphere and space. NASA After 16 years studying Earth’s highest clouds for the benefit of humanity – polar mesospheric clouds – from its orbit some 350 miles above the ground, NASA’s Aeronomy of Ice in the Mesosphere, or AIM, mission has come to an end.
      Initially slated for a two-year mission, AIM was extended numerous times due to its high science return. While AIM has faced hurdles over the years – from software hiccups to hardware issues – an incredibly dedicated team kept the spacecraft running for much longer than anyone could have anticipated. On March 13, 2023, the spacecraft’s battery failed following several years of declining performance. Multiple attempts to maintain power to the spacecraft were made, but no further data could be collected, so the mission has now ended.
      “AIM was dedicated to studying the atmospheric region that borders between our atmosphere and space,” said AIM mission scientist Diego Janches, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “AIM’s help understanding this region has been of critical importance to providing insights on how the lower atmosphere affects space weather.”
      Known as night-shining or noctilucent clouds, they are seen at twilight in the summer months, typically at high latitudes near the North and South Poles. Before the mission, scientists knew these types of clouds varied with latitude, season, and solar activity, but didn’t know why. This mission was launched to understand the variations and study why the clouds form and their links to climate change by measuring the thermal, chemical, and other properties of the environment in which the clouds form.
      Noctilucent clouds appeared in the sky above Edmonton, Alberta, in Canada on July 2, 2011. NASA/Dave Hughes “NASA’s AIM has been an incredibly successful mission,” said Scott Bailey, AIM principal investigator and professor at Virginia Tech. “It has answered core questions that have helped us understand how noctilucent clouds and atmospheric gravity waves vary over time and location.”
      Over the years, AIM made many big discoveries. Data from the mission has thus far led to nearly 400 peer-reviewed publications. This includes findings on how these clouds can be created by meteor smoke and water vapor from rocket exhaust, how events near Earth’s surface can trigger changes in the clouds, and how ice high in the atmosphere can cause mysterious radar echoes, which are created in certain regions of the atmosphere during the summer.
      As the mission progressed, scientists realized AIM’s data could also be used to study undulations in the air called atmospheric gravity waves. These waves transfer momentum and energy as they travel through the atmosphere. They link weather events at Earth’s surface with atmospheric disturbances that occur far away from the initial event, including in the uppermost part of the atmosphere where they can disrupt GPS signals.
      “We’ve had many difficulties, but we’ve still gotten an incredible amount of data from AIM because of our really excellent, heroic, and hardworking team that comes through every time,” Bailey said.
      AIM’s first hurdles started only months after launch in 2007, when the telecommunication receiver started to malfunction intermittently. With a clever use of radio signals, the team was able to reprogram the spacecraft to communicate in Morse code, which allowed it to maintain communications even after the receiver stopped working. While communication with the spacecraft became thousands of times slower than planned, AIM was still able to make its measurements and send home 99% of the data it collected.
      Shortly thereafter, the spacecraft again encountered a mission-threatening issue. The spacecraft repeatedly sent itself into safe mode, which effectively shut down the spacecraft and required a time-consuming series of tasks to reboot. But again, the engineers were able to upload new software to the spacecraft to circumvent the issue and keep AIM functional. The new software patch has prevented over a thousand such incidents on the spacecraft since.
      In 2019, AIM’s battery started to decline, but through great effort and ingenuity, the mission operations team maintained the battery power, enabling the spacecraft to continue returning data. In early 2023, the battery experienced a significant drop-off in performance which meant the spacecraft could not regularly receive commands or collect data. Unfortunately, this hardware issue was not one that could be repaired remotely, and the satellite finally ceased collecting data in March 2023.
      “We’re saddened to see AIM reach the end of its lifetime, but it’s been amazing how long it has lasted,” Bailey said. “It’s given us more data and insight into noctilucent clouds and atmospheric gravity waves than we could ever have hoped for.”
      Though the spacecraft has seen its last night-shining clouds, scientists will continue to study AIM’s data for years to come. As for the spacecraft itself, it will slowly lose orbital height and burn up upon atmosphere re-entry in 2026.
      “There are still gigabytes upon gigabytes of AIM data to study,” said Cora Randall, AIM deputy principal investigator and senior research scientist at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado. “And as our models and computational capabilities continue to improve, people will make many more discoveries using the AIM datasets.”
      For more information about the mission, visit: https://go.nasa.gov/3TgIDwD
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 01, 2024 Related Terms
      AIM (Aeronomy of Ice in the Mesosphere) Goddard Space Flight Center Heliophysics Heliophysics Division Mesosphere Science & Research The Sun Explore More
      2 min read Hubble Uncovers a Celestial Fossil


      Article


      4 hours ago
      5 min read The CUTE Mission: Innovative Design Enables Observations of Extreme Exoplanets from a Small Package


      Article


      3 days ago
      1 min read Hubble Views an Active Star-Forming Galaxy


      Article


      1 week ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      The Science of NASA's SpaceX Crew-7 Mission
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      After months aboard the International Space Station, NASA’s SpaceX Crew-7 is returning to Earth. NASA astronaut Jasmin Moghbeli and Roscosmos cosmonaut Konstantin Borisov each completed their first spaceflight. JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa and ESA (European Space Agency) astronaut Andreas Mogensen each completed their second spaceflight.
      During their time on the station, Crew-7 conducted science experiments and technology demonstrations to benefit people on Earth and prepare humans for future space missions. Here’s a look at some scientific milestones accomplished during their mission:

      Download full-resolution versions of all photos in this article.
      The Human Body in Space
      ESA (European Space Agency) astronaut Andreas Mogensen processes blood samples for the Immunity Assay investigation, which monitors the impact of spaceflight on immune function. Prior to the experiment, scientists could only test the immune function before and after flight. Taking samples while on station provides scientists a clearer assessment of changes to the immune system during spaceflight.
      NASA Since physiological changes in microgravity can resemble how the human body ages on Earth, scientists can use the space station for age-related studies. NASA astronaut Jasmin Moghbeli collects cell samples inside the Life Science Glovebox for Space AGE, a study to understand how microgravity-induced age-like changes affect liver regeneration. Results could boost our understanding of aging and its effects on disease mechanisms.
      NASA JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa exercises with ARED Kinematics, a device that mimics forces generated when lifting free weights on Earth. The experiment assesses the current exercise programs on station to understand the most effective countermeasures to maintain muscle and bone strength.
      NASA Safe Water
      ESA (European Space Agency) astronaut Andreas Mogensen works on ESA’s Aquamembrane-3 technology demonstration, which tests a special membrane to eliminate contaminants from wastewater. The membrane incorporates proteins called aquaporins, found in biological cells, and may be able to filter water using less energy. An aquaporin membrane-based system could improve water reclamation and reduce materials needed for future deep space missions.
      NASA NASA astronaut Jasmin Moghbeli prepares a water sample for DNA sequencing using the EHS BioMole Facility, a technology demonstration used to monitor microbes in water samples aboard a spacecraft. Future exploration missions will need to analyze water to ensure it is safe for crews to drink while far from Earth.
      NASA Growing Food on Station
      Tomato seedlings sprout in the space station’s Advanced Plant Habitat. At the beginning of Crew-7’s mission, Plant Habitat-03 wrapped up a months-long experiment that tests whether epigenetics are passed to subsequent generations. Epigenetic changes involve the addition of extra information to DNA, which regulates how genes turn on or off but does not change the sequence of the DNA itself. Crew-7 also grew tomatoes for Plant Habitat-06, which investigates how the plant immune functions adapt to spaceflight and how spaceflight affects plant production.
      NASA BioNutrients completed five years of demonstrating technology to produce nutrients on demand aboard the space station. Since vitamins can degrade over time, the investigation used engineered microbes to test generating fresh nutrient supply for future long-duration missions.
      NASA Outside the Station
      JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa retrieves MISSE-17 hardware after the experiment spent six months outside the station. MISSE experiments expose materials and organisms to the space environment to analyze performance and durability. Crew-7 installed MISSE-18, which houses several materials including printed quantum dots arrays used to make a miniaturized and ultra-compact spectrometer.
      NASA CubeSats deployed from the space station are a lower-cost alternative to traditional satellites. Crew-7 deployed two CubeSats from Japanese schools, including BEAK CubeSat, which tests novel technologies for future nano-sized planetary probes and Clark sat-1, which transmits voice and imagery data to ground control stations on Earth.
      NASA Picture Perfect
      Using handheld digital cameras, astronauts capture images of the Earth below. This imagery is used by researchers across disciplines from glaciology to ecology. A Crew-7 member captured this image of the Aladaghlar Mountains in northwest Iran, where the convergent boundary of the Arabia and Eurasia tectonic plates created folds in the landscape over millions of years.
      NASA These bright red streaks above a thundercloud on Earth are a rare phenomenon known as red sprites. Red sprites happen above the clouds and are not easily studied from Earth. This image was captured on the space station with a high-speed camera for the Thor-Davis experiment. Imagery collected from the station is instrumental in studying the effects of thunderstorms and electrical activity on Earth’s climate and atmosphere.
      ESA Biology on Station
      Recent spaceflight experiments found individual animal cells can sense the effects of gravity. Cell Gravisensing investigation from JAXA (Japanese Aerospace Exploration Agency) seeks to understand how cells can do this. JAXA astronaut Satoshi Furukawa uses a microscope to examine cells during spaceflight and document cell responses to microgravity. Understanding the mechanisms of cell gravity sensing could contribute to new drug development.
      NASA NASA astronaut Jasmin Moghbeli works in the BioFabrication Facility (BFF), which bioprints organ-like tissues in microgravity. During the Crew-7 mission, BFF-Cardiac tested bioprinting and processing cardiac tissue samples. This experiment could help to advance technology to support the development of biological patches to replace damaged tissues and potentially entire muscles.
      NASA Special Delivery
      Two commercial spacecraft visited during Crew-7’s time in space bringing critical science, hardware, and supplies to the station: SpaceX Dragon in November 2023 and Northop Grumman’s Cygnus in February 2024.
      NASA NASA Andrea Lloyd
      International Space Station Program Research Office
      Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned above.

      Facebook logo @ISS @ISS_Research@Space_Station Instagram logo @ISS Linkedin logo @NASA Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Commercial Crew Program
      Station Science 101
      Space Station Research and Technology
      View the full article
  • Check out these Videos

×
×
  • Create New...