Jump to content

Recommended Posts

Posted
low_STSCI-H-p1017-k-1340x520.png

For just over a decade, astronomers have known that three Jupiter-type planets orbit the yellow-white star Upsilon Andromedae. But to their surprise it's now been discovered that not all planets orbit this star in the same plane, as the major planets in our solar system orbit the Sun. The orbits of two of the planets are inclined by 30 degrees with respect to each other. Such a strange orientation has never before been seen in any other planetary system. This surprising finding will impact theories of how planetary systems form and evolve, say researchers. It suggests that some violent events can happen to disrupt planets' orbits after a planetary system forms. The discovery was made by joint observations with the Hubble Space Telescope, the giant Hobby-Eberly Telescope, and other ground-based telescopes.

These findings were presented in a press conference today at the 216th meeting of the American Astronomical Society in Miami.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 Min Read Coming Spring 2025: Planetary Defenders Documentary
      David Rankin, Senior Survey Operations Specialist at Catalina Sky Survey, is seen opening the dome structure surrounding the telescope at the asteroid-hunting facility in Mt. Lemmon, AZ. Credits:
      NASA How would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders is a gripping documentary that delves into the high-stakes world of asteroid detection and planetary defense. Journey alongside a dedicated team of astronomers and scientists working tirelessly to track and monitor near-Earth asteroids, aiming to protect our planet from potential impacts. This documentary captures the intricate and collaborative efforts of these unsung heroes, blending cutting-edge science with personal stories to reveal the human spirit behind this critical global endeavor. Witness the drama, the challenges and the triumphs of those on the front lines of planetary defense.
      The dinosaurs went extinct because they didn’t have a space program. We do have one.
      Dr. vishnu reddy
      Professor of Planetary Science, University of Arizona
      Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth. NASA In 2016, NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing mission of finding, tracking, and better understanding asteroids and comets that could pose an impact hazard to Earth.
      I really like that I am protecting the planet. And yes, I’m not the one that’s with a cape pushing the asteroid away, that’s not what I do. In some ways, my little contribution might not help just myself, but someone in the future, and I think it’s very important to do that.
      Dr. CASSANDRA LEJOLY
      RESEARCHER, SPACEWATCH®
      Dr. Cassandra Lejoly, a researcher with the University of Arizona’s SPACEWATCH® program, sits at a computer console at Kitt Peak National Observatory in Tuscon, AZ, where she conducts follow up observations on near-Earth objects. NASA Planetary Defenders is an original NASA documentary that showcases the challenges and the triumphs of those on the front lines of planetary defense. This documentary will be released on NASA+ and other streaming platforms in Spring 2025. Stay tuned for updates!
      About the Author
      efurfaro

      Share








      Details
      Last Updated Dec 03, 2024 Related Terms
      Planetary Defense Planetary Defense Coordination Office Science Mission Directorate Explore More
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      49 mins ago
      2 min read Hubble Captures an Edge-On Spiral with Curve Appeal


      Article


      2 weeks ago
      5 min read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By Amazing Space
      What They Didn't Teach You About Mercury - The Planets of the Solar System
    • By NASA
      4 min read
      NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System
      The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has captured the most detailed portrait yet of gases flowing within Cygnus X-3, one of the most studied sources in the X-ray sky.
      Cygnus X-3 is a binary that pairs a rare type of high-mass star with a compact companion — likely a black hole.
      Cygnus X-3 is a high-mass binary consisting of a compact object (likely a black hole) and a hot Wolf-Rayet star. This artist’s concept shows one interpretation of the system. High-resolution X-ray spectroscopy indicates two gas components: a heavy background outflow, or wind, emanating from the massive star and a turbulent structure — perhaps a wake carved into the wind — located close to the orbiting companion. As shown here, a black hole’s gravity captures some of the wind into an accretion disk around it, and the disk’s orbital motion sculpts a path (yellow arc) through the streaming gas. During strong outbursts, the companion emits jets of particles moving near the speed of light, seen here extending above and below the black hole. NASA’s Goddard Space Flight Center “The nature of the massive star is one factor that makes Cygnus X-3 so intriguing,” said Ralf Ballhausen, a postdoctoral associate at the University of Maryland, College Park, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s a Wolf-Rayet star, a type that has evolved to the point where strong outflows called stellar winds strip gas from the star’s surface and drive it outward. The compact object sweeps up and heats some of this gas, causing it to emit X-rays.”
      A paper describing the findings, led by Ballhausen, will appear in a future edition of The Astrophysical Journal.
      “For XRISM, Cygnus X-3 is a Goldilocks target — its brightness is ‘just right’ in the energy range where XRISM is especially sensitive,” said co-author Timothy Kallman, an astrophysicist at NASA Goddard. “This unusual source has been studied by every X-ray satellite ever flown, so observing it is a kind of rite of passage for new X-ray missions.”
      XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed the mission’s microcalorimeter spectrometer instrument, named Resolve.
      Observing Cygnus X-3 for 18 hours in late March, Resolve acquired a high-resolution spectrum that allows astronomers to better understand the complex gas dynamics operating there. These include outflowing gas produced by a hot, massive star, its interaction with the compact companion, and a turbulent region that may represent a wake produced by the companion as it orbits through the outrushing gas.
      XRISM’s Resolve instrument has captured the most detailed X-ray spectrum yet acquired of Cygnus X-3. Peaks indicate X-rays emitted by ionized gases, and valleys form where the gases absorb X-rays; many lines are also shifted to both higher and lower energies by gas motions. Top: The full Resolve spectrum, from 2 to 8 keV (kiloelectron volts), tracks X-rays with thousands of times the energy of visible light. Some lines are labeled with the names of the elements that produced them, such as sulfur, argon, and calcium, along with Roman numerals that refer to the number of electrons these atoms have lost. Bottom: A zoom into a region of the spectrum often dominated by features produced by transitions in the innermost electron shell (K shell) of iron atoms. These features form when the atoms interact with high-energy X-rays or electrons and respond by emitting a photon at energies between 6.4 and 7 keV. These details, clearly visible for the first time with XRISM’s Resolve instrument, will help astronomers refine their understanding of this unusual system. JAXA/NASA/XRISM Collaboration In Cygnus X-3, the star and compact object are so close they complete an orbit in just 4.8 hours. The binary is thought to lie about 32,000 light-years away in the direction of the northern constellation Cygnus.
      While thick dust clouds in our galaxy’s central plane obscure any visible light from Cygnus X-3, the binary has been studied in radio, infrared, and gamma-ray light, as well as in X-rays.
      The system is immersed in the star’s streaming gas, which is illuminated and ionized by X-rays from the compact companion. The gas both emits and absorbs X-rays, and many of the spectrum’s prominent peaks and valleys incorporate both aspects. Yet a simple attempt at understanding the spectrum comes up short because some of the features appear to be in the wrong place.
      That’s because the rapid motion of the gas displaces these features from their normal laboratory energies due to the Doppler effect. Absorption valleys typically shift up to higher energies, indicating gas moving toward us at speeds of up to 930,000 mph (1.5 million kph). Emission peaks shift down to lower energies, indicating gas moving away from us at slower speeds.
      Some spectral features displayed much stronger absorption valleys than emission peaks. The reason for this imbalance, the team concludes, is that the dynamics of the stellar wind allow the moving gas to absorb a broader range of X-ray energies emitted by the companion. The detail of the XRISM spectrum, particularly at higher energies rich in features produced by ionized iron atoms, allowed the scientists to disentangle these effects.
      “A key to acquiring this detail was XRISM’s ability to monitor the system over the course of several orbits,” said Brian Williams, NASA’s project scientist for the mission at Goddard. “There’s much more to explore in this spectrum, and ultimately we hope it will help us determine if Cygnus X-3’s compact object is indeed a black hole.”
      XRISM is a collaborative mission between JAXA and NASA, with participation by ESA. NASA’s contribution includes science participation from CSA (Canadian Space Agency).  

      Download additional images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 25, 2024 Related Terms
      Black Holes Electromagnetic Spectrum Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Stars Stellar-mass Black Holes The Universe X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By SpaceX
      Making Life Multi-Planetary
  • Check out these Videos

×
×
  • Create New...