Jump to content

Hubble sees boulders escaping from asteroid Dimorphos


Recommended Posts

Hubble sees boulders escaping from asteroid Dimorphos

Astronomers using the NASA/ESA/ Hubble Space Telescope’s extraordinary sensitivity have discovered a swarm of boulders that were possibly shaken off the asteroid Dimorphos when NASA deliberately slammed the half-tonne DART impactor spacecraft into Dimorphos at approximately 22 500 kilometres per hour. DART intentionally impacted Dimorphos on 26 September 2022, slightly changing the trajectory of its orbit around the larger asteroid Didymos.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, A. Sarajedini This densely populated group of stars is the globular cluster NGC 1841, which is part of the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way galaxy that lies about 162,000 light-years away. Satellite galaxies are bound by gravity in orbits around a more massive host galaxy. We typically think of the Andromeda Galaxy as our galaxy’s nearest galactic companion, but it is more accurate to say that Andromeda is the nearest galaxy that is not in orbit around the Milky Way galaxy. In fact, dozens of satellite galaxies orbit our galaxy and they are far closer than Andromeda. The largest and brightest of these is the LMC, which is easily visible to the unaided eye from the southern hemisphere under dark sky conditions away from light pollution.
      The LMC is home to many globular clusters. These celestial bodies fall somewhere between open clusters – which are much less dense and tightly bound – and small, compact galaxies. Increasingly sophisticated observations reveal the stellar populations and characteristics of globular clusters are varied and complex, and we have yet to fully understand how these tightly packed groups of stars form. However, there are certain consistencies across all globular clusters: they are very stable and hold their shape for a long time, which means they are generally very old and contain large numbers of very old stars. Globular clusters are akin to celestial ‘fossils.’ Just as fossils provide insight into the early development of life on Earth, globular clusters such as NGC 1841 can provide insights into very early star formation in galaxies.
      Text credit: European Space Agency (ESA)
      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      View the full article
    • By NASA
      2 min read
      Hubble Uncovers a Celestial Fossil
      This NASA/ESA Hubble Space Telescope image features a densely populated group of stars, the globular cluster NGC 1841. ESA/Hubble & NASA, A. Sarajedini This densely populated group of stars is the globular cluster NGC 1841, which is part of the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way galaxy that lies about 162,000 light-years away. Satellite galaxies are bound by gravity in orbits around a more massive host galaxy. We typically think of the Andromeda Galaxy as our galaxy’s nearest galactic companion, but it is more accurate to say that Andromeda is the nearest galaxy that is not in orbit around the Milky Way galaxy. In fact, dozens of satellite galaxies orbit our galaxy and they are far closer than Andromeda. The largest and brightest of these is the LMC, which is easily visible to the unaided eye from the southern hemisphere under dark sky conditions away from light pollution.
      The LMC is home to many globular clusters. These celestial bodies fall somewhere between open clusters – which are much less dense and tightly bound – and small, compact galaxies. Increasingly sophisticated observations reveal the stellar populations and characteristics of globular clusters are varied and complex, and we have yet to fully understand how these tightly packed groups of stars form. However, there are certain consistencies across all globular clusters: they are very stable and hold their shape for a long time, which means they are generally very old and contain large numbers of very old stars. Globular clusters are akin to celestial ‘fossils.’ Just as fossils provide insight into the early development of life on Earth, globular clusters such as NGC 1841 can provide insights into very early star formation in galaxies.
      Text credit: European Space Agency (ESA)

      Download this image

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Feb 29, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Star Clusters Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      NASA Astrophysics


      View the full article
    • By NASA
      The day before asteroid 2008 OS7 made its close approach with Earth on Feb. 2, this series of images was captured by the powerful 230-foot (70-meter) Goldstone Solar System Radar antenna near Barstow, California.NASA/JPL-Caltech During the close approach of 2008 OS7 with Earth on Feb. 2, the agency’s Deep Space Network planetary radar gathered the first detailed images of the stadium-size asteroid.
      On Feb. 2, a large asteroid safely drifted past Earth at a distance of about 1.8 million miles (2.9 million kilometers, or 7 ½ times the distance between Earth and the Moon). There was no risk of the asteroid – called 2008 OS7 – impacting our planet, but scientists at NASA’s Jet Propulsion Laboratory in Southern California used a powerful radio antenna to better determine the size, rotation, shape, and surface details of this near-Earth object (NEO). Until this close approach, asteroid 2008 OS7 had been too far from Earth for planetary radar systems to image it.
      The asteroid was discovered on July 30, 2008, during routine search operations for NEOs by the NASA-funded Catalina Sky Survey, which is headquartered at the University of Arizona in Tucson. After discovery, observations of the amount of light reflected from the asteroid’s surface revealed that it was roughly between 650 to 1,640 feet (200 and 500 meters) wide and that it is comparatively slow rotating, completing one rotation every 29 ½ hours.
      The rotational period of 2008 OS7 was determined by Petr Pravec, at the Astronomical Institute of the Czech Academy of Sciences in Ondřejov, Czech Republic, who observed the asteroid’s light curve – or how the brightness of the object changes over time. As the asteroid spins, variations in its shape change the brightness of reflected light astronomers see, and those changes are recorded to understand the period of the asteroid’s rotation.
      During the Feb. 2 close approach, JPL’s radar group used the powerful 230-foot (70-meter) Goldstone Solar System Radar antenna dish at the Deep Space Network’s facility near Barstow, California, to image the asteroid. What scientists found was that its surface has a mix of rounded and more angular regions with a small concavity. They also found the asteroid is smaller than previously estimated – about 500 to 650 feet (150 to 200 meters) wide – and confirmed its uncommonly slow rotation.
      The Goldstone radar observations also provided key measurements of the asteroid’s distance from Earth as it passed by. Those measurements can help scientists at NASA’s Center for Near Earth Object Studies (CNEOS) refine calculations of the asteroid’s orbital path around the Sun. Asteroid 2008 OS7 orbits the Sun once every 2.6 years, traveling from within the orbit of Venus and past the orbit of Mars at its farthest point.
      CNEOS, which is managed by JPL, calculates every known NEO orbit to provide assessments of potential impact hazards. Due to the proximity of its orbit to that of the Earth and its size, 2008 OS7 is classified as a potentially hazardous asteroid, but the Feb. 2 close approach is the nearest it will come to our planet for at least 200 years.
      While NASA reports on NEOs of all sizes, the agency has been tasked by Congress with detecting and tracking objects 460 feet (140 meters) in size and larger that could cause significant damage on the ground if they should impact our planet.
      The Goldstone Solar System Radar Group and CNEOS are supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. The Deep Space Network receives programmatic oversight from Space Communications and Navigation (SCaN) program office within the Space Operations Mission Directorate, also at the agency’s headquarters.
      More information about planetary radar, CNEOS, and near-Earth objects can be found at:
      https://www.jpl.nasa.gov/asteroid-watch
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-019
      Share
      Details
      Last Updated Feb 26, 2024 Related Terms
      Asteroids Deep Space Network Jet Propulsion Laboratory Near-Earth Asteroid (NEA) Planetary Defense Planetary Defense Coordination Office Potentially Hazardous Asteroid (PHA) Space Communications & Navigation Program Explore More
      6 min read NASA Telescopes Find New Clues About Mysterious Deep Space Signals
      Article 2 weeks ago 3 min read Team Assessing SHERLOC Instrument on NASA’s Perseverance Rover
      Article 2 weeks ago 5 min read NASA’s New Experimental Antenna Tracks Deep Space Laser
      Article 3 weeks ago View the full article
    • By European Space Agency
      ESA’s Hera spacecraft for planetary defence is being prepared for a journey to the distant asteroid moon Dimorphos orbiting around its parent body Didymos. One of the first features Hera will look for is the crater left on Dimorphos by its predecessor mission DART, which impacted the asteroid to deflect its orbit. Yet a new impact simulation study reported in Nature Astronomy today suggests no crater will be found. The DART impact is likely to have remodelled the entire body instead – a significant finding for both asteroid science and planetary defence.
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features IC 3476, a dwarf galaxy that lies about 54 million light-years from Earth in the constellation Coma Berenices. While this image does not look very dramatic – we might say it looks almost serene – the actual physical events taking place in IC 3476 are highly energetic. In fact, the little galaxy is undergoing a process called ram pressure stripping that is driving unusually high levels of star formation in regions of the galaxy. 
      The gas and dust that permeates space exerts pressure on a galaxy as it moves. This resistance, called ram pressure, can strip a galaxy of its star-forming gas and dust, reducing or even stopping the creation of new stars. However, ram pressure can also compress gas in other parts of the galaxy, which can boost star formation. This may be happening in IC 3476. The galaxy appears to have absolutely no star formation along its edges, which bear the brunt of the ram pressure stripping, but star formation rates deeper within the galaxy are noticeably above average. 
      Text credit: European Space Agency (ESA)
      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...