Jump to content

Space Force details Holistic Health Approach, Continuous Fitness Assessment study


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Space Shuttle Discovery - Slow Motion Launch
    • By NASA
      5 Min Read NASA’s Planetary Protection Team Conducts Vital Research for Deep Space Missions
      Cassilly examines fungal growth obtained from a space environmental exposure study, part of the Planetary Protection team’s work to understand the ability of microbes to survive conditions in deep space. Credits: NASA/Charles Beason By Celine Smith
      As NASA continues its exploration of the solar system, including future crewed missions to Mars, experts in the agency’s Office of Planetary Protection are developing advanced tactics to prevent NASA expeditions from introducing biological contaminants to other worlds.
      At NASA’s Marshall Space Flight Center in Huntsville, Alabama, the Planetary Protection team is contributing to this work – pursuing new detection, cleaning, and decontamination methods that will protect alien biospheres, safeguard future planetary science missions, and prevent potentially hazardous microbes from being returned to Earth. The Planetary Protection team is a part of the Space Environmental Effects (SEE) team in Marshall’s Materials and Processes Laboratory.
      Chelsi Cassilly, lead of Marshall Space Flight Center’s Planetary Protection Laboratory, researches microbes and their behaviors to preserve the environment of other planetary bodies after future missions. NASA/Charles Beason Planetary Protection microbiologist Chelsi Cassilly said much of Planetary Protection focuses on “bioburden” which is typically considered the number of bacterial endospores (commonly referred to as “spores”) found on and in materials. Such materials can range from paints and coatings on robotic landers to solid propellants in solid rocket motors. NASA currently requires robotic missions to Mars meet strict bioburden limits and is assessing how to apply similar policies to future, crewed missions to the Red Planet.
      “It’s impossible to eliminate microbes completely,” Cassily said. “But it’s our job to minimize bioburden, keeping the probability of contamination sufficiently low to protect the extraterrestrial environments we explore.”
      Currently, Marshall’s Planetary Protection research supports NASA’s Mars Ascent Vehicle, a key component of the planned Mars Sample Return campaign, and risk-reduction efforts for the Human Landing System program.
      Critically, Planetary Protection prevents the introduction of microbes from Earth onto planetary bodies where they might proliferate and subsequently interfere with scientific study of past or current life there. If Earth’s microbes were to contaminate samples collected on Mars or Europa, the scientific findings would be an inaccurate depiction of these environments, potentially precluding the ability to determine if life ever existed there. Preserving the scientific integrity of these missions is of the utmost importance to Cassilly and her team.
      Contamination mitigation tactics used in the past also may not work with modern hardware and materials. For the Viking missions to Mars, NASA employed a total spacecraft “heat microbial reduction” (HMR) process, a prolonged exposure to high temperatures to kill off or minimize microbes. As spacecrafts advance, NASA is more discerning, using HMR for components and/or subassemblies instead of the entire spacecraft.
      According to Cassilly, HMR may not always be an ideal solution because, extended time at high temperatures required to kill microbes can degrade the integrity of certain materials, potentially impacting mission success. While this is not a problem for all materials, there is still a need to expand NASA’s repertoire of acceptable microbial reduction techniques to include ones that may be more efficient and sustainable.
      This mold from the genus Cladosporium was collected from the surface of a cleanroom table at Marshall. This and other microbes within cleanrooms pose the biggest threat to spacecraft cleanliness and meeting Planetary Protection requirements. Jacobs Engineering/Chelsi Cassilly To contribute to NASA’s Planetary Protection efforts, Cassilly undertook a project – funded by a Jacobs Innovation Grant – to build a microbial library that could better inform and guide mitigation research. That meant visiting cleanrooms at Marshall to collect prevalent microbes, extracting DNA, amplifying specific genes, and submitting them for commercial sequencing. They identified 95% of the microbes within their library which is continually growing as more microbes are collected and identified.
      The Planetary Protection team is interested in taking this work a step further by exposing their microbial library to space-like stressors—including ultraviolet light, ionizing radiation, temperature extremes, desiccation, and vacuum—to determine survivability.
      Understanding the response of these microbes to space environmental conditions, like those experienced during deep space transit, helps inform our understanding of contamination risks associated with proposed planetary missions.
      Chelsi Cassilly
      Planetary Protection microbiologist
      “The research we’re doing probes at the possibility of using space itself to our advantage,” Cassilly said.
      Cassilly and Marshall materials engineers also supported a study at Auburn University in Auburn, Alabama, to determine whether certain manufacturing processes effectively reduce bioburden. Funded by a NASA Research Opportunity in Space and Earth Sciences (ROSES) grant, the project assessed the antimicrobial activity of various additives and components used in solid rocket motor production. The team is currently revising a manuscript which should appear publicly in the coming months.
      This Bacillus isolate with striking morphology was collected from a sample of insulation commonly used in solid rocket motors. Cassilly studies these and other material-associated microbes to evaluate what could hitch a ride on spacecraft. Jacobs Engineering/Chelsi Cassilly Cassilly also supported research by Marshall’s Solid Propulsion and Pyrotechnic Devices Branch to assess estimates of microbial contamination associated with a variety of commonly used nonmetallic spacecraft materials. The results showed that nearly all the materials analyzed carry a lower microbial load than previously estimated – possibly decreasing the risk associated with sending these materials to sensitive locations.
      Such findings benefit researchers across NASA who are also pursuing novel bioburden reduction tactics, Cassilly said, improving agencywide standards for identifying, measuring, and studying advanced planetary protection techniques.
      “Collaboration unifies our efforts and makes it so much more possible to uncover new solutions than if we were all working individually,” she said.
      NASA’s Office of Planetary Protection is part of the agency’s Office of Safety and Mission Assurance at NASA Headquarters in Washington. The Office of Planetary Protection oversees bioburden reduction research and development of advanced strategies for contamination mitigation at Marshall Space Flight Center; NASA’s Jet Propulsion Laboratory in Pasadena, California; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and NASA’s Johnson Space Center in Houston.
      For more information about NASA’s Marshall Space Flight Center, visit:
      https://www.nasa.gov/centers/marshall/home/index.html
      Share
      Details
      Last Updated Feb 22, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA to Continue Testing for New Artemis Moon Rocket Engines
      Article 2 hours ago 30 min read The Marshall Star for February 21, 2024
      Article 16 hours ago 3 min read Rocket Propellant Tanks for NASA’s Artemis III Mission Take Shape
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Marshall Space Flight Center
      Human Landing System
      Planetary Missions Program Office
      Brian Muirhead: Mars Sample Return Mission Overview
      View the full article
    • By European Space Agency
      Playing a huge role in moderating the climate, oceans are fundamental to the functioning of our planet. Understanding more about how seawater temperatures are rising and how oceans are absorbing excess atmospheric carbon dioxide, as well as knock-on issues such as ocean acidification, is key for understanding climate change and for taking effective action.
      A recent scientific paper highlights just how satellites are becoming increasingly important in providing unique information on ocean health to guide climate mitigation and adaptation efforts.
      View the full article
    • By Space Force
      The U.S. Space Force’s VICTUS NOX on-orbit mission has successfully concluded.

      View the full article
    • By NASA
      This image shows the heart of the barred spiral galaxy NGC 1097, as seen by NASA’s Hubble Space Telescope. Credit: ESA/Hubble & NASA, D. Sand, K. Sheth As NASA explores the unknown in air and space, a new mission to survey ultraviolet light across the entire sky will provide the agency with more insight into how galaxies and stars evolve. The space telescope, called UVEX (UltraViolet EXplorer), is targeted to launch in 2030 as NASA’s next Astrophysics Medium-Class Explorer mission.
      In addition to conducting a highly sensitive all-sky survey, UVEX will be able to quickly point toward sources of ultraviolet light in the universe. This will enable it to capture the explosions that follow bursts of gravitational waves caused by merging neutron stars. The telescope also will carry an ultraviolet spectrograph to study stellar explosions and massive stars.
      “NASA’s UVEX will help us better understand the nature of both nearby and distant galaxies, as well as follow up on dynamic events in our changing universe,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “This mission will bring key capabilities in near-and far-ultraviolet light to our fleet of space telescopes, delivering a wealth of survey data that will open new avenues in exploring the secrets of the cosmos.”
      The telescope’s ultraviolet survey will complement data from other missions conducting wide surveys in this decade, including the Euclid mission led by ESA (European Space Agency) with NASA contributions, and NASA’s Nancy Grace Roman Space Telescope, set to launch by May 2027. Together, these missions will help create a modern, multi-wavelength map of our universe.
      “With the innovative new UVEX mission joining our portfolio, we will gain an important legacy archive of data that will be of lasting value to the science community,” said Mark Clampin, director of the Astrophysics Division at NASA Headquarters. “This new telescope will contribute to our understanding of the universe across multiple wavelengths and address one of the major priorities in Astrophysics today: studying fleeting changes in the cosmos.”
      NASA selected the UVEX Medium-Class Explorer concept to continue into development after detailed review of two Medium-Class Explorer and two Mission of Opportunity concept proposals by a panel of scientists and engineers, and after evaluation based on NASA’s current astrophysics portfolio coupled with available resources. The UVEX mission was selected for a two-year mission and will cost approximately $300 million, not including launch costs.
      The mission’s principal investigator is Fiona Harrison at Caltech in Pasadena, California. Other institutions involved in the mission include University of California at Berkeley, Northrop Grumman, and Space Dynamics Laboratory.
      The Explorers Program is the oldest continuous NASA program. The program is designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the agency’s astrophysics and heliophysics programs.
      Since the launch of Explorer 1 in 1958, which discovered the Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
      The program is managed by NASA’s Goddard Space Flight Center for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system, and the universe.
      For more information about the Explorers Program, visit:
      https://explorers.gsfc.nasa.gov
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Feb 13, 2024 LocationNASA Headquarters Related Terms
      NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...