Jump to content

NASA’s Juno Spacecraft Flies Past Io and Jupiter, With Music by Vangelis


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In the Pose Bowl: Spacecraft Detection and Pose Estimation Challenge, solvers will help NASA develop algorithms that could be run on inspector (chaser) spacecraft. There are two tracks, with different associated prizes. In the Detection Track, solvers develop object detection solutions that identify the boundaries of spacecraft in an image. In the Pose Estimation Track, solvers develop solutions that identify changes in the position and orientation (pose) of the chaser spacecraft camera across a sequence of images.
      Award: $40,000 in total prizes
      Open Date: February 20, 2024
      Close Date: May 14, 2024
      For more information, visit: https://www.drivendata.org/competitions/group/competition-nasa-spacecraft/
      View the full article
    • By NASA
      In the left two photos, workers with NASA’s Exploration Ground Systems (EGS) paint the bright red NASA “worm” logo on the side of an Artemis II solid rocket booster segment inside the Rotation, Processing and Surge Facility (RPSF) at Kennedy Space Center in Florida on Tuesday, Jan. 30, 2024. The EGS team used a laser projector to mask off the logo with tape, then painted the first coat of the iconic design. The booster segments will help propel the Space Launch System (SLS) rocket on the Artemis II mission to send four astronauts around the Moon as part of the agency’s effort to establish a long-term science and exploration presence at the Moon, and eventually Mars. In the right photo, the Orion spacecraft for NASA’s Artemis II mission received its latest makeover. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter on Sunday, Jan. 28, inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.NASA/Glenn Benson and Rad Sinyak Art and science merge as teams add the NASA “worm” logo on the SLS (Space Launch System) solid rocket boosters and the Orion spacecraft’s crew module adapter at NASA’s Kennedy Space Center in Florida for the agency’s Artemis II mission.
      The iconic logo was introduced in 1975 by the firm of Danne & Blackburn as a modern emblem for the agency. It emerged from a nearly 30-year retirement in 2020 for limited use on select missions and products.
      NASA’s Exploration Ground Systems and prime contractor Jacobs began painting the red logotype onto the segments that form the Moon rocket’s two solid rocket boosters Jan. 22. To do so, crews used a laser projector to first mark off the location of the logo with tape, then applied two coats of paint and finished by adding several coats of clear primer. Each letter of the worm logo measures approximately 6 feet and 10 inches in height and altogether, stretches 25 feet from end to end, or a little less than the length of one of the rocket’s booster motor segments.
      The location of the worm logo will be moderately different from where it was during Artemis I. While it will still be located on each of the rocket’s 17 story boosters, the modernist logo will be placed toward the front of the booster systems tunnel cover. The SLS boosters are the largest, most powerful solid propellant boosters ever flown and provide more than 75% of the thrust at launch.
      Workers with NASA’s Exploration Ground Systems (EGS) paint the bright red NASA “worm” logo on the side of an Artemis II solid rocket booster segment inside the Rotation, Processing and Surge Facility (RPSF) at Kennedy Space Center in Florida on Tuesday, Jan. 30, 2024. The EGS team used a laser projector to mask off the logo with tape, then painted the first coat of the iconic design. The booster segments will help propel the Space Launch System (SLS) rocket on the Artemis II mission to send four astronauts around the Moon as part of the agency’s effort to establish a long-term science and exploration presence at the Moon, and eventually Mars.NASA/Glenn Benson Around the corner inside the Neil Armstrong Operations and Checkout Building at Kennedy, personnel adhered the worm logo and ESA (European Space Agency) insignia Jan. 28 on the spacecraft’s crew module adapter. The adapter houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the main modules.
      In October 2023, technicians joined the crew and service modules together. The crew module will house the four astronauts as they journey around the Moon and back to Earth on an approximately 10-day journey. The spacecraft’s service module, provided by ESA, will supply the vehicle with electricity, propulsion, thermal control, air, and water in space.
      The Orion spacecraft for NASA’s Artemis II mission received its latest makeover. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter on Sunday, Jan. 28, inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak NASA is working to land the first woman, first person of color, and first international partner astronaut on the Moon through Artemis. SLS and the Orion spacecraft are central to NASA’s deep space exploration plans, along with advanced spacesuits and rovers, the Gateway space station planned for orbit around the Moon, and commercial human landing systems.
      View the full article
    • By NASA
      4 Min Read Spot the King of Planets: Observe Jupiter
      NASA’s Juno spacecraft Credits:
      NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran Jupiter is our solar system’s undisputed king of the planets! Jupiter is bright and easy to spot from our vantage point on Earth, helped by its massive size and banded, reflective cloud tops. Jupiter even possesses moons the size of planets: Ganymede, its largest, is bigger than the planet Mercury. What’s more, you can easily observe Jupiter and its moons with a modest instrument, just like Galileo did over 400 years ago.
      Jupiter’s position as our solar system’s largest planet is truly earned; you could fit 11 Earths along Jupiter’s diameter, and in case you were looking to fill up Jupiter with some Earth-size marbles, you would need over 1300 Earths to fill it up – and that would still not be quite enough! However, despite its awesome size, Jupiter’s true rule over the outer solar system comes from its enormous mass. If you took all the planets in our solar system and put them together, they would still only be half as massive as Jupiter all by itself. Jupiter’s mighty mass has shaped the orbits of countless comets and asteroids. Its gravity can fling these tiny objects towards our inner solar system and also draw them into itself, as famously observed in 1994 when Comet Shoemaker-Levy 9, drawn towards Jupiter in previous orbits, smashed into the gas giant’s atmosphere. Its multiple fragments slammed into Jupiter’s cloud tops with such violence that the fireballs and dark impact spots were not only seen by NASA’s orbiting Galileo probe, but also observers back on Earth! 
      Jupiter’s Great Red Spot is close to the size of Earth. Credit: NASA Jupiter is easy to observe at night with our unaided eyes, as well-documented by the ancient astronomers who carefully recorded its slow movements from night to night. It can be one of the brightest objects in our nighttime skies, bested only by the Moon, Venus, and occasionally Mars, when the red planet is at opposition. That’s impressive for a planet that, at its closest to Earth, is still over 365 million miles (587 million km) away. It’s even more impressive that the giant world remains very bright to Earthbound observers at its furthest distance: 600 million miles (968 million km)! While the King of Planets has a coterie of 95 known moons, only the four large moons that Galileo originally observed in 1610 – Io, Europa, Ganymede, and Calisto – can be easily observed by Earth-based observers with very modest equipment.
      These are called, appropriately enough, the Galilean moons. Most telescopes will show the moons as faint star-like objects neatly lined up close to bright Jupiter. Most binoculars will show at least one or two moons orbiting the planet. Small telescopes will show all four of the Galilean moons if they are all visible, but sometimes they can pass behind or in front of Jupiter, or even each other. Telescopes will also show details like Jupiter’s cloud bands and, if powerful enough, large storms like its famous Great Red Spot, and the shadows of the Galilean moons passing between the Sun and Jupiter. Sketching the positions of Jupiter’s moons during the course of an evening – and night to night – can be a rewarding project!  You can download an activity guide from the Astronomical Society of the Pacific at bit.ly/drawjupitermoons
      NASA’s Juno mission currently orbits Jupiter, one of just nine spacecraft to have visited this awesome world. Juno entered Jupiter’s orbit in 2016 to begin its initial mission to study this giant world’s mysterious interior. The years have proven Juno’s mission a success, with data from the probe revolutionizing our understanding of this gassy world’s guts. Juno’s mission has since been extended to include the study of its large moons, and since 2021 the plucky probe, increasingly battered by Jupiter’s powerful radiation belts, has made close flybys of the icy moons Ganymede and Europa, along with volcanic Io.
      In Fall 2024 NASA will launch the Europa Clipper mission to study this world and its potential to host life inside its deep subsurface oceans in much more detail. Visit https://science.nasa.gov/jupiter/ to learn about the latest discoveries from Juno and NASA’s missions involving Jupiter!
      Originally posted by Dave Prosper: February 2023
      Last Updated by Kat Troche: February 2024
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A sample of fabric burns inside an uncrewed Cygnus cargo craft during a previous Spacecraft Fire Safety Experiment investigation, Saffire-IV.Credit: NASA NASA recently concluded the final mission of its Spacecraft Fire Safety Experiment, or Saffire, putting a blazing end to an eight-year series of investigations that provided insights into fire’s behavior in space.
      The final experiment, Saffire-VI, launched to the International Space Station in August 2023 and concluded its mission on Jan. 9, when the Northrop Grumman Cygnus spacecraft it was flying on safely burned up during planned re-entry into Earth’s atmosphere.
      Dr. David Urban, principal investigator, and Dr. Gary Ruff, project manager at NASA’s Glenn Research Center in Cleveland, have led the Saffire project from Northeast Ohio since its initial spark in 2016. Throughout the experiment series, researchers gathered data NASA will use to enhance mission safety and inform future spacecraft and spacesuit designs.
      “How big a fire does it take for things to get bad for a crew?” Urban said. “This kind of work is done for every other inhabited structure here on Earth – buildings, planes, trains, automobiles, mines, submarines, ships – but we hadn’t done this research for spacecraft until Saffire.”

      Like previous Saffire experiments, Saffire-VI took place inside a unit on an uninhabited Cygnus spacecraft that had already departed from the space station, ensuring the safety of the orbiting laboratory and a more representative flight environment. However, this final iteration of the experiment was unique because of the higher oxygen concentration and lower pressure generated in the test unit to simulate the conditions within crewed spacecraft.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA ignited the final set of space fire experiments for Saffire-VI inside Northrop Grumman’s Cygnus cargo spacecraft at the end of the NG-19 resupply mission to the International Space Station. Saffire, or Spacecraft Fire Safety Experiment, was a series of six investigations that provided insights into how fires grow and spread in space. This research is especially important as it will inform future spacecraft designs bound for the Moon and Mars. Video credit: NASA During the 19 Saffire-VI experiment runs, the NASA team and counterparts at Northrop Grumman made various adjustments to air conditions. They then ignited a flame on materials such as plexiglass, cotton, Nomex, and Solid Inflammability Boundary at Low-Speed fabrics. A bead-lined wire inside the unit ignited the materials.
      “The Saffire flow unit is a wind tunnel. We’re pushing air through it,” Ruff said. “Once test conditions are set, we run electrical current through a thin wire, and the materials ignite.”
      Cameras inside allowed the team to observe the flame while remote sensors outside the Saffire flow unit collected data about what was happening in the Cygnus vehicle. The images and information were gathered in real-time before being sent to Earth for scientists to analyze.
      “You’ve got a heat release rate and a rate of release of combustion products,” Ruff said. “You can take those as model input and predict what will happen in a vehicle.” 
      The next decade of exploration and science missions will see astronauts flying deeper into space and to locations that have yet to be explored. Though the Saffire experiments have been extinguished, NASA has learned valuable lessons and gathered mountains of data on fire behavior that will help the agency design safer spacecraft and accomplish its ambitious future missions.

      Explore More
      1 min read January 2024 Retirements
      Article 9 hours ago 2 min read NASA Trains Teachers on Upcoming Solar Eclipse
      Article 9 hours ago 1 min read NASA Participates in “Ohioans in Space” Painting Unveiling
      Article 9 hours ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Sunlight glints off patches of ice in the Chukchi Sea, a part of the Arctic Ocean. NASA’s PREFIRE mission to Earth’s polar regions will explore how a warming world will affect sea ice loss, ice sheet melt, and sea level rise.NASA/Kathryn Hansen Launching in spring 2024, the two small satellites of the agency’s PREFIRE mission will fill in missing data from Earth’s polar regions.
      Two new miniature NASA satellites will start crisscrossing Earth’s atmosphere in a few months, detecting heat lost to space. Their observations from the planet’s most bone-chilling regions will help predict how our ice, seas, and weather will change in the face of global warming.
      About the size of a shoebox, the cube satellites, or CubeSats, comprise a mission called PREFIRE, short for Polar Radiant Energy in the Far-InfraRed Experiment. Equipped with technology proven at Mars, their objective is to reveal the full spectrum of heat loss from Earth’s polar regions for the first time, making climate models more accurate.
      PREFIRE has been jointly developed by NASA and the University of Wisconsin-Madison, with team members from the universities of Michigan and Colorado.
      The mission starts with Earth’s energy budget. In a planetary balancing act, the amount of heat energy the planet receives from the Sun should ideally be offset by the amount it radiates out of the Earth system into space. The difference between incoming and outgoing energy determines Earth’s temperature and shapes our climate.
      The PREFIRE mission will send two CubeSats – depicted in an artist’s concept orbiting Earth – into space to study how much heat the planet absorbs and emits from its polar regions. These measurements will inform climate and ice models.NASA/JPL-Caltech Polar regions play a key role in the process, acting like Earth’s radiator fins. The stirring of air and water, through weather and ocean currents, moves heat energy received in the tropics toward the poles, where it is emitted as thermal infrared radiation – the same type of energy you feel from a heat lamp. Some 60% of that energy flows out to space in far-infrared wavelengths that have never been systematically measured.
      PREFIRE can close that gap. “We have the potential to discover some fundamental things about how our planet works,” said Brian Drouin, scientist and deputy principal investigator for the mission at NASA’s Jet Propulsion Laboratory in Southern California.
      “In climate projections, a lot of the uncertainty comes in from what we don’t know about the North and South poles and how efficiently radiation is emitted into space,” he said. “The importance of that radiation wasn’t realized for much of the Space Age, but we know now and are aiming to measure it.”
      Launching from New Zealand two weeks apart in May, each satellite will carry a thermal infrared spectrometer. The JPL-designed instruments include specially shaped mirrors and detectors for splitting and measuring infrared light. Similar technology is used by the Mars Climate Sounder on NASA’s Mars Reconnaissance Orbiter to explore the Red Planet’s atmosphere and weather.
      Miniaturizing the instruments to fit on CubeSats was a challenge for the PREFIRE engineering team. They developed a scaled-down design optimized for the comparatively warm conditions of our own planet. Weighing less than 6 pounds (3 kilograms), the instruments make readings using a device called a thermocouple, similar to the sensors found in many household thermostats.
      Ground Zero for Climate Change
      To maximize coverage, the PREFIRE twins will orbit Earth along different paths, overlapping every few hours near the poles.
      Since the 1970s, the Arctic has warmed at least three times faster than anywhere else on Earth. Winter sea ice there has shrunk by more than 15,900 square miles (41,200 square kilometers) per year, a loss of 2.6% per decade relative to the 1981-2010 average. A change is occurring on the opposite side of the planet, too: Antarctica’s ice sheets are losing mass at an average rate of about 150 billion tons per year.
      The implications of these changes are far reaching. Fluctuations in sea ice shape polar ecosystems and influence the temperature as well as circulation of the ocean. Meltwater from mile-thick ice sheets in Greenland and Antarctica is responsible for about one-third of the rise in global mean sea level since 1993.
      “If you change the polar regions, you also fundamentally change the weather around the world,” said Tristan L’Ecuyer, a professor at the University of Wisconsin-Madison and the mission’s principal investigator. “Extreme storms, flooding, coastal erosion – all of these things are influenced by what’s going on in the Arctic and Antarctic.”
      To understand and project such changes, scientists use climate models that take into account many physical processes. Running the models multiple times (each time under slightly different conditions and assumptions) results in an ensemble of climate projections. Assumptions about uncertain parameters, such as how efficiently the poles emit thermal radiation, can significantly impact the projections.
      PREFIRE will supply new data on a range of climate variables, including atmospheric temperature, surface properties, water vapor, and clouds. Ultimately, more information will yield a more accurate vision of a world in flux, said L’Ecuyer.
      “As our climate models converge, we’ll start to really understand what the future’s going to look like in the Arctic and Antarctic,” he added.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      Written by Sally Younger
      2024-014
      Share
      Details
      Last Updated Feb 12, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Cryosphere Earth Ice & Glaciers Oceans Explore More
      4 min read What’s Made in a Thunderstorm and Faster Than Lightning? Gamma Rays!
      Fermi Gamma-ray Space Telescope has spotted gamma rays coming from thunderstorms.
      Article 7 days ago 5 min read OpenET Study Helps Water Managers and Farmers Put NASA Data to Work
      As the world looks for sustainable solutions, a system tapping into NASA satellite data for…
      Article 2 weeks ago 5 min read NASA Study: More Greenland Ice Lost Than Previously Estimated
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...