Members Can Post Anonymously On This Site
Stellar Motions in Outer Halo Shed New Light on Milky Way Evolution
-
Similar Topics
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Found: First Actively Forming Galaxy as Lightweight as Young Milky Way
Hundreds of overlapping objects at various distances are spread across this field. At the very center is a tiny galaxy nicknamed Firefly Sparkle that looks like a long, angled, dotted line. Smaller companions are nearby. Credits:
NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) For the first time, NASA’s James Webb Space Telescope has detected and “weighed” a galaxy that not only existed around 600 million years after the big bang, but is also similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Other galaxies Webb has detected at this time period are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters — 10 in all — each of which researchers examined in great detail.
Image A: Firefly Sparkle Galaxy and Companions in Galaxy Cluster MACS J1423 (NIRCam Image)
For the first time, astronomers using NASA’s James Webb Space Telescope have identified a galaxy, nicknamed the Firefly Sparkle, that not only is in the process of assembling and forming stars around 600 million years after the big bang, but also weighs about the same as our Milky Way galaxy if we could “wind back the clock” to weigh it as it developed. Two companion galaxies are close by, which may ultimately affect how this galaxy forms and builds mass over billions of years. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “I didn’t think it would be possible to resolve a galaxy that existed so early in the universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”
Webb was able to image the galaxy in crisp detail for two reasons. One is a benefit of the cosmos: A massive foreground galaxy cluster radically enhanced the distant galaxy’s appearance through a natural effect known as gravitational lensing. And when combined with the telescope’s specialization in high-resolution infrared light, Webb delivered unprecedented new data about the galaxy’s contents.
Image B: Galaxy Cluster MACS J1423 (NIRCam Image)
In this image from NASA’s James Webb Space Telescope, thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest, bright white oval is a supergiant elliptical galaxy. The galaxy cluster acts like a lens, magnifying and distorting the light of objects that lie well behind it, an effect known as gravitational lensing. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “Without the benefit of this gravitational lens, we would not be able to resolve this galaxy,” said Kartheik Iyer, co-lead author and NASA Hubble Fellow at Columbia University in New York. “We knew to expect it based on current physics, but it’s surprising that we actually saw it.”
Mowla, who spotted the galaxy in Webb’s image, was drawn to its gleaming star clusters, because objects that sparkle typically indicate they are extremely clumpy and complicated. Since the galaxy looks like a “sparkle” or swarm of lightning bugs on a warm summer night, they named it the Firefly Sparkle galaxy.
Reconstructing the Galaxy’s Appearance
The research team modeled what the galaxy might have looked like if it weren’t stretched and discovered that it resembled an elongated raindrop. Suspended within it are two star clusters toward the top and eight toward the bottom. “Our reconstruction shows that clumps of actively forming stars are surrounded by diffuse light from other unresolved stars,” said Iyer. “This galaxy is literally in the process of assembling.”
Webb’s data shows the Firefly Sparkle galaxy is on the smaller side, falling into the category of a low-mass galaxy. Billions of years will pass before it builds its full heft and a distinct shape. “Most of the other galaxies Webb has shown us aren’t magnified or stretched, and we are not able to see their ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” Mowla said.
Stretched Out and Shining, Ready for Close Analysis
Since the galaxy is warped into a long arc, the researchers easily picked out 10 distinct star clusters, which are emitting the bulk of the galaxy’s light. They are represented here in shades of pink, purple, and blue. Those colors in Webb’s images and its supporting spectra confirmed that star formation didn’t happen all at once in this galaxy, but was staggered in time.
“This galaxy has a diverse population of star clusters, and it is remarkable that we can see them separately at such an early age of the universe,” said Chris Willott from the National Research Council of Canada’s Herzberg Astronomy and Astrophysics Research Centre, a co-author and the observation program’s principal investigator. “Each clump of stars is undergoing a different phase of formation or evolution.”
The galaxy’s projected shape shows that its stars haven’t settled into a central bulge or a thin, flattened disk, another piece of evidence that the galaxy is still forming.
Image C: Illustration of the Firefly Sparkle Galaxy in the Early Universe (Artist’s Concept)
This artist concept depicts a reconstruction of what the Firefly Sparkle galaxy looked like about 600 million years after the big bang if it wasn’t stretched and distorted by a natural effect known as gravitational lensing. This illustration is based on images and data from NASA’s James Webb Space Telescope. Illustration: NASA, ESA, CSA, Ralf Crawford (STScI). Science: Lamiya Mowla (Wellesley College), Guillaume Desprez (Saint Mary’s University) Video: “Firefly Sparkle” Reveals Early Galaxy
‘Glowing’ Companions
Researchers can’t predict how this disorganized galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are “hanging out” within a tight perimeter and may influence how it builds mass over billions of years.
Firefly Sparkle is only 6,500 light-years away from its first companion, and its second companion is separated by 42,000 light-years. For context, the fully formed Milky Way is about 100,000 light-years across — all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.
Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps, adding to the galaxies’ masses. “It has long been predicted that galaxies in the early universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”
The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey (CANUCS), which includes near-infrared images from NIRCam (Near-Infrared Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that NASA’s Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble (CLASH) program.
This work has been published on December 11, 2024 in the journal Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the journal Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Video: How are Distant Galaxies Magnified Through Gravitational Lensing?
Article: Webb Science: Galaxies Through Time
Article: Spectroscopy 101
Interactive: Learn how the Webb microshutter array (MSA) works
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a galaxy?
What is the Webb Telescope?
SpacePlace for Kids
En Español
¿Qué es una galaxia?
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Galaxies Stories
Universe
Share
Details
Last Updated Dec 10, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Galaxies Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Knowing whether or not a planet elsewhere in the galaxy could potentially be habitable requires knowing a lot about that planet’s sun. Sarah Peacock relies on computer models to assess stars’ radiation, which can have a major influence on whether or not one of these exoplanets has breathable atmosphere.
Name: Sarah Peacock
Title: Assistant Research Scientist
Formal Job Classification: Astrophysicist
Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)
Sarah Peacock is a research scientist with the Exoplanets and Stellar Astrophysics Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Sarah Peacock What do you do and what is most interesting about your role here at Goddard?
My overarching research goal is to find habitable planets in other solar systems. To do this, I study the high-energy radiation that specific stars produce to help determine if life can exist on any earthlike planets that orbit them.
What is your educational background?
In 2013, I received a Bachelor of Arts in astrophysics from the University of Virginia. I received both my master’s and doctorate degrees from the Lunar and Planetary Laboratory at the University of Arizona in 2016 and 2019, respectively.
What drew you to study the stars?
In high school, I took an astronomy class. We had a planetarium in our school and I had a wonderful teacher who inspired me to fall in love with the stars. She also showed us how many of the Harry Potter characters are drawn from the constellations and that spoke to my heart because I am a Harry Potter fan!
How did you come to Goddard?
I started at Goddard as a NASA post-doctoral fellow in July 2020, but I first saw the center the day before Goddard shut down due to COVID.
How does high-energy radiation show you what planets outside our solar system might be habitable?
High-energy radiation can cause a planet to lose its atmosphere. If a planet is exposed to too much high-energy radiation, the atmosphere can be blown off, and if there is no atmosphere, then there is nothing for life as we know it to breathe.
We cannot directly measure the specific radiation that I study, so we have to model it. The universe has so many stars, and almost all stars host a planet. There are approximately 5,500 confirmed exoplanets so far, with an additional 7,500 unconfirmed exoplanets.
I help identify systems that either have too much radiation, so planets in the habitable zone (the region around a star where liquid water could exist on a planet’s surface) are probably lifeless, or systems that have radiation levels that are safer. Ultimately, my research helps narrow down the most likely systems to host planets that should have stable atmospheres.
Sarah Peacock research goal is to find habitable planets in other solar systems.Courtesy of Sarah Peacock Where does your data come from?
I predominately use data from the Hubble Space Telescope and from the now-retired spacecraft GALEX. My work itself is more theory-focused though: I create a modeled stellar spectrum across all wavelengths and use observations to validate my modeling.
What other areas of research are you involved in?
I am working with a team analyzing data from the James Webb Space Telescope to see if earthlike planets around M-type stars (a star that is cooler and smaller than the Sun) have atmospheres and, if so, what the composition of those atmospheres is. An exciting result from this work is that we may have detected water in the atmosphere of a rocky planet for the first time ever. However, we cannot yet distinguish with our current observations if that water comes from the planet or from spots on the star (starspots on this host star are cold enough for water to exist in gas form).
I am also helping manage a NASA Innovative Advance Concept (NIAC) study led by my mentor, Ken Carpenter, to work on the Artemis Enabled Stellar Imager (AeSI). If selected for further development, this imager would be an ultraviolet/optical interferometer located on the South Pole of the Moon. With this telescope, we would be able to map the surface of stars, image accretion disks, and image the centers of Active Galactic Nuclei.
As a relatively new employee to Goddard, what have been your first impressions?
Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming. Starting during the pandemic, I was worried about feeling isolated, but instead, I was blown away by how many folks in my lab reached out to set up calls to introduce themselves and suggest opportunities for collaboration. It made me feel welcome.
Who is your mentor and what did your mentor advise you?
Ken Carpenter is my mentor. He encourages me to pursue my aspirations. He supports letting me chart my own path and being exposed to many different areas of research. I thank Ken for his support and encouragement and for including me on his projects.
“Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming.”Courtesy of Sarah Peacock What do you do for fun?
I am a new mom, so my usual hobbies are on pause! Right now, fun is taking care of my baby and introducing life experiences to him.
As a recently selected member of the Executive Committee for NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG), what are your responsibilities?
The NASA ExoPAG is responsible for soliciting and coordinating scientific community input into the development and execution of NASA’s exoplanet exploration program. We solicit opinions and advice from any scientist who studies exoplanets. We are a bridge between NASA’s exoplanet scientists and NASA Headquarters in Washington.
What is a fun fact about yourself?
I got married the same day I defended my Ph.D. I had my defense in the morning and got married in the afternoon at the courthouse.
Who is your favorite author?
I love to read; I always have three books going. My favorite author is Louise Penny, who writes mysteries, but I read all genres. Right now, I am reading a biography about Marjorie Merriweather Post.
What is your favorite quote?
“The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.” —Box and Draper 1987
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Dec 10, 2024 Related Terms
People of Goddard Goddard Space Flight Center People of NASA Explore More
5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
Article 2 hours ago 5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments
On April 8, 2024, a total solar eclipse swept across North America, from the western…
Article 6 hours ago 17 min read 30 Years Ago: NASA Selects its 15th Group of Astronauts
Article 22 hours ago View the full article
-
By European Space Agency
On 1 December 2024, BepiColombo flew past Mercury for the fifth time. During this flyby, BepiColombo became the first spacecraft ever to observe Mercury in mid-infrared light. The new images reveal variations in temperature and composition across the planet's cratered surface.
View the full article
-
By NASA
8 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Virtual meetings feeling a little stale? NASA has just unveiled a suite of new Artemis backgrounds to elevate your digital workspace.
From the majesty of the Artemis I launch lighting up the night sky to the iconic image of the Orion spacecraft with the Moon and Earth in view, these virtual backgrounds allow viewers to relive the awe-inspiring moments of Artemis I and glimpse the bright future that lies ahead as the Artemis campaign enables humans to live and work at the Moon’s South Pole region.
Scroll through to download your next virtual background for work, school, or just for fun, and learn about all things Artemis as the agency and its partners cross off milestones leading up to Artemis II and missions beyond.
Artemis I Launch
Credit: NASA/Bill Ingalls NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I mission was the first integrated flight test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and ground systems. SLS and Orion launched at 1:47 a.m. EST from Launch Pad 39B at Kennedy.
Artemis II Crew
Credit: NASA Meet the astronauts who will fly around the Moon during the Artemis II mission. From left are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.
Astronaut Regolith
Credit: NASA An artist’s concept of two suited Artemis crew members working on the lunar surface. The samples collected during future Artemis missions will continue to advance our knowledge of the solar system and help us understand the history and formation of Earth and the Moon, uncovering some of the mysteries that have long eluded scientists.
Exploration Ground Systems
Credit: NASA NASA’s mobile launcher, atop Crawler Transporter-2, is at the entrance to High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018, at NASA’s Kennedy Space Center in Florida. This is the first time that the modified mobile launcher made the trip to the pad and the VAB. The mobile launcher is the structure that is used to assemble, process, and launch the SLS rocket.
Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen atop a mobile launcher at Launch Pad 39B on Nov. 4, 2022, as Crawler Transporter-2 departs the pad following rollout at NASA’s Kennedy Space Center in Florida.
Credit: NASA After Orion splashed down in the Pacific Ocean, west of Baja California, the spacecraft was recovered by personnel on the USS Portland from the U.S. Department of Defense, including Navy amphibious specialists, Space Force weather specialists, and Air Force specialists, as well as engineers and technicians from NASA’s Kennedy Space Center in Florida, the agency’s Johnson Space Center in Houston, and Lockheed Martin Space Operations. Personnel from NASA’s Exploration Ground Systems led the recovery efforts.
Credit: NASA/Keegan Barber NASA’s SLS (Space Launch System) rocket with the Orion spacecraft aboard is seen atop a mobile launcher as it rolls out to Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. At left is the Vehicle Assembly Building.
First Woman
Credit: NASA “First Woman” graphic novel virtual background featuring an illustration of the inside of a lunar space station outfitted with research racks and computer displays. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Credit: NASA “First Woman” graphic novel virtual background featuring the illustration of the inside of a lunar space station outfitted with research racks and computer displays, along with zero-g indicator suited rubber duckies floating throughout. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Credit: NASA This “First Woman” graphic novel virtual background features an illustrated scene from a lunar mission. At a lunar camp, one suited astronaut flashes the peace sign while RT, the robot sidekick, waves in the foreground. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Gateway
Credit: NASA The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission.
Credit: Northrop Grumman and Thales Alenia Space The Gateway space station’s HALO (Habitation and Logistics Outpost) module, one of two of Gateway’s habitation elements where astronauts will live, conduct science, and prepare for lunar surface missions, successfully completed welding in Turin, Italy. Following a series of tests to ensure its safety, the future home for astronauts will travel to Gilbert, Arizona, for final outfitting ahead of launch to lunar orbit. Gateway will be humanity’s first space station in lunar orbit and is an essential component of the Artemis campaign to return humans to the Moon for scientific discovery and chart a path for human missions to Mars.
Lunar Surface
Credit: SpaceX Artist’s concept of SpaceX Starship Human Landing System, or HLS, which is slated to transport astronauts to and from the lunar surface during Artemis III and IV.
Credit: Blue Origin Artist’s concept of Blue Origin’s Blue Moon MK-2 human lunar lander, which is slated to land astronauts on the Moon during Artemis V.
Credit: NASA The “Moon buggy” for NASA’s Artemis missions, the Lunar Terrain Vehicle (LTV), is seen here enabling a pair of astronauts to explore more of the Moon’s surface and conduct science research farther away from the landing site. NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for an LTV.
Credit: JAXA/Toyota An artist’s concept of the pressurized rover — which is being designed, developed, and operated by JAXA (Japan Aerospace Exploration Agency) — is seen driving across the lunar terrain. The pressurized rover will serve as a mobile habitat and laboratory for the astronauts to live and work for extended periods of time on the Moon.
Logo
Credit: NASA The NASA “meatball” logo. The round red, white, and blue insignia was designed by employee James Modarelli in 1959, NASA’s second year. The design incorporates references to different aspects of NASA’s missions.
Credit: NASA The NASA meatball logo (left) and Artemis logo side by side.
Moon Phases
Credit: NASA The different phases of the Moon, shown in variations of shadowing, extend across this virtual background.
Orion
Credit: NASA On flight day 5 during Artemis I, the Orion spacecraft took a selfie while approaching the Moon ahead of the outbound powered flyby — a burn of Orion’s main engine that placed the spacecraft into lunar orbit. During this maneuver, Orion came within 81 miles of the lunar surface.
Credit: NASA On flight day 13 during Artemis I, Orion reached its maximum distance from Earth at 268,563 miles away from our home planet, traveling farther than any other spacecraft built for humans.
Credit: NASA This first high-resolution image, taken on the first day of the Artemis I mission, was captured by a camera on the tip of one of Orion’s solar arrays. The spacecraft was 57,000 miles from home and distancing itself from planet Earth as it approached the Moon and distant retrograde orbit.
Silhouettes
Credit: NASA In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.
SLS (Space Launch System)
Credit: Joel Kowsky In this sunrise photo at NASA’s Kennedy Space Center in Florida, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B as preparations continued for the Artemis I launch.
Credit: NASA/Joel Kowsky In this close-up image, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B on Nov. 12, 2022, at NASA’s Kennedy Space Center in Florida.
Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen at sunrise atop the mobile launcher at Launch Pad 39B on Nov. 7, 2022, at NASA’s Kennedy Space Center in Florida.
Earth, Moon, and Mars
Credit: NASA From left, an artist’s concept of the Moon, Earth, and Mars sharing space. NASA’s long-term goal is to send humans to Mars, and we will use what we learn at the Moon to help us get there. This is the agency’s Moon to Mars exploration approach.
Credit: NASA In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars.
Credit: NASA An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. Mars remains our horizon goal for human exploration because it is a rich destination for scientific discovery and a driver of technologies that will enable humans to travel and explore far from Earth.
About the Author
Catherine E. Williams
Share
Details
Last Updated Dec 02, 2024 Related Terms
Humans in Space Artemis Artemis 1 Artemis 2 Artemis 3 Artemis 4 Artemis 5 Exploration Systems Development Mission Directorate Explore More
6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
Article 7 days ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 1 week ago 8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche.
The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation.
Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light.
The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years.
Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.
Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche?
Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.