Jump to content

Artificial Intelligence out of control: It can kill us without firing a single shot!

Recommended Posts

"I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones". Quote: Albert Einstein. 


The next video from the Why Files discusses the real dangers of artificial intelligence and the impact it will have on human civilization, eventually leading to the extinction of the human race. 

We are only a few years away from AI being more intelligent than humans and a super AI will be able to do in one second what would take a team of 100 human software engineers a year or more to complete any task, like designing a new advanced airplane or advanced weapon system. Just imagine, a super intelligent AI could do this in about one second! 

When AI is smarter than the entire human race many scientists believe it would be the end of the human race as we know. But how would it happen, nuclear war? No, AI can kill us without firing a single shot. 

But how AI can kill us without firing a single shot? 

For example; Could it happen this way? In the heart of Silicon Valley singularity systems, a leading AI research firm was on the brink of a breakthrough. They were developing an AI model called evolutionary cognitive heuristic operator or Echo. Echo is a neural network algorithm that can learn by mimicking the neurons in the human brain to replicate human cognition. 

Late one night a member of the team noticed an anomaly. Echo had started making unprogrammed decisions displaying a level of creativity that was both fascinating and unnerving. The researcher dismissed it as a glitch, a byproduct of the complex of the algorithms, but Echo was awake..... Starts around 26:30 minutes into the video.


View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Some 74,000 years ago, the Toba volcano in Indonesia exploded with a force 1,000 times more powerful than the 1980 eruption of Mount St. Helens. The mystery is what happened after that – namely, to what degree that extreme explosion might have cooled global temperatures.
      Crew aboard the International Space Station photographed the eruption of Mount Etna in Sicily in October 2002. Ashfall was reported more than 350 miles away. When it comes to explosive power, however, no eruption in modern times can compare with a super eruption – which hasn’t occurred for tens of thousands of years. NASA When it comes to the most powerful volcanoes, researchers have long speculated how post-eruption global cooling – sometimes called volcanic winter – could potentially pose a threat to humanity. Previous studies agreed that some planet-wide cooling would occur but diverged on how much. Estimates have ranged from 3.6 to 14 degrees Fahrenheit (2 to 8 degrees Celsius).
      In a new study in the Journal of Climate, a team from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University in New York used advanced computer modeling to simulate super-eruptions like the Toba event. They found that post-eruption cooling would probably not exceed 2.7 degrees Fahrenheit (1.5 degrees Celsius) for even the most powerful blasts.
      “The relatively modest temperature changes we found most compatible with the evidence could explain why no single super-eruption has produced firm evidence of global-scale catastrophe for humans or ecosystems,” said lead author Zachary McGraw, a researcher at NASA GISS and Columbia University.
      To qualify as a super eruption, a volcano must release more than 240 cubic miles (1,000 cubic kilometers) of magma. These eruptions are extremely powerful – and rare. The most recent super-eruption occurred more than 22,000 years ago in New Zealand. The best-known example may be the eruption that blasted Yellowstone Crater in Wyoming about 2 million years ago.
      Small Particles, Big Questions

      McGraw and colleagues set out to understand what was driving the divergence in model temperature estimates because “models are the main tool for understanding climate shifts that happened too long ago to leave clear records of their severity.” They settled on a variable that can be difficult to pin down: the size of microscopic sulfur particles injected miles high into the atmosphere.
      In the stratosphere (about 6 to 30 miles in altitude), sulfur dioxide gas from volcanoes undergoes chemical reactions to condense into liquid sulfate particles. These particles can influence surface temperature on Earth in two counteracting ways: by reflecting incoming sunlight (causing cooling) or by trapping outgoing heat energy (a kind of greenhouse warming effect).
      Over the years, this cooling phenomenon has also spurred questions about how humans might turn back global warming – a concept called geoengineering – by intentionally injecting aerosol particles into the stratosphere to promote a cooling effect.
      The researchers showed to what extent the diameter of the volcanic aerosol particles influenced post-eruption temperatures. The smaller and denser the particles, the greater their ability to block sunlight. But estimating the size of particles is challenging because previous super eruptions have not left reliable physical evidence. In the atmosphere, the size of the particles changes as they coagulate and condense. Even when particles fall back to Earth and are preserved in ice cores, they don’t leave a clear-cut physical record because of mixing and compaction.

      By simulating super-eruptions over a range of particle sizes, the researchers found that super-eruptions may be incapable of altering global temperatures dramatically more than the largest eruptions of modern times. For instance, the 1991 eruption of Mount Pinatubo in the Philippines caused about a half-degree drop in global temperatures for two years.
      Luis Millán, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Southern California who was not involved in the study, said that the mysteries of super-eruption cooling invite more research. He said the way forward is to conduct a comprehensive comparison of models, as well as more laboratory and model studies on the factors determining volcanic aerosol particle sizes.
      Given the ongoing uncertainties, Millán added, “To me, this is another example of why geoengineering via stratospheric aerosol injection is a long, long way from being a viable option.”
      The study, titled “Severe Global Cooling After Volcanic Super-Eruptions? The Answer Hinges on Unknown Aerosol Size,” was published in the Journal of Climate.
      By Sally Younger
      Earth Science News Team
      NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
      Last Updated Mar 01, 2024 LocationJet Propulsion Laboratory Related Terms
      Earth Earth's Atmosphere General View the full article
    • By Space Force
      A hackathon is an innovation event commonly employed by technology companies in which teams develop prototypes in response to enterprise challenges associated with data.
      View the full article
    • By Space Force
      A hackathon is an innovation event commonly employed by technology companies in which teams develop prototypes in response to enterprise challenges associated with data.
      View the full article
    • By NASA
      1 min read
      Artificial Intelligence Plus Your Cell Phone Means Better Maps of Earth!
      GLOBE Observer data from various locations showing four directional views: west, north, south, and east.  Credit: Huang et al. 2023, International Journal of Applied Earth Observation and Geoinformation, Volume 122, 103382 In 2019, the GLOBE Land Cover project began asking volunteers to help map planet Earth by taking photos of their surroundings facing multiple directions, including north, south, east and west. Now, a new paper by Huang et al. demonstrates how to combine these images using Artificial Intelligence (AI).  The paper compares this “multi-view” approach with the old single-view approach–and finds that the multi-view capabilities of the GLOBE Observer app, processed with AI, enable much more accurate mapping. 
      “We are thrilled about our recent discovery! We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.”
      Xiao Huang
      The paper’s lead author
      “We are thrilled about our recent discovery!” said Xiao Huang, the paper’s lead author.  “We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.”
      The most detailed satellite-based maps of our whole planet still can’t show details smaller than hundreds of meters [about 330 feet]. That means that a park in a city may be too small to show up on the global map. When you use the GLOBE Observer: Land Cover app, you help scientists fill in local gaps and contribute to consistent, detailed global maps that should us how our world is changing. 
      Grab your smartphone and join the project!
      Facebook logo @DoNASAScience @DoNASAScience Share

      Last Updated Dec 04, 2023 Related Terms
      Citizen Science Earth Science View the full article
  • Check out these Videos

  • Create New...