Jump to content

Webb detects extremely small main-belt asteroid


Recommended Posts

Illustration_of_asteroid_artist_s_impres

A previously unknown 100–200-metre asteroid — roughly the size of Rome’s Colosseum — has been detected by an international team of European astronomers using the NASA/ESA/CSA James Webb Space Telescope. Their project used data from the calibration of the Mid-InfraRed Instrument (MIRI), in which the team serendipitously detected an interloping asteroid. The object is likely the smallest observed to date by Webb and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter. More observations are needed to better characterize this object’s nature and properties.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA invites media to attend the first major asteroid sample recovery rehearsal for its OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission on Tuesday, June 27, to Thursday, June 28, at Lockheed Martin in Littleton, Colorado.View the full article
    • By NASA
      NASA will award funding to more than 200 small business teams to develop new technologies designed to protect the health of astronauts, lower risk of collision damage to spacecraft, and more. The new awards from NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program invests in a diverse portfolio of AView the full article
    • By European Space Agency
      Image: A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo.
      This portrait of NGC 5068 is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here and here. These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb.
      The second reason is that Webb’s observations build on other studies using telescopes including the NASA/ESA Hubble Space Telescope and some of the world’s most capable ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with catalogues from Hubble of 10 000 star clusters, spectroscopic mapping of 20 000 star-forming emission nebulae from the Very Large Telescope (VLT), and observations of 12 000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.
      With its ability to peer through the gas and dust enshrouding newborn stars, Webb is the perfect telescope to explore the processes governing star formation. Stars and planetary systems are born amongst swirling clouds of gas and dust that are opaque to observations in visible light, like many from Hubble or the VLT. The keen vision at infrared wavelengths of two of Webb’s instruments — MIRI and NIRCam — allowed astronomers to see right through the gargantuan clouds of dust in NGC 5068 and capture the processes of star formation as they happened. This image combines the capabilities of these two instruments, providing a truly unique look at the composition of NGC 5068.
      NGC 5068 MIRI image
      NGC 5068 NIRCam image
      [Image description: A close-in image of a spiral galaxy, showing its core and part of a spiral arm. Thousands upon thousands of tiny stars that make it up can be seen, most dense in a whitish bar that forms its core. Clumps and filaments of dust form an almost skeletal structure that follows the twist of the galaxy and its spiral arm. Large, glowing bubbles of red gas are hidden in the dust.]
      View the full article
    • By Amazing Space
      James Webb Telescope - New Enceladus Discovery
    • By European Space Agency
      Interaction between moon’s plumes and Saturn’s ring system explored with Webb
      A water vapour plume from Saturn’s moon Enceladus spanning more than 9600 kilometres — long enough to stretch across the Eurasian continent from Ireland to Japan — has been detected by researchers using the NASA/ESA/CSA James Webb Space Telescope. Not only is this the first time such water ejection has been seen over such an expansive distance, but Webb is also giving scientists a direct look, for the first time, at how this emission feeds the water supply for the entire system of Saturn and its rings.
      View the full article
  • Check out these Videos

×
×
  • Create New...