Jump to content

Recommended Posts

Posted
Seventh_shooting_star_ever_spotted_befor Image:

For the seventh time, a small asteroid – a meteoroid as astronomers call it – was discovered in space as it raced towards Earth for impact. The predicted time and location of the impact (02:50 - 03:03 UTC, above northern France) were made possible with observations by European astronomer Krisztián Sárneczky using the 60 cm Schmidt telescope from the Piszkéstető Observatory in Hungary. 2023 CX1 is the second impactor discovered by Krisztián, after the impact of 2022 EB5 less than a year ago.  

The last three predicted impacts have all occurred in the last 12 months– an encouraging illustration of how asteroid detection capabilities are rapidly advancing. 

What happened?

At 20:18:07 UTC on 12 February 2023, the new asteroid (now officially designated 2023 CX1 but initially designated Sar2667 by its discoverer) was imaged by the Piszkéstető Observatory. Once a second observation was taken, it was reported to the Minor Planet Center at 20:49 UTC.  

About 40 minutes later, follow-up observations reported by the Višnjan Observatory in Croatia confirmed the object. At this point various impact assessment systems around the globe calculated a 100% impact probability, expected above the English Channel between 02:00 - 04:00 UTC. The asteroid was estimated to be around one metre in diameter and posed no harm to people or property.  

Over the next seven hours, astronomers around the globe observed the Earth-bound object and pinpointed its ‘impact corridor’ over the Channel with a trajectory going from west to east. The object continued to be observed until just ten minutes before impact, only five minutes before it fell into Earth’s shadow becoming ‘invisible’.  

On impact the beautiful fireball lit up the skies within the expected time window (at 02:59 UTC) and location. Observations came mostly from southern UK and France but also from Belgium, the Netherlands and even Germany. It is likely that some fragments of the meteoroid could have survived its atmospheric journey and landed somewhere onshore, close to the coast north of Rouen in Normandy, France.   

The team at ESA’s Planetary Defence Office contributed to this historic event both with timely notifications from the ‘Meerkat’ warning system and use of a network of optical telescopes established for just these occasions.  

As it becomes more common that we can predict these small, stunning shooting stars in our skies, more people can be in the right place at the right time to witness a phenomenon only few have been lucky enough to spot before.  

Of course, one day we’ll find an imminent impactor that isn’t one metre in size, but perhaps 100. To protect ourselves, as NASA’s DART mission has shown is possible and ESA's Hera Mission will build on, we need to see them coming. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      KEY POINTS
      NASA’s Parker Solar Probe has taken the closest ever images to the Sun, captured just 3.8 million miles from the solar surface. The new close-up images show features in the solar wind, the constant stream of electrically charged subatomic particles released by the Sun that rage across the solar system at speeds exceeding 1 million miles an hour. These images, and other data, are helping scientists understand the mysteries of the solar wind, which is essential to understanding its effects at Earth. On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured stunning new images from within the Sun’s atmosphere. These newly released images — taken closer to the Sun than we’ve ever been before — are helping scientists better understand the Sun’s influence across the solar system, including events that can affect Earth.
      “Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.”
      Parker Solar Probe started its closest approach to the Sun on Dec. 24, 2024, flying just 3.8 million miles from the solar surface. As it skimmed through the Sun’s outer atmosphere, called the corona, in the days around the perihelion, it collected data with an array of scientific instruments, including the Wide-Field Imager for Solar Probe, or WISPR. 
      Parker Solar Probe has revolutionized our understanding of the solar wind thanks to the spacecraft’s many passes through the Sun’s outer atmosphere.
      Credit: NASA’s Goddard Space Flight Center/Joy Ng The new WISPR images reveal the corona and solar wind, a constant stream of electrically charged particles from the Sun that rage across the solar system. The solar wind expands throughout of the solar system with wide-ranging effects. Together with outbursts of material and magnetic currents from the Sun, it helps generate auroras, strip planetary atmospheres, and induce electric currents that can overwhelm power grids and affect communications at Earth. Understanding the impact of solar wind starts with understanding its origins at the Sun.
      The WISPR images give scientists a closer look at what happens to the solar wind shortly after it is released from the corona. The images show the important boundary where the Sun’s magnetic field direction switches from northward to southward, called the heliospheric current sheet. It also captures the collision of multiple coronal mass ejections, or CMEs — large outbursts of charged particles that are a key driver of space weather — for the first time in high resolution.
      “In these images, we’re seeing the CMEs basically piling up on top of one another,” said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. “We’re using this to figure out how the CMEs merge together, which can be important for space weather.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This video, made from images taken by Parker Solar Probe’s WISPR instrument during its record-breaking flyby of the Sun on Dec. 25, 2024, shows the solar wind racing out from the Sun’s outer atmosphere, the corona. NASA/Johns Hopkins APL/Naval Research Lab When CMEs collide, their trajectory can change, making it harder to predict where they’ll end up. Their merger can also accelerate charged particles and mix magnetic fields, which makes the CMEs’ effects potentially more dangerous to astronauts and satellites in space and technology on the ground. Parker Solar Probe’s close-up view helps scientists better prepare for such space weather effects at Earth and beyond.
      Zooming in on Solar Wind’s Origins
      The solar wind was first theorized by preeminent heliophysicist Eugene Parker in 1958. His theories about the solar wind, which were met with criticism at the time, revolutionized how we see our solar system. Prior to Parker Solar Probe’s launch in 2018, NASA and its international partners led missions like Mariner 2, Helios, Ulysses, Wind, and ACE that helped scientists understand the origins of the solar wind — but from a distance. Parker Solar Probe, named in honor of the late scientist, is filling in the gaps of our understanding much closer to the Sun.
      At Earth, the solar wind is mostly a consistent breeze, but Parker Solar Probe found it’s anything but at the Sun. When the spacecraft reached within 14.7 million miles from the Sun, it encountered zig-zagging magnetic fields — a feature known as switchbacks. Using Parker Solar Probe’s data, scientists discovered that these switchbacks, which came in clumps, were more common than expected.
      When Parker Solar Probe first crossed into the corona about 8 million miles from the Sun’s surface in 2021, it noticed the boundary of the corona was uneven and more complex than previously thought.
      As it got even closer, Parker Solar Probe helped scientists pinpoint the origin of switchbacks at patches on the visible surface of the Sun where magnetic funnels form. In 2024 scientists announced that the fast solar wind — one of two main classes of the solar wind — is in part powered by these switchbacks, adding to a 50-year-old mystery.
      However, it would take a closer view to understand the slow solar wind, which travels at just 220 miles per second, half the speed of the fast solar wind.
      “The big unknown has been: how is the solar wind generated, and how does it manage to escape the Sun’s immense gravitational pull?” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory. “Understanding this continuous flow of particles, particularly the slow solar wind, is a major challenge, especially given the diversity in the properties of these streams — but with Parker Solar Probe, we’re closer than ever to uncovering their origins and how they evolve.”
      Understanding Slow Solar Wind
      The slow solar wind, which is twice as dense and more variable than fast solar wind, is important to study because its interplay with the fast solar wind can create moderately strong solar storm conditions at Earth sometimes rivaling those from CMEs.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This artist’s concept shows a representative state of Earth’s magnetic bubble immersed in the slow solar wind, which averages some 180 to 300 miles per second. NASA’s Goddard Space Flight Center Conceptual Image Lab Prior to Parker Solar Probe, distant observations suggested there are actually two varieties of slow solar wind, distinguished by the orientation or variability of their magnetic fields. One type of slow solar wind, called Alfvénic, has small-scale switchbacks. The second type, called non-Alfvénic, doesn’t show these variations in its magnetic field. 
      As it spiraled closer to the Sun, Parker Solar Probe confirmed there are indeed two types. Its close-up views are also helping scientists differentiate the origins of the two types, which scientists believe are unique. The non-Alfvénic wind may come off features called helmet streamers — large loops connecting active regions where some particles can heat up enough to escape — whereas Alfvénic wind might originate near coronal holes, or dark, cool regions in the corona. 
      In its current orbit, bringing the spacecraft just 3.8 million miles from the Sun, Parker Solar Probe will continue to gather additional data during its upcoming passes through the corona to help scientists confirm the slow solar wind’s origins. The next pass comes Sept. 15, 2025.
      “We don’t have a final consensus yet, but we have a whole lot of new intriguing data,” said Adam Szabo, Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 10, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Missions NASA Centers & Facilities NASA Directorates Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Wind Space Weather Explore More
      8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary


      Article


      5 hours ago
      6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find


      Article


      1 day ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By Amazing Space
      Did Earth Just Have Its Fastest Day Ever?
    • By NASA
      Artist’s concept of the star HIP 67522 with a flare erupting toward an orbiting planet, HIP 67522 b. A second planet, HIP 67522 c, is shown in the background. Janine Fohlmeister, Leibniz Institute for Astrophysics Potsdam The Discovery
      A giant planet some 400 light-years away, HIP 67522 b, orbits its parent star so tightly that it appears to cause frequent flares from the star’s surface, heating and inflating the planet’s atmosphere.
      Key Facts
      On planet Earth, “space weather” caused by solar flares might disrupt radio communications, or even damage satellites. But Earth’s atmosphere protects us from truly harmful effects, and we orbit the Sun at a respectable distance, out of reach of the flares themselves.
      Not so for planet HIP 67522 b. A gas giant in a young star system – just 17 million years old – the planet takes only seven days to complete one orbit around its star. A “year,” in other words, lasts barely as long as a week on Earth. That places the planet perilously close to the star. Worse, the star is of a type known to flare – especially in their youth.
      In this case, the proximity of the planet appears to result in fairly frequent flaring.
      Details
      The star and the planet form a powerful but likely a destructive bond. In a manner not yet fully understood, the planet hooks into the star’s magnetic field, triggering flares on the star’s surface; the flares whiplash energy back to the planet. Combined with other high-energy radiation from the star, the flare-induced heating appears to have increased the already steep inflation of the planet’s atmosphere, giving HIP 67522 b a diameter comparable to our own planet Jupiter despite having just 5% of Jupiter’s mass.
      This might well mean that the planet won’t stay in the Jupiter size-range for long. One effect of being continually pummeled with intense radiation could be a loss of atmosphere over time. In another 100 million years, that could shrink the planet to the status of a “hot Neptune,” or, with a more radical loss of atmosphere, even a “sub-Neptune,” a planet type smaller than Neptune that is common in our galaxy but lacking in our solar system.
      Fun Facts
      Four hundred light-years is much too far away to capture images of stellar flares striking orbiting planets. So how did a science team led by Netherlands astronomer Ekaterina Ilin discover this was happening? They used space-borne telescopes, NASA’s TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency’s CHEOPS (CHaracterising ExoPlanets Telescope), to track flares on the star, and also to trace the path of the planet’s orbit.
      Both telescopes use the “transit” method to determine the diameter of a planet and the time it takes to orbit its star. The transit is a kind of mini-eclipse. As the planet crosses the star’s face, it causes a tiny dip in starlight reaching the telescope. But the same observation method also picks up sudden stabs of brightness from the star – the stellar flares. Combining these observations over five years’ time and applying rigorous statistical analysis, the science team revealed that the planet is zapped with six times more flares than it would be without that magnetic connection.   
      The Discoverers
      A team of scientists from the Netherlands, Germany, Sweden, and Switzerland, led by Ekaterina Ilin of the Netherlands Institute for Radio Astronomy, published their paper on the planet-star connection, “Close-in planet induces flares on its host star,” in the journal Nature on July 2, 2025.
      Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP View the full article
    • By Amazing Space
      24/7 Sun Stream : Latest Views of Our Star from NASA SDO
    • By NASA
      Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk An unusual star (circled in white at right) behaving like no other seen before and its surroundings are featured in this composite image released on May 28, 2025. A team of astronomers combined data from NASA’s Chandra X-ray Observatory and the Square Kilometer Array Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients. Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      Image credit: X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk
      View the full article
  • Check out these Videos

×
×
  • Create New...