Jump to content

Full ignition for ESA’s reusable rocket engine


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Teams at NASA’s Stennis Space Center install a new RS-25 engine nozzle in early February in preparation for continued testing on the Fred Haise Test Stand. NASA is conducting a series of tests to certify production of new RS-25 engines for future (Space Launch System) missions, beginning with Artemis V.NASA/Danny Nowlin NASA will conduct an RS-25 hot fire Friday, Feb. 23, moving one step closer to production of new engines that will help power the agency’s SLS (Space Launch System) rocket on future Artemis missions to the Moon and beyond.
      Teams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, are set to begin the second half of a 12-test RS-25 certification series on the Fred Haise Test Stand, following installation of a second production nozzle on the engine.
      Teams at NASA’s Stennis Space Center install a new RS-25 engine nozzle in early February in preparation for continued testing on the Fred Haise Test Stand. NASA is conducting a series of tests to certify production of new RS-25 engines for future (Space Launch System) missions, beginning with Artemis V.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center install a new RS-25 engine nozzle in early February in preparation for continued testing on the Fred Haise Test Stand. NASA is conducting a series of tests to certify production of new RS-25 engines for future (Space Launch System) missions, beginning with Artemis V.NASA/Danny Nowlin The six remaining hot fires are part of the second, and final, test series collecting data to certify an updated engine production process, using innovative manufacturing techniques, for lead engines contractor Aerojet Rocketdyne, an L3Harris Technologies company.
      As NASA aims to establish a long-term presence on the Moon for scientific discovery and exploration, and prepare for future missions to Mars, new engines will incorporate dozens of improvements to make production more efficient and affordable while maintaining high performance and reliability.
      Four RS-25 engines, along with a pair of solid rocket boosters,  launch NASA’s powerful SLS rocket, producing more than 8.8 million pounds of thrust at liftoff for Artemis  missions.
      During the seventh test of the 12-test series, operators plan to fire the certification engine for 550 seconds and up to a 113% power level.
      “NASA’s commitment to safety and ‘testing like you fly’ is on display as we plan to fire the engine beyond 500 seconds, which is the same amount of time the engines must fire to help launch the SLS rocket to space with astronauts aboard the Orion spacecraft,” said Chip Ellis, project manager for RS-25 testing at Stennis.
      The Feb. 23 test features a second certification engine nozzle to allow engineers to gather additional performance data on the upgraded unit. The new nozzle was installed on the engine earlier this month while it remained at the test stand. Using specially adapted procedures and tools, the teams were able to swap out the nozzles with the engine in place.
      Teams at NASA’s Stennis Space Center install a new RS-25 engine nozzle in early February in preparation for continued testing on the Fred Haise Test Stand. NASA is conducting a series of tests to certify production of new RS-25 engines for future (Space Launch System) missions, beginning with Artemis V.NASA/Danny Nowlin In early February 2024, teams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, completed an RS-25 nozzle remove-and-replace procedure as part of an ongoing hot fire series on the Fred Haise Test Stand. The new nozzle will allow engineers to collect and compare performance data on a second production unit. The RS-25 nozzle, which directs engine thrust, is the most labor-intensive component on the engine and the hardest to manufacture, said Shawn Buckley, Aerojet Rocketdyne’s RS-25 nozzle integrated product team lead.
      Aerojet Rocketdyne has focused on streamlining the nozzle production process. Between manufacture of the first and second production units, the company reduced hands-on labor by 17%.
      “The nozzle is a work of machinery and work of art at the same time,” Buckley said. “Our team sees this nozzle as more than a piece of hardware. We see the role we play in the big picture as we return humans to the Moon.”
      With completion of the certification test series, all systems will be “go” to produce the first new RS-25 engines since the space shuttle era. NASA has contracted with Aerojet Rocketdyne to produce 24 new RS-25 engines using the updated design for missions beginning with Artemis V. NASA and Aerojet Rocketdyne modified 16 former space shuttle missions for use on Artemis missions I through IV.
      Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Share
      Details
      Last Updated Feb 22, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Marshall Space Flight Center Space Launch System (SLS) Explore More
      30 min read The Marshall Star for February 21, 2024
      Article 15 hours ago 3 min read Rocket Propellant Tanks for NASA’s Artemis III Mission Take Shape
      Article 6 days ago 3 min read Teams Add Iconic NASA ‘Worm’ Logo to Artemis II Rocket, Spacecraft
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA pilots flew this YF-12C aircraft from 1971 and 1978 to perform airspeed calibrations and collect propulsion system data at numerous flight conditions.Credit: NASA Supersonic flight became a reality in October 1947, when the Bell X-1 rocket plane broke the sound barrier. NASA’s Lewis Research Center in Cleveland (now, NASA Glenn), which had served as the agency’s aeropropulsion leader since it was established in the 1940s, subsequently helped NASA advance the technology needed to make longer supersonic flights possible.
      A host of military aircraft capable of reaching supersonic speeds followed the Bell X-1. In the 1960s, Lockheed’s family of Blackbirds (the original A-12, the YF-12 interceptor, and the SR-71 reconnaissance vehicle) became the world’s first aircraft able to cruise at supersonic speeds for extended periods. However, the expansion of this capability to larger transport aircraft was difficult, in large part due to the lack of data collected about propulsion systems during longer supersonic flights.
      To solve problems that weren’t found during design-phase testing of these aircraft and to advance crucial technology, like the supersonic mixed-compression inlet, the military loaned two retired YF-12s to the Dryden Flight Research Center (today, NASA Armstrong) in 1969 as part of a collaborative NASA/Air Force effort. They planned to compare data from YF-12 flights to data collected in wind tunnels at NASA’s Ames, Langley, and Lewis Research Centers.
      Bobby Sanders (left) and Robert Coltrin check a full-scale YF-12 flight inlet prior to a February 1972 test run in the NASA Lewis Research Center (now NASA Glenn) 10×10 Supersonic Wind Tunnel. Although the 5-foot 9-inch diameter inlet was large for the test section, no problems aroseCredit: NASA/Martin Brown Lewis’ researchers had studied supersonic inlets in wind tunnels since the early 1950s and were in the midst of an extensive evaluation of supersonic nozzles and inlets using an F-106 Delta Dart. In this new effort, Lewis was responsible for testing a full-scale YF-12 inlet in the center’s 10×10 Supersonic Wind Tunnel and analyzing a 32,500-pound thrust Pratt & Whitney J58 engine in the Propulsion Systems Laboratory (PSL).
      Although mixed-compression inlets, which allowed the engines to operate as turbojets at subsonic speeds and as ramjets at higher Mach numbers, were highly efficient, their design left the engines vulnerable to flow disturbances that often caused “unstarts.” Unstarts produced instantaneous drag that could stall the engine or cause the aircraft to quickly roll or yaw. Lewis researchers tested an actual inlet from a crashed SR-71, which they installed into the 10×10 in November 1971.
      Over the next year, researchers collected aerodynamic data under different conditions in the wind tunnel. They also tested a new inlet control system patented by Lewis engineers Bobby Sanders and Glenn Mitchell that used mechanical valves to protect the aircraft against unstarts. It was the first time the system was tested on a full-scale piece of hardware.
      Researchers also studied the relationships between the airframe, inlet, engine, and control system during normal flight conditions and when experiencing realistic flow disturbances.

      A Pratt & Whitney J58 engine installed in the NASA Lewis Research Center (now, NASA Glenn) Propulsion Systems Laboratory No. 4 facility in November 1973. The center’s technicians had to take great precautions to protect the instrumentation and control systems from the engine’s 1000-degree-Fahrenheit surface temperatures during the testing. Credit: NASA/Martin Brown In the summer of 1973, a full-scale J-58 engine became the first hardware tested in Lewis’ new PSL second altitude chamber. For the next year, researchers captured data under normal conditions and while using mesh inlet screens to simulate in-flight air-flow distortions.
      The PSL tests also measured the engine’s emissions as part of a larger effort to determine the high-altitude emissions levels of potential supersonic transports.
      While the YF-12 program was terminated in 1979 as the agency’s aeronautical priorities shifted, a year’s worth of ground testing had already been completed in NASA’s wind tunnels and the YF-12s had completed nearly 300 research flights. The program had expanded to include the development of high-temperature instrumentation, airframe pressure and flow mapping, thermal loads, and the inlet control system.
      NASA engineers demonstrated that small-scale models could be successfully used to design full-scale supersonic inlets, while the flight data was used to better understand the effect of subscale models and tunnel interference on data. Perhaps most importantly, the program at Lewis led to a digital control system that improved the response of the supersonic inlet to flow disturbances, which nearly eliminated engine restarts.
      Many of the program’s concepts were integrated into the SR-71’s design in the early 1980s and have contributed to NASA’s continuing efforts over the decades to achieve a supersonic transport aircraft.
      Additional Resources:
      NASA Facts:  The Lockheed YF-12
      Mach 3+ NASA/USAF YF-12 Flight Research, 1969-1979 by Peter Merlin
      NASA Facts:  SR-71 Blackbird
      Explore More
      4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
      Article 1 day ago 11 min read 55 Years Ago: Five Months Until the Moon Landing
      Article 2 days ago 7 min read 30 Years Ago: Clementine Changes Our View of the Moon
      Article 6 days ago View the full article
    • By NASA
      All the major structures that will form the core stage for NASA’s SLS (Space Launch System) rocket for the agency’s Artemis III mission are structurally complete. Technicians finished welding the 51-foot liquid oxygen tank structure, left, inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility in New Orleans Jan. 8. The liquid hydrogen tank, right, completed internal cleaning Nov. 14. NASA/Michael DeMocker As NASA works to develop all the systems needed to return astronauts to the Moon under its Artemis campaign for the benefit of all, the SLS (Space Launch System) rocket will be responsible for launching astronauts on their journey. With the liquid oxygen tank now fully welded, all of the major structures that will form the core stage for the SLS rocket for the agency’s Artemis III mission are ready for additional outfitting. The hardware will be a part of the rocket used for the first of the Artemis missions planning to land astronauts on the Moon’s surface near the lunar South Pole. Technicians finished welding the 51-foot liquid oxygen tank structure inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility in New Orleans Jan. 8.
      The mega rocket’s other giant propellant tank – the liquid hydrogen tank – is already one fully welded structure. NASA and Boeing, the SLS core stage lead contractor, are currently priming the tank  in another cell within the Vertical Assembly Building area called the Building 131 cryogenic tank thermal protection system and primer application complex. It completed internal cleaning Nov. 14.
      Manufacturing hardware is a multi-step process that includes welding, washing, and, later, outfitting hardware.The internal cleaning process is similar to a shower to ensure contaminants do not find their way into the stage’s complex propulsion and engine systems prior to priming. Once internal cleaning is complete, primer is applied to the external portions of the tank’s barrel section and domes by an automated robotic tool. Following primer, technicians apply a foam-based thermal protection system to shield it from the extreme temperatures it will face during launch and flight while also regulating the super-chilled propellant within.
      “NASA and its partners are processing major hardware elements at Michoud for several SLS rockets in parallel to support the agency’s Artemis campaign,” said Chad Bryant, acting manager of the Stages Office for NASA’s SLS Program. “With the Artemis II core stage nearing completion, the major structural elements of the SLS core stage for Artemis III will advance through production on the factory floor.”
      The two massive propellant tanks for the rocket collectively hold more than 733,000 gallons of super-chilled propellant. The propellant powers the four RS-25 engines and must stay extremely cold to remain liquid.
      The core stage, along with the RS-25 engines, will produce two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit and to the lunar surface for Artemis III. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      Through Artemis, NASA will send astronauts—including the first woman, first person of color, and first international partner astronaut—to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed mission to Mars. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, exploration ground systems, advanced spacesuits and rovers, Gateway, and human landing systems.
      For more on SLS, visit:
      https://www.nasa.gov/humans-in-space/space-launch-system/
      News Media Contact
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      corinne.m.beckinger@nasa.gov
      View the full article
    • By NASA
      In the left two photos, workers with NASA’s Exploration Ground Systems (EGS) paint the bright red NASA “worm” logo on the side of an Artemis II solid rocket booster segment inside the Rotation, Processing and Surge Facility (RPSF) at Kennedy Space Center in Florida on Tuesday, Jan. 30, 2024. The EGS team used a laser projector to mask off the logo with tape, then painted the first coat of the iconic design. The booster segments will help propel the Space Launch System (SLS) rocket on the Artemis II mission to send four astronauts around the Moon as part of the agency’s effort to establish a long-term science and exploration presence at the Moon, and eventually Mars. In the right photo, the Orion spacecraft for NASA’s Artemis II mission received its latest makeover. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter on Sunday, Jan. 28, inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.NASA/Glenn Benson and Rad Sinyak Art and science merge as teams add the NASA “worm” logo on the SLS (Space Launch System) solid rocket boosters and the Orion spacecraft’s crew module adapter at NASA’s Kennedy Space Center in Florida for the agency’s Artemis II mission.
      The iconic logo was introduced in 1975 by the firm of Danne & Blackburn as a modern emblem for the agency. It emerged from a nearly 30-year retirement in 2020 for limited use on select missions and products.
      NASA’s Exploration Ground Systems and prime contractor Jacobs began painting the red logotype onto the segments that form the Moon rocket’s two solid rocket boosters Jan. 22. To do so, crews used a laser projector to first mark off the location of the logo with tape, then applied two coats of paint and finished by adding several coats of clear primer. Each letter of the worm logo measures approximately 6 feet and 10 inches in height and altogether, stretches 25 feet from end to end, or a little less than the length of one of the rocket’s booster motor segments.
      The location of the worm logo will be moderately different from where it was during Artemis I. While it will still be located on each of the rocket’s 17 story boosters, the modernist logo will be placed toward the front of the booster systems tunnel cover. The SLS boosters are the largest, most powerful solid propellant boosters ever flown and provide more than 75% of the thrust at launch.
      Workers with NASA’s Exploration Ground Systems (EGS) paint the bright red NASA “worm” logo on the side of an Artemis II solid rocket booster segment inside the Rotation, Processing and Surge Facility (RPSF) at Kennedy Space Center in Florida on Tuesday, Jan. 30, 2024. The EGS team used a laser projector to mask off the logo with tape, then painted the first coat of the iconic design. The booster segments will help propel the Space Launch System (SLS) rocket on the Artemis II mission to send four astronauts around the Moon as part of the agency’s effort to establish a long-term science and exploration presence at the Moon, and eventually Mars.NASA/Glenn Benson Around the corner inside the Neil Armstrong Operations and Checkout Building at Kennedy, personnel adhered the worm logo and ESA (European Space Agency) insignia Jan. 28 on the spacecraft’s crew module adapter. The adapter houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the main modules.
      In October 2023, technicians joined the crew and service modules together. The crew module will house the four astronauts as they journey around the Moon and back to Earth on an approximately 10-day journey. The spacecraft’s service module, provided by ESA, will supply the vehicle with electricity, propulsion, thermal control, air, and water in space.
      The Orion spacecraft for NASA’s Artemis II mission received its latest makeover. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter on Sunday, Jan. 28, inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak NASA is working to land the first woman, first person of color, and first international partner astronaut on the Moon through Artemis. SLS and the Orion spacecraft are central to NASA’s deep space exploration plans, along with advanced spacesuits and rovers, the Gateway space station planned for orbit around the Moon, and commercial human landing systems.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin NASA completed the sixth of 12 scheduled RS-25 engine certification tests in a critical series for future flights of the agency’s SLS (Space Launch System) rocket as engineers conducted a full-duration hot fire Jan. 27 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      The current series builds on previous hot fire testing conducted at NASA Stennis to help certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3 Harris Technologies company. The new engines will help power NASA’s SLS rocket on future Artemis missions to the Moon and beyond, beginning with Artemis V.
      Having reached the halfway point in a 12-test RS-25 certification series, teams at NASA’s Stennis Space Center will install a second production nozzle (shown) on the engine to gather additional performance data during the remaining scheduled hot fires. Aerojet Rocketdyne NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin Operators fired the RS-25 engine on the Fred Haise Test Stand for almost eight-and-a-half minutes (500 seconds) – the same amount of time needed to help launch SLS – and at power levels ranging between 80% to 113%. New RS-25 engines will power up to the 111% level to provide additional thrust for launch of SLS. Testing up to the 113% power level provides a margin of operational safety.
      Now at the halfway point in the series, teams will install a new certification nozzle on the engine. Installation of the new nozzle will allow engineers to gather additional performance data from a second production unit. Following installation next month, testing will resume at Stennis with six additional hot fires scheduled through March.
      For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS, producing more than 8.8 million pounds of thrust at liftoff. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Jan 29, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Marshall Space Flight Center Space Launch System (SLS) Explore More
      23 min read The Marshall Star for January 24, 2024
      Article 5 days ago 3 min read NASA’s IXPE Awarded Prestigious Prize in High-energy Astronomy
      Article 6 days ago 28 min read The Marshall Star for January 17, 2024
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
  • Check out these Videos

×
×
  • Create New...