Jump to content

Hera Propulsion Module leak test – time-lapse


Recommended Posts

Hera_Propulsion_Module_leak_test_time-la Video: 00:02:23

ESA’s Hera mission for planetary defence will perform a close-up survey of the Dimorphos asteroid in deep space. But first Hera needs to cross millions of kilometres of space to get there. That is the task of Hera’s Propulsion Module, forming around half of the overall spacecraft, which has been prepared by Italy’s Avio company. Formed of a central tube plus a supporting structure, the Module has been fitted with propellant tanks, piping and thrusters (inside the red protective covers). But before it can be joined to Hera’s other element, the Core Module, this Propulsion Module had to undergo its crucial ‘global leak test’ – as seen here. The Module has been filled with gaseous nitrogen, then placed inside its container. Sensors added to the interior can detect any pressure change inside the container over the course of the night. Success means Hera is ready to travel to OHB in Germany to be mated with the Core Module. At this point the Hera spacecraft will be complete, and the mission will come a major step nearer to space. Next rendezvous for Hera is the Environmental Test campaign at ESTEC, to make sure Hera survives in the harsh launch and space environment…

Access the related broadcast quality video material.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      SpaceX and NASA recently performed full-scale qualification testing of the docking system that will connect SpaceX’s Starship Human Landing System (HLS) with Orion and later Gateway in lunar orbit during future crewed Artemis missions. Based on the flight-proven Dragon 2 active docking system, the Starship HLS docking system will be able to act as an active or passive system during docking.SpaceX As part of NASA’s Artemis campaign that will establish the foundation for long-term scientific exploration at the Moon, crew will need to move between different spacecraft to carry out lunar landings. NASA and SpaceX recently performed qualification testing for the docking system that will help make that possible. 
      For the Artemis III mission, astronauts will ride the Orion spacecraft from Earth to lunar orbit, and then once the two spacecraft are docked, move to the lander, the Starship Human Landing System (HLS) that will bring them to the surface. After surface activities are complete, Starship will return the astronauts to Orion waiting in lunar orbit. During later missions, astronauts will transfer from Orion to Starship via the Gateway lunar space station. Based on SpaceX’s flight-proven Dragon 2 docking system used on missions to the International Space Station, the Starship docking system can be configured to connect the lander to Orion or Gateway.
      The docking system tests for Starship HLS were conducted at NASA’s Johnson Space Center over 10 days using a system that simulates contact dynamics between two spacecraft in orbit. The testing included more than 200 docking scenarios, with various approach angles and speeds. These real-world results using full-scale hardware will validate computer models of the Moon lander’s docking system.
      This dynamic testing demonstrated that the Starship system could perform a “soft capture” while in the active docking role. When two spacecraft dock, one vehicle assumes an active “chaser” role while the other is in a passive “target” role. To perform a soft capture, the soft capture system (SCS) of the active docking system is extended while the passive system on the other spacecraft remains retracted. Latches and other mechanisms on the active docking system SCS attach to the passive system, allowing the two spacecraft to dock.
      Since being selected as the lander to return humans to the surface of the Moon for the first time since Apollo, SpaceX has completed more than 30 HLS specific milestones by defining and testing hardware needed for power generation, communications, guidance and navigation, propulsion, life support, and space environments protection.
      Under NASA’s Artemis campaign, the agency will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. Commercial human landing systems are critical to deep space exploration, along with the Space Launch System rocket, Orion spacecraft, advanced spacesuits and rovers, exploration ground systems, and the Gateway space station.
      News Media Contact
      Jenalane (Rowe) Strawn
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      NASA/Isaac Watson Members of NASA’s Exploration Ground System’s Landing and Recovery team work to secure the Crew Module Test Article and align it on its stand inside the ship’s well deck in this image from Feb. 22, 2024. Underway Recovery Test 11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.
      These tests demonstrate the procedures and hardware needed to retrieve NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen after their approximately 10-day, 685,000-mile journey beyond the lunar far side and back.
      Artemis II is the first crewed mission under NASA’s Artemis campaign and will test the agency’s Orion spacecraft life support systems needed for future lunar missions.
      Image Credit: NASA/Isaac Watson
      View the full article
    • By European Space Agency
      ESA’s Hera spacecraft for planetary defence is being prepared for a journey to the distant asteroid moon Dimorphos orbiting around its parent body Didymos. One of the first features Hera will look for is the crater left on Dimorphos by its predecessor mission DART, which impacted the asteroid to deflect its orbit. Yet a new impact simulation study reported in Nature Astronomy today suggests no crater will be found. The DART impact is likely to have remodelled the entire body instead – a significant finding for both asteroid science and planetary defence.
      View the full article
    • By NASA
      From left, NASA astronauts Suni Williams and Barry “Butch” Wilmore, Boeing Crew Flight Test (CFT) pilot and commander, respectively, exit the Astronaut Crew Quarters at NASA’s Kennedy Space Center in Florida during a crew validation test on Oct. 18, 2022. The astronauts, with assistance from the Boeing team, successfully completed the validation test during which they suited up and tested out the pressurized crew module to ensure seat fit, suit functionality, cabin temperature, audio system, and day of launch operations.NASA/Kim Shiflett Digital content creators are invited to register to attend the launch of NASA’s Boeing Crew Flight Test (CFT) mission to the International Space Station. The mission will be the first crewed launch of Boeing’s Starliner spacecraft as part of NASA’s Commercial Crew Program.
      Starliner will launch atop a United Launch Alliance Atlas V rocket, carrying NASA astronauts Barry “Butch” Wilmore and Suni Williams to the orbiting laboratory for a stay of about one to two weeks. Liftoff is targeted for mid-April 2024 from Cape Canaveral Space Force Station’s Space Launch Complex-41 in Florida.
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Starliner mission launch.
      A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media.
      NASA Social participants will have the opportunity to:
      View a crewed launch of the United Launch Alliance Atlas V rocket and Starliner spacecraft. Tour NASA facilities at Kennedy Space Center. Meet and interact with CFT subject matter experts. Meet fellow space enthusiasts who are active on social media. NASA Social registration for the CFT launch opens on Wednesday, Feb. 21, and the deadline to apply is at 3 p.m. EST Tuesday, Feb. 27. All social applications will be considered on a case-by-case basis.
      APPLY NOW
      Do I need to have a social media account to register?
      Yes. This event is designed for people who:
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience. Regularly produce new content that features multimedia elements. Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. Must have an established history of posting content on social media platforms. Have previous postings that are highly visible, respected and widely recognized. Users on all social networks are encouraged to use the hashtag #NASASocial and #Starliner. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram.
      How do I register?
      Registration for this event opens Wednesday, Feb. 21, and closes at 3 p.m. EST on Tuesday, Feb. 27. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis.
      Can I register if I am not a U.S. citizen?
      Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen.
      When will I know if I am selected?
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by March 1.
      What are NASA Social credentials?
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria.
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here.
      What are the registration requirements?
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities.
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly.
      Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas.
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted.
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements.
      All registrants must be at least 18 years old.
      What if the launch date changes?
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email.
      If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours.
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible.
      What if I cannot come to the Kennedy Space Center?
      If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.
      You can watch the launch on NASA Television or www.nasa.gov/nasatv/. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew.
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Check back here for updates.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Marshall Space Flight Center technologists Les Johnson and Leslie McNutt at Redwire Space on Jan. 30, 2024, following a successful solar sail deployment test. NASA cleared a key technology milestone at Redwire’s new facility in Longmont, Colorado, with the successful deployment of one of four identical solar sail quadrants. Redwire Space By Wayne Smith
      In his youth, NASA technologist Les Johnson was riveted by the 1974 novel “The Mote in God’s Eye,” by Jerry Pournelle and Larry Niven, in which an alien spacecraft propelled by solar sails visits humanity. Today, Johnson and a NASA team are preparing to test a similar technology.
      NASA continues to unfurl plans for solar sail technology as a promising method of deep space transportation. The agency cleared a key technology milestone in January with the successful deployment of one of four identical solar sail quadrants. The deployment was showcased Jan. 30 at Redwire Corp.’s new facility in Longmont, Colorado. NASA’s Marshall Space Flight Center in Huntsville, Alabama, leads the solar sail team, comprised of prime contractor Redwire, which developed the deployment mechanisms and the nearly 100-foot-long booms, and subcontractor NeXolve, of Huntsville, which provided the sail membrane. In addition to leading the project, Marshall developed the algorithms needed to control and navigate with the sail when it flies in space.
      NASA and industry partners used two 100-foot lightweight composite booms to stretch out a 4,445-square-footsquare-foot (400-square-meter) prototype solar sail quadrant for the first time Jan. 30, 2024. While just one quarter of the sail was unfurled in the deployment at Redwire, the complete sail will measure 17,780 square feet when fully deployed, with the thickness less than a human hair at 2 and a half microns. The sail is made of a polymer material coated with aluminum. (Redwire Space) The sail is a propulsion system powered by sunlight reflecting from the sail, much like a sailboat reflects the wind. While just one quarter of the sail was unfurled in the deployment at Redwire, the complete sail will measure 17,780 square feet when fully deployed, with the thickness less than a human hair at 2 and a half microns. The sail is made of a polymer material coated with aluminum.
      NASA’s Science Mission Directorate recently funded the solar sail technology to reach a new technology readiness level, or TRL 6, which means it’s ready for proposals to be flown on science missions.
      “This was a major last step on the ground before it’s ready to be proposed for space missions,” Johnson, who has been involved with sail technology at Marshall for about 25 years, said. “What’s next is for scientists to propose the use of solar sails in their missions. We’ve met our goal and demonstrated that we’re ready to be flown.”
      A solar sail traveling through deep space provides many potential benefits to missions using the technology because it doesn’t require any fuel, allowing very high propulsive performance with very little mass. This in-space propulsion system is well suited for low-mass missions in novel orbits.
      “Once you get away from Earth’s gravity and into space, what is important is efficiency and enough thrust to travel from one position to another,” Johnson said.
      A solar sail achieves that by reflecting sunlight – the greater the size of the sail, the greater thrust it can provide.
      Les Johnson
      NASA technologist
      Some of the missions of interest using solar sail technology include studying space weather and its effects on the Earth, or for advanced studies of the north and south poles of the Sun. The latter has been limited because the propulsion required to  get a spacecraft into a polar orbit around the sun is very high and simply not feasible using most of the propulsion systems available today. Solar sail propulsion is also possible for enhancing future missions to Venus or Mercury, given their closeness to the Sun and the enhanced thrust a solar sail would achieve in the more intense sunlight there.
      Moreover, it’s the ultimate green propulsion system, Johnson said – as long as the Sun is shining, the sail will have propulsion. Where the sunlight is less, he envisions a future where lasers could be used to accelerate the solar sails to high speeds, pushing them outside the solar system and beyond, perhaps even to another star. “In the future, we might place big lasers in space that shine their beams on the sails as they depart the solar system, accelerating them to higher and higher speeds, until eventually they are going fast enough to reach another star in a reasonable amount of time.”
      To learn more about solar sails and other NASA advanced space technology, visit:
      https://www.nasa.gov/space-technology-mission-directorate
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Feb 12, 2024 Related Terms
      Marshall Space Flight Center Space Technology Mission Directorate Technology Demonstration Explore More
      5 min read NASA’s New Experimental Antenna Tracks Deep Space Laser
      Article 4 days ago 17 min read The Marshall Star for February 7, 2024
      Article 5 days ago 5 min read NASA to Demonstrate Autonomous Navigation System on Moon
      Article 5 days ago View the full article
  • Check out these Videos

×
×
  • Create New...