Jump to content

Cheops shows scorching exoplanet acts like a mirror


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      JPL scientist Vanessa Bailey stands behind the Nancy Grace Roman Coronagraph , which has been undergoing testing at JPL. About the size of a baby grand piano, the Coronagraph is designed to block starlight and allow scientists to see the faint light from planets outside our solar system. A cutting-edge tool to view planets outside our solar system has passed two key tests ahead of its launch as part of the agency’s Roman Space Telescope by 2027.
      The Coronagraph Instrument on NASA’s Nancy Grace Roman Space Telescope will demonstrate new technologies that could vastly increase the number of planets outside our solar system (exoplanets) that scientists can directly observe. Designed and built at the agency’s Jet Propulsion Laboratory in Southern California, it recently passed a series of critical tests ahead of launch. That includes tests to ensure the instrument’s electrical components don’t interfere with those on the rest of the observatory and vice versa.  
      “This is such an important and nerve-wracking stage of building a spacecraft instrument, testing whether or not everything works as intended,” said Feng Zhao, deputy project manager for the Roman Coronagraph at JPL. “But we have an amazing team who built this thing, and it passed the electrical components tests with flying colors.”
      A coronagraph blocks light from a bright cosmic object, like a star, so that scientists can observe a nearby object that would otherwise be hidden by the glare. (Think of a car’s sun visor.) The light reflected or emitted by a planet carries information about the chemicals in the planet’s atmosphere and other potential signs of habitability, so coronagraphs will likely be a critical tool in the search for life beyond our solar system.
      But if scientists were trying to obtain images of an Earth-like planet in another solar system (same size, same distance from a star similar to our Sun), they wouldn’t be able to see the planet in the star’s glare, even with the best coronagraphs and most powerful telescopes operating today.
      The Roman Coronagraph was peppered with radio waves to test its response to stray electrical signals. The test was performed inside a chamber lined with foam padding that absorbs the radio waves to prevent them from bouncing off the walls. The Roman Coronagraph aims to change that paradigm. The innovations that have gone into the instrument should make it possible to see planets similar to Jupiter in size and distance from their star. The Coronagraph team expects these advances will help enable the leap to viewing more Earth-like planets with future observatories.
      As a technology demonstration, the Roman Coronagraph’s primary goal is to test technologies that have not been flown in space before. Specifically, it will test sophisticated light-blocking capabilities that are at least 10 times better than what’s currently available. Scientists expect to push its performance even further to observe challenging targets that could yield novel scientific discoveries.
      Making the Grade
      Even with the Coronagraph blocking a star’s light, a planet will still be exceptionally faint, and it might take a full month of observations to get a good picture of the distant world. To make these observations, the instrument’s camera detects individual photons, or single particles of light, making it far more sensitive than previous coronagraphs.
      That’s one reason the recent tests were crucial: The electrical currents that send power to the spacecraft’s components can produce faint electrical signals, mimicking light in the Coronagraph’s sensitive cameras – an effect known as electromagnetic interference. Meanwhile, signals from the Coronagraph could similarly disrupt Roman’s other instruments.
      The mission needs to ensure neither will happen when the telescope is operating in an isolated, electromagnetically quiet environment 1 million miles (about 1.5 million kilometers) from Earth. So a team of engineers put the fully assembled instrument in a special isolated, electromagnetically quiet chamber at JPL and turned it on to full power.
      They measured the instrument’s electromagnetic output to make sure it fell below the level required to operate aboard Roman. The team used injection clamps, transformers, and antennas to produce electrical disturbances and radio waves similar to what the rest of the telescope will generate. Then they measured the instrument’s performance, looking for excessive noise in the camera images and other unwanted responses from the optical mechanisms.
      “The electric fields we generate with the antennas are about the same strength as what’s generated by a computer screen,” said Clement Gaidon, the Roman Coronagraph electrical systems engineer at JPL. “That’s a pretty benign level, all things considered, but we have very sensitive hardware onboard. Overall, the instrument did a fantastic job navigating across the electromagnetic waves. And props to the team for wrapping this test campaign in record time!”
      A Wide Field of View
      The lessons learned from the Coronagraph technology demonstration will be separate from the Roman Space Telescope’s primary mission, which includes multiple science objectives. The mission’s principal tool, the Wide Field Instrument, is designed to generate some of the largest images of the universe ever taken from space. These images will enable Roman to conduct groundbreaking surveys of cosmic objects such as stars, planets, and galaxies, and study the large-scale distribution of matter in the universe.
      For example, by taking repeated images of the center of the Milky Way – like a multiyear time-lapse movie – the Wide Field Instrument will discover tens of thousands of new exoplanets. (This planet survey will be separate from the observations made by the Coronagraph).
      Roman will also make 3D maps of the cosmos to explore how galaxies have formed and why the universe’s expansion is speeding up, measuring the effects of what astronomers call “dark matter” and “dark energy.” With these wide-ranging capabilities, Roman will help answer questions about big and small features of our universe.
      More About the Mission
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by JPL and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace & Technologies Corp. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      The Roman Coronagraph Instrument was designed and is being built at JPL, which manages the instrument for NASA. Contributions were made by ESA (the European Space Agency), JAXA (the Japanese Aerospace Exploration Agency), the French space agency CNES (Centre National d’Études Spatiales), and the Max Planck Institute for Astronomy in Germany. Caltech, in Pasadena, California, manages JPL for NASA. The Roman Science Support Center at Caltech/IPAC partners with JPL on data management for the Coronagraph and generating the instrument’s commands.
      For more information about the Roman telescope, visit:
      https://roman.gsfc.nasa.gov/
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      claire.andreoli@nasa.gov
      2024-010      
      Share
      Details
      Last Updated Jan 31, 2024 Related Terms
      Nancy Grace Roman Space Telescope Astrobiology Astrophysics Exoplanet Science Goddard Space Flight Center Jet Propulsion Laboratory Studying Exoplanets Technology The Search for Life Explore More
      2 min read Hubble Observes a Galactic Distortion
      The galaxy NGC 5427 shines in this new NASA Hubble Space Telescope image. It’s part…
      Article 5 hours ago 3 min read NASA Search and Rescue Technology Saves Explorers, Enables Exploration
      Article 22 hours ago 6 min read How the 2024 Total Solar Eclipse Is Different than the 2017 Eclipse
      On April 8, the Moon’s shadow will sweep across the United States, as millions will…
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      NASA’s Hubble Finds Water Vapor in Small Exoplanet’s Atmosphere
      This is an artist’s concept of the exoplanet GJ 9827d, the smallest exoplanet where water vapor has been detected in the atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. With only about twice Earth’s diameter, the planet orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun. The Sun is too faint to be seen. The blue star at upper right is Regulus; the yellow star at center bottom is Denebola; and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away. NASA/ESA/Leah Hustak (STScI)/Ralf Crawford (STScI) Astronomers using NASA’s Hubble Space Telescope observed the smallest exoplanet where water vapor has been detected in the atmosphere. At only approximately twice Earth’s diameter, the planet GJ 9827d could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy.
      “This would be the first time that we can directly show through an atmospheric detection, that these planets with water-rich atmospheres can actually exist around other stars,” said team member Björn Benneke of the Trottier Institute for Research on Exoplanets at Université de Montréal. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets.”
      “Water on a planet this small is a landmark discovery,” added co-principal investigator Laura Kreidberg of Max Planck Institute for Astronomy in Heidelberg, Germany. “It pushes closer than ever to characterizing truly Earth-like worlds.”
      However, it remains too early to tell whether Hubble spectroscopically measured a small amount of water vapor in a puffy hydrogen-rich atmosphere, or if the planet’s atmosphere is mostly made of water, left behind after a primeval hydrogen/helium atmosphere evaporated under stellar radiation.
      “Our observing program, led by principal investigator Ian Crossfield of Kansas University in Lawrence, Kansas, was designed specifically with the goal to not only detect the molecules in the planet’s atmosphere, but to actually look specifically for water vapor. Either result would be exciting, whether water vapor is dominant or just a tiny species in a hydrogen-dominant atmosphere,” said the science paper’s lead author, Pierre-Alexis Roy of the Trottier Institute for Research on Exoplanets at Université de Montréal.
      “Until now, we had not been able to directly detect the atmosphere of such a small planet. And we’re slowly getting in this regime now,” added Benneke. “At some point, as we study smaller planets, there must be a transition where there’s no more hydrogen on these small worlds, and they have atmospheres more like Venus (which is dominated by carbon dioxide).”
      Astronomers using NASA’s Hubble Space Telescope have observed water vapor in the atmosphere of the smallest exoplanet ever detected. Located 97 light-years away, planet GJ 9827d is approximately twice the size of Earth. Credit: NASA’s Goddard Space Flight Center/Lead Producer: Paul Morris Because the planet is as hot as Venus, at 800 degrees Fahrenheit, it definitely would be an inhospitable, steamy world if the atmosphere were predominantly water vapor.
      At present the team is left with two possibilities. One scenario is that the planet is still clinging to a hydrogen-rich atmosphere laced with water, making it a mini-Neptune. Alternatively, it could be a warmer version of Jupiter’s moon Europa, which has twice as much water as Earth beneath its crust.” The planet GJ 9827d could be half water, half rock. And there would be a lot of water vapor on top of some smaller rocky body,” said Benneke.
      If the planet has a residual water-rich atmosphere, then it must have formed farther away from its host star, where the temperature is cold and water is available in the form of ice, than its present location. In this scenario, the planet would have then migrated closer to the star and received more radiation. The hydrogen was heated and escaped, or is still in the process of escaping the planet’s weak gravity. The alternative theory is that the planet formed close to the hot star, with a trace of water in its atmosphere.
      The Hubble program observed the planet during 11 transits – events in which the planet crossed in front of its star – that were spaced out over three years. During transits, starlight is filtered through the planet’s atmosphere and has the spectral fingerprint of water molecules. If there are clouds on the planet, they are low enough in the atmosphere so that they don’t completely hide Hubble’s view of the atmosphere, and Hubble is able to probe water vapor above the clouds.
      “Observing water is a gateway to finding other things,” said Thomas Greene, astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley. “This Hubble discovery opens the door to future study of these types of planets by NASA’s James Webb Space Telescope. JWST can see much more with additional infrared observations, including carbon-bearing molecules like carbon monoxide, carbon dioxide, and methane. Once we get a total inventory of a planet’s elements, we can compare those to the star it orbits and understand how it was formed.”
      GJ 9827d was discovered by NASA’s Kepler Space Telescope in 2017. It completes an orbit around a red dwarf star every 6.2 days. The star, GJ 9827, lies 97 light-years from Earth in the constellation Pisces.
      The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Pierre-Alexis Roy
      Trottier Institute for Research on Exoplanets at Université de Montréal
      Björn Benneke
      Trottier Institute for Research on Exoplanets at Université de Montréal
      Share








      Details
      Last Updated Jan 25, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Exoplanets Goddard Space Flight Center Hubble Space Telescope Missions Studying Exoplanets The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exoplanets



      Science Missions



      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

      View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA Hubble Space Telescope observed the smallest exoplanet where water vapour has been detected in its atmosphere. At only approximately twice Earth’s diameter, the planet GJ 9827d could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy.
      View the full article
    • By NASA
      5 Min Read Webb Shows Many Early Galaxies Looked Like Pool Noodles, Surfboards
      Researchers are analyzing distant galaxies when the universe was only 600 million to 6 billion years old. Credits: NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin) Researchers analyzing images from NASA’s James Webb Space Telescope have found that galaxies in the early universe are often flat and elongated, like surfboards and pool noodles – and are rarely round, like volleyballs or frisbees. “Roughly 50 to 80% of the galaxies we studied appear to be flattened in two dimensions,” explained lead author Viraj Pandya, a NASA Hubble Fellow at Columbia University in New York. “Galaxies that look like pool noodles or surfboards seem to be very common in the early universe, which is surprising, since they are uncommon nearby.”
      The team focused on a vast field of near-infrared images delivered by Webb, known as the Cosmic Evolution Early Release Science (CEERS) Survey, plucking out galaxies that are estimated to exist when the universe was 600 million to 6 billion years old.
      Image: Sample Shapes of Distant Galaxies
      Researchers analyzing distant galaxies that show up in the Cosmic Evolution Early Release Science (CEERS) Survey from NASA’s James Webb Space Telescope found an array of odd shapes when the universe was only 600 million to 6 billion years old. The inset at the top left shows a galaxy that looks more like a sphere, and is the least common in Webb’s results, along with an example of a galaxy that appears as an edge-on disk but may be better classified as elongated. Elongated shapes are one of the most common identified so far in Webb’s survey.NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin) While most distant galaxies look like surfboards and pool noodles, others are shaped like frisbees and volleyballs. The “volleyballs,” or sphere-shaped galaxies, appear the most compact type on the cosmic “ocean” and were also the least frequently identified. The frisbees were found to be as large as the surfboard- and pool noodle-shaped galaxies along the “horizon,” but become more common closer to “shore” in the nearby universe. (Compare them in this illustration.)
      Which category would our Milky Way galaxy fall into if we were able to wind the clock back by billions of years? “Our best guess is that it might have appeared more like a surfboard,” said co-author Haowen Zhang, a PhD candidate at the University of Arizona in Tucson. This hypothesis is based partly on new evidence from Webb – theorists have “wound back the clock” to estimate the Milky Way’s mass billions of years ago, which correlates with shape at that time.
      Image: 3D Classifications for Distant Galaxies
      These are examples of distant galaxies captured by NASA’s James Webb Space Telescope in its CEERS Survey. Galaxies frequently appear flat and elongated, like pool noodles or surfboards (along the top row). Thin, circular disk-like galaxies, which resemble frisbees, are the next major grouping (shown at lower left and center). Galaxies that are shaped like spheres, or volleyballs, made up the smallest fraction of their detections (shown at lower right). All of these galaxies are estimated to have existed when the universe was only 600 million to 6 billion years old.NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin) These distant galaxies are also far less massive than nearby spirals and ellipticals – they are precursors to more massive galaxies like our own. “In the early universe, galaxies had had far less time to grow,” said Kartheik Iyer, a co-author and NASA Hubble Fellow also at Columbia University. “Identifying additional categories for early galaxies is exciting – there’s a lot more to analyze now. We can now study how galaxies’ shapes relate to how they look and better project how they formed in much more detail.”
      Webb’s sensitivity, high-resolution images, and specialization in infrared light allowed the team to make quick work of characterizing many CEERS galaxies, and model their 3D geometries. Pandya also says their work wouldn’t be possible without the extensive research astronomers have done using NASA’s Hubble Space Telescope.
      For decades, Hubble has wowed us with images of some of the earliest galaxies, beginning with its first “deep field” in 1995 and continuing with a seminal survey known as Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Deep sky surveys like these led to far greater statistics, leading astronomers to create robust 3D models of distant galaxies over all of cosmic time. Today, Webb is helping to enhance these efforts, adding a bounty of distant galaxies beyond Hubble’s reach and revealing the early universe in far greater detail than previously possible.
      Webb’s images of the early universe have acted like an ocean swell – delivering new waves of evidence. “Hubble has long showed an excess of elongated galaxies,” explained co-author Marc Huertas-Company, a faculty research scientist at the Institute of Astrophysics on the Canary Islands. But researchers still wondered: Would additional detail show up better with sensitivity to infrared light? “Webb confirmed that Hubble didn’t miss any additional features in the galaxies they both observed. Plus, Webb showed us many more distant galaxies with similar shapes, all in great detail.”
      There are still gaps in our knowledge – researchers not only need an even larger sample size from Webb to further refine the properties and precise locations of distant galaxies, they will also need to spend ample time tweaking and updating their models to better reflect the precise geometries of distant galaxies. “These are early results,” said co-author Elizabeth McGrath, an associate professor at Colby College in Waterville, Maine. “We need to delve more deeply into the data to figure out what’s going on, but we’re very excited about these early trends.”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Download full resolution images for this article from the Space Telescope Science Institute.
      Right click the images in this article to open a larger version in a new tab/window.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov
      NASA’s  Goddard Space Flight Center, , Greenbelt, Md.

      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Galaxy Types
      Galaxy Evolution
      How Can Webb Study the Early Universe?
      Infrared Astronomy
      More Webb News – https://science.nasa.gov/mission/webb/latestnews/
      More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/
      Webb Mission Page – https://science.nasa.gov/mission/webb/

      Related For Kids
      What is a galaxy?
      Types of galaxies
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Galaxies
      Overview Galaxies consist of stars, planets, and vast clouds of gas and dust, all bound together by gravity. The largest…
      Galaxies Stories
      Universe
      Discover the universe: Learn about the history of the cosmos, what it’s made of, and so much more.
      Share
      Details
      Last Updated Jan 17, 2024 EditorSteve SabiaContactLaura Betz Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Missions Science & Research The Universe View the full article
    • By NASA
      4 min read
      NASA’s Hubble Observes Exoplanet Atmosphere Changing Over 3 Years
      By combining several years of observations from NASA’s Hubble Space Telescope along with conducting computer modelling, astronomers have found evidence for massive cyclones and other dynamic weather activity swirling on a hot, Jupiter-sized planet 880 light-years away.
      The planet, called WASP-121 b, is not habitable. But this result is an important early step in studying weather patterns on distant worlds, and perhaps eventually finding potentially habitable exoplanets with stable, long-term climates.
      This is an artist’s concept of the exoplanet WASP-121 b, also known as Tylos. The exoplanet’s appearance is based on Hubble simulation data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet; marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance of Earth to the Sun, placing it on the verge of being ripped apart by the star’s tidal forces. The powerful gravitational forces have altered the planet’s shape. An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018 and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere.
      NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble) For the past few decades, detailed telescopic and spacecraft observations of neighboring planets in our solar system show that their turbulent atmospheres are not static but constantly changing, just like weather on Earth. This variability should also apply to planets around other stars, too. But it takes lots of detailed observing and computational modelling to actually measure such changes.
      To make the discovery, an international team of astronomers assembled and reprocessed Hubble observations of WASP-121 b taken in 2016, 2018, and 2019.
      They found that the planet has a dynamic atmosphere, changing over time. The team used sophisticated modelling techniques to demonstrate that these dramatic temporal variations could be explained by weather patterns in the exoplanet’s atmosphere.
      The team found that WASP-121 b’s atmosphere shows notable differences between observations. Most dramatically, there could be massive weather fronts, storms, and massive cyclones that are repeatedly created and destroyed due to the large temperature difference between the star-facing side and dark side of the exoplanet. They also detected an apparent offset between the exoplanet’s hottest region and the point on the planet closest to the star, as well as variability in the chemical composition of the exoplanet’s atmosphere (as measured via spectroscopy).
      The team reached these conclusions by using computational models to help explain observed changes in the exoplanet’s atmosphere. “The remarkable details of our exoplanet atmosphere simulations allows us to accurately model the weather on ultra-hot planets like WASP-121 b,” explained Jack Skinner, a postdoctoral fellow at the California Institute of Technology in Pasadena, California, and co-leader of this study. “Here we make a significant step forward by combining observational constraints with atmosphere simulations to understand the time-varying weather on these planets.”

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This visualization shows the temperature forecast spanning 130 exoplanet-days, across sunrise, noon, sunset, and midnight for the exoplanet WASP-121 b, also known as Tylos. The brighter yellow regions depict areas in the day side of the exoplanet where temperatures soar well above 2,100 degrees Kelvin (3,320 degrees Fahrenheit); due to the close proximity to its host star, roughly 2.6% of the distance of Earth to the Sun. Due to the extreme temperature difference between the day and night sides, astronomers suspect evaporated iron and other heavy metals escaping into the higher layers of atmosphere on the day side partially fall back onto lower layers, making it rain iron at night. Some of the heavy metals also escape the planet’s gravity from the upper atmosphere. It only takes WASP-121 b roughly 31 hours to complete an orbit around its star.
      An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here.
      The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble)
      “This is a hugely exciting result as we move forward for observing weather patterns on exoplanets,” said one of the principal investigators of the team, Quentin Changeat, a European Space Agency Research Fellow at the Space Telescope Science Institute in Baltimore, Maryland. “Studying exoplanets’ weather is vital to understanding the complexity of exoplanet atmospheres on other worlds, especially in the search for exoplanets with habitable conditions.”
      WASP-121 b is so close to its parent star that the orbital period is only 1.27 days. This close proximity means that the planet is tidally locked so that the same hemisphere always faces the star, in the same way that our Moon always has the same side pointed at Earth. Daytime temperatures approach 3,450 degrees Fahrenheit (2,150 degrees Kelvin) on the star-facing side of the planet.
      The team used four sets of Hubble archival observations of WASP-121 b. The complete data-set included observations of WASP-121 b transiting in front of its star (taken in June 2016); WASP-121 b passing behind its star, also known as a secondary eclipse (taken in November 2016); and the brightness of WASP-121 b as a function of its phase angle to the star (the varying amount of light received at Earth from an exoplanet as it orbits its parent star, similar to our Moon’s phase-cycle). These data were taken in March 2018 and February 2019, respectively.
      “The assembled data-set represents a significant amount of observing time for a single planet and is currently the only consistent set of such repeated observations,” said Changeat. The information that we extracted from those observations was used to infer the chemistry, temperature, and clouds of the atmosphere of WASP-121 b at different times. This provided us with an exquisite picture of the planet changing over time.”
      Hubble’s capabilities also are evident in the broad expanse of science programs it will enable through its Cycle 31 observations, which began on December 1. About two-thirds of Hubble’s time will be devoted to imaging studies, while the remainder is allotted to spectroscopy studies, like those used for WASP-121 b. More details about Cycle 31 science are in a recent announcement.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This visualization shows the weather patterns on the exoplanet WASP-121 b, also known as Tylos. This video has been slowed to observe the patterns in the exoplanet’s atmosphere in closer detail. An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here.
      The science team’s models found that their results could be explained by quasi-periodic weather patterns: specifically, massive cyclones that are repeatedly created and destroyed due to the huge temperature difference between the star-facing and dark side of the exoplanet. This result represents a significant step forward in potentially observing weather patterns on exoplanets.
      The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble)
      LEARN MORE:

      Recognizing Worlds Beyond Our Sun


      Finding Planetary Construction Zones

      The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Bethany Downer
      ESA/Hubble
      Science Contact:
      Quentin Changeat
      ESA/STScI
      Share








      Details
      Last Updated Jan 04, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Exoplanets Goddard Space Flight Center Hubble Space Telescope Missions Studying Exoplanets The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exoplanet Stories



      Exoplanets



      Solar System Exploration


      View the full article
  • Check out these Videos

×
×
  • Create New...