Jump to content

Help ESA research key space-based solar power challenges


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Participants of ESA’s Industry Space Days (ISD 2024) share insights and tips on how to make the most of this space technology business event on 18–19 September at ESA-ESTEC in Noordwijk, The Netherlands.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Kate Rubins uses a hammer to get a drive tube into the ground to collect a pristine soil sample during a nighttime simulated moonwalk in the San Francisco Volcanic Field in Northern Arizona on May 16, 2024. Surviving and operating through the lunar night was identified as a top-ranked 2024 Civil Space Challenge, and tests such as these help NASA astronauts and engineers practice end-to-end lunar operations. NASA/Josh Valcarcel This spring, NASA published a document overviewing almost 200 technology areas requiring further development to meet future exploration, science, and other mission needs – and asked the aerospace community to rate their importance. The goal was to better integrate the community’s most pervasive technical challenges, or shortfalls, to help guide NASA’s space technology development and investments.
      Today, NASA’s Space Technology Mission Directorate (STMD) released the 2024 Civil Space Shortfall Ranking document, integrating inputs from NASA mission directorates and centers, small and large industry organizations, government agencies, academia, and other interested individuals. STMD will use the inaugural list and annual updates as one of many factors to guide its technology development projects and investments.
      “Identifying consensus among challenges across the aerospace industry will help us find solutions, together,” said NASA Associate Administrator Jim Free. “This is the groundwork for strengthening the nation’s technological capabilities to pave the way for new discoveries, economic opportunities, and scientific breakthroughs that benefit humanity.”
      The integrated results show strong stakeholder agreement among the 30 most important shortfalls. At the top of the list is surviving and operating through the lunar night, when significant and sustained temperature drops make it difficult to run science experiments, rovers, habitats, and more. Solution technologies could include new power, thermal management, and motor systems. Second and third on the integrated list are the need for high-power energy generation on the Moon and Mars and high-performance spaceflight computing.
      The inputs received are already igniting meaningful conversations to help us and our stakeholders make smarter decisions. We will refine the process and results annually to ensure we maintain a useful approach and tool that fosters resilience in our space technology endeavors.”
      Michelle Munk
      Acting Chief Architect for STMD
      Highly rated capability areas in the top 20 included advanced habitation systems, autonomous systems and robotics, communications and navigation, power, avionics, and nuclear propulsion. Beyond the top quartile, stakeholder shortfall scores varied, likely aligning with their interests and expertise. With many shortfalls being interdependent, it emphasizes the need to make strategic investments across many areas to maintain U.S. leadership in space technology and drive economic growth.
      STMD is evaluating its current technology development efforts against the integrated list to identify potential adjustments within its portfolio.
      “This effort is an excellent example of our directorates working together to assess future architecture needs that will enable exploration and science for decades to come,” said Nujoud Merancy, deputy associate administrator for the Strategy and Architecture Office within NASA’s Exploration Systems Development Mission Directorate.
      The 2024 results are based on 1,231 total responses, including 769 internal and 462 external responses. Twenty were consolidated responses, representing multiple individuals from the same organization. Once average shortfall scores were calculated for each organization, STMD grouped, totaled, and averaged scores for nine stakeholder groups and then applied pre-determined weights to each to create the overall ranking. In the document, NASA also published the ranked results for each stakeholder group based on the 2024 feedback.
      The rankings are based on the numerical scores received and not responses to the open-ended questions. NASA anticipates the qualitative feedback will uncover additional insights and more.
      NASA will host a webinar to overview the ranking process and results on July 26, 2024, at 2 p.m. EDT.
      Register for the Stakeholder Webinar “Communicating our most pressing technology challenges is a great way to tap into the abilities across all communities to provide solutions to critical problems,” said Dr. Carolyn Mercer, chief technologist for NASA’s Science Mission Directorate.
      To learn more about the inaugural civil space shortfall feedback opportunity and results as well as monitor future feedback opportunities, visit:
      www.nasa.gov/civilspaceshortfalls

      View the full article
    • By NASA
      3 Min Read NASA Sponsors New Research on Orbital Debris, Lunar Sustainability
      From lunar orbit, astronauts pointed cameras out the window of their spacecraft to capture photos of the moon's surface. Credits: NASA As part of NASA’s commitment to foster responsible exploration of the universe for the benefit of humanity, the Office of Technology, Policy, and Strategy (OTPS) is funding space sustainability research proposals from five university-based teams to analyze critical economic, social, and policy issues related to Earth’s orbit and cislunar space.
      The new research awards reflect the agency’s commitment identified in NASA’s Space Sustainability Strategy to ensure safe, peaceful, and responsible space exploration for future generations, and encourage sustainable behaviors in cislunar space and on the lunar surface by ensuring that current operations do not impact those yet to come.
      Three of the five awards will fund research that addresses the growing problem of orbital debris, human-made objects in Earth’s orbit that no longer serve a purpose. This debris can endanger spacecraft, jeopardize access to space, and impede the development of a low-Earth orbit economy. 
      The remaining two awards focus on lunar surface sustainability and will address key policy questions such as the protection of valuable locations and human heritage sites as well as other technical, economic, or cultural considerations that may factor into mission planning. 
      “The sustainable use of space is critical to current and future space exploration,” said Ellen Gertsen, deputy associate administrator for the Office of Technology, Policy, and Strategy (OTPS) at NASA Headquarters in Washington. “Mitigating the risks of orbital debris and ensuring future generations can utilize the lunar surface are of paramount importance. These awards will fund research to help us understand the economics, the policy considerations, and the social elements of sustainability, generating new tools and evidence so we can make better-informed decisions.” 
      A panel of NASA experts selected the following proposals, awarding a total of about $550,000 to fund them: 
      Lunar surface sustainability 
      “A RAD Framework for the Moon: Applying Resist-Accept-Direct Decision-Making,” submitted by Dr. Caitlin Ahrens of the University of Maryland, College Park  “Synthesizing Frameworks of Sustainability for Futures on the Moon,” submitted by research scientist Afreen Siddiqi of Massachusetts Institute of Technology  Orbital Debris and Space Sustainability 
      “Integrated Economic-Debris Modeling of Active Debris Removal to Inform Space Sustainability and Policy,” submitted by researcher Mark Moretto of the University of Colorado, Boulder  “Avoiding the Kessler Syndrome Through Policy Intervention,” submitted by aeronautics and astronautics researcher Richard Linares of the Massachusetts Institute of Technology  “Analysis of Cislunar Space Environment Scenarios, Enabling Deterrence and Incentive-Based Policy,” submitted by mechanical and aerospace engineering researcher Ryne Beeson of Princeton University  Share
      Details
      Last Updated Jul 23, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      The latest crew chosen by NASA to venture on a simulated trip to Mars inside the agency’s Human Exploration Research Analog. From left are Sergii Iakymov, Erin Anderson, Brandon Kent, and Sarah Elizabeth McCandless.Credit: C7M3 Crew NASA selected a new team of four research volunteers to participate in a simulated mission to Mars within HERA (Human Exploration Research Analog) at the agency’s Johnson Space Center in Houston.
      Erin Anderson, Sergii Iakymov, Brandon Kent, and Sarah Elizabeth McCandless will begin their simulated trek to Mars on Friday, Aug. 9. The volunteer crew members will stay inside the 650-square-foot habitat for 45 days, exiting Monday, Sept. 23 after a simulated “return” to Earth. Jason Staggs and Anderson Wilder will serve as alternate crew members.
      The HERA missions offer scientific insights into how people react to the type of isolation, confinement, work and life demands, and remote conditions astronauts might experience during deep space missions.
      The facility supports more frequent, shorter-duration simulations in the same building as CHAPEA (Crew Health and Performance Analog). This crew is the third group of volunteers to participate in a simulated Mars mission in HERA this year. The most recent crew completed its HERA mission on June 24. In total, there will be four analog missions in this series.
      During this summer’s simulation, participants will perform a mix of science and operational tasks, including harvesting plants from a hydroponic garden, growing shrimp, deploying a small, cube-shaped satellite (CubeSat) to simulate gathering virtual data for analysis, “walking” on the surface of Mars using virtual reality goggles, and flying simulated drones on the simulated Mars surface. The team members also will encounter increasingly longer communication delays with Mission Control throughout their mission, culminating in five-minute lags as they “near” Mars. Astronauts traveling to Mars may experience communications delays of up to 20 minutes.
      NASA’s Human Research Program will conduct 18 human health experiments during each of the 2024 HERA missions. Collectively, the studies explore how a Mars-like journey may affect the crew members’ mental and physical health. The work also will allow scientists to test certain procedures and equipment designed to keep astronauts safe and healthy on deep space missions.

      Primary Crew
      Erin Anderson
      Erin Anderson is a structural engineer at NASA’s Langley Research Center in Virginia. Her work focuses on manufacturing and building composite structures — using materials engineered to optimize strength, stiffness, and density — that fly in air and space.
      Anderson earned a bachelor’s degree in Aerospace Engineering from the University of Illinois at Urbana-Champaign in 2013. After graduating, she worked as a structural engineer for Boeing on NASA’s SLS (Space Launch System) in Huntsville, Alabama. She moved to New Orleans to support the assembly of the first core stage of the SLS at NASA’s Michoud Assembly Facility. Anderson received a master’s degree in Aeronautical Engineering from Purdue University in West Lafayette, Indiana, in 2020. She started her current job in 2021, continuing her research on carbon fiber composites.
      In her free time, Anderson enjoys playing rugby, doting on her dog, Sesame, and learning how to ride paddleboard at local beaches.

      Sergii Iakymov
      Sergii Iakymov is an aerospace engineer with more than 15 years of experience in research and design, manufacturing, quality control, and project management. Iakymov currently serves as the director of the Mars Desert Research Station, a private, Utah-based research facility that serves as an operational and geological Mars analog.
      Iakymov received a bachelor’s degree in Aviation and Cosmonautics and a master’s in Aircraft Control Systems from Kyiv Polytechnic Institute in Ukraine. His graduate research focused on the motion of satellites equipped with pitch flywheels and magnetic coils.
      Iakymov was born in Germany, raised in Ukraine, and currently splits his time between southern Utah and Chino Hills, California. His hobbies include traveling, running, hiking, scuba diving, photography, and reading.

      Brandon Kent
      Brandon Kent is a medical director in the pharmaceutical industry, supporting ongoing global efforts to develop new therapies across cancer types.
      Kent received a bachelor’s degrees in Biochemistry and Biology from North Carolina State University in Raleigh. He earned his doctorate in Biomedicine from Mount Sinai School of Medicine in New York City, where his work primarily focused on how genetic factors regulate early embryonic development and cancer development.
      Following graduate school, Kent moved into scientific and medical communications consulting in oncology, primarily focusing on clinical trial data disclosures, scientific exchange, and medical education initiatives.
      Kent and his wife have two daughters. In his spare time, he enjoys spending time with his daughters, flying private aircraft, hiking, staying physically fit, and reading. He lives in Kinnelon, New Jersey.

      Sarah Elizabeth McCandless
      Sarah Elizabeth McCandless is a navigation engineer for NASA’s Jet Propulsion Laboratory in Southern California. McCandless’ job involves tracking the location and predicting the future trajectory of spacecraft, including the Mars Perseverance rover, Artemis I, Psyche, and Europa Clipper.
      McCandless received a bachelor’s in Aerospace Engineering from the University of Kansas in Lawrence, and a master’s in Aerospace Engineering from the University of Texas at Austin, focused on orbital mechanics.
      McCandless is originally from Fairway, Kansas, and remains an avid fan of sports teams from her alma mater and hometown. She is active in STEM (science, technology, engineering, and mathematics) outreach and education and enjoys camping, running, traveling with friends and family, and piloting Cessna 172s. She lives in Pasadena, California.

      Alternate Crew
      Jason Staggs
      Jason Staggs is a cybersecurity researcher and adjunct professor of computer science at the University of Tulsa. His research focuses on systems security engineering, infrastructure protection, and resilient autonomous systems. Staggs is an editor for the International Journal of Critical Infrastructure Protection and the Critical Infrastructure Protection book series.
      Staggs supported scientific research expeditions with the National Science Foundation at McMurdo Station in Antarctica. He also previously served as a space engineer and medical officer while working as an analog astronaut in the Hawaii Space Exploration Analog and Simulation (HI-SEAS) atop the Mauna Loa volcano.
      Staggs received his bachelor’s degree in Information Assurance and Forensics at Oklahoma State University and master’s and doctorate degrees in Computer Science from the University of Tulsa. During his postdoctoral studies at Idaho National Laboratory, Idaho Falls, he investigated electric vehicle charging station vulnerabilities.
      In his spare time, Staggs enjoys hiking, building radio systems, communicating with ham radio operators in remote locations, and volunteering as a solar system ambassador for NASA’s Jet Propulsion Laboratory — sharing his passion for astronomy, oceanography, and space exploration with his community.

      Anderson Wilder
      Anderson Wilder is a Florida Institute of Technology in Melbourne graduate student working on his doctorate in psychology. His research focuses on team resiliency and human-machine interactions. Wilder also works in the campus neuroscience lab, investigating how spaceflight contributes to astronaut neurobehavioral changes.
      Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
      Wilder received bachelor’s degrees in Linguistics and Psychology from Ohio State University in Columbus. He also received a master’s degree in Space Studies from International Space University in Strasbourg, France, and is completing a second master’s in Cognitive Experimental Psychology from Cleveland State University in Ohio.
      Outside of school, Wilder works as a parabolic flight coach, teaching people how to experience reduced-gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program (HRP) pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways to keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond.
      Explore More
      2 min read Exploring the Moon: Episode Previews
      Article 3 days ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 2 weeks ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
  • Check out these Videos

×
×
  • Create New...