Jump to content

NASA’s Big 2022: Historic Moon Mission, Webb Telescope Images, More


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Don Pettit poses for a crew portrait at the Gagarin Cosmonaut Training Center.NASA During his fourth mission to the International Space Station, NASA astronaut Don Pettit will serve as a flight engineer and member of the Expedition 71/72 crew. After blasting off to space, Pettit will conduct scientific investigations and technology demonstrations to help prepare crew for future space missions.
      Pettit will launch on the Roscosmos Soyuz MS-26 spacecraft in September 2024, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The trio will spend approximately six months aboard the orbital laboratory.
      NASA selected Pettit as an astronaut in 1996. A veteran of three spaceflights, he made integral advancements in technology and demonstrations for human exploration. He served as a science officer for Expedition 6 in 2003, operated the robotic arm for STS-126 space shuttle Endeavour in 2008, and served as a flight engineer for Expedition 30/31 in 2012. Pettit has logged 370 days in space and conducted two spacewalks totaling 13 hours and 17 minutes.
      The Expedition 6 crew launched on STS-113 space shuttle Endeavour expecting to return on STS-114 space shuttle Discovery after a two and a half month mission. Following the space shuttle Columbia accident that grounded the shuttle fleet, the crew returned on the Soyuz TMA-1 spacecraft after five and a half months, landing in Kazakhstan. On his next 16-day mission, STS-126, Pettit helped expand the living quarters of the space station and installed a regenerative life support system to reclaim potable water from urine. During Expedition 30/31, Pettit also captured the first commercial cargo spacecraft, the SpaceX Dragon, using the robotic arm.
      A native from Silverton, Oregon, Pettit holds a bachelor’s degree in chemical engineering from Oregon State University, Corvallis, and a doctorate in chemical engineering from the University of Arizona, Tucson. Prior to his career with NASA, Pettit worked as a staff scientist at the Los Alamos National Laboratory in New Mexico.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Julian Coltre / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Mar 27, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Missions View the full article
    • By NASA
      NASA astronaut and backup Soyuz MS-25 Flight Engineer Don Pettit poses for a crew portrait at the Gagarin Cosmonaut Training Center.NASA During his fourth mission to the International Space Station, NASA astronaut Don Pettit will serve as a flight engineer and member of the Expedition 71/72 crew. After blasting off to space, Pettit will conduct scientific investigations and technology demonstrations to help prepare crew for future space missions.
      Pettit will launch on the Roscosmos Soyuz MS-26 spacecraft in September 2024, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The trio will spend approximately six months aboard the orbital laboratory.
      NASA selected Pettit as an astronaut in 1996. A veteran of three spaceflights, he made integral advancements in technology and demonstrations for human exploration. He served as a science officer for Expedition 6 in 2003, operated the robotic arm for STS-126 space shuttle Endeavour in 2008, and served as a flight engineer for Expedition 30/31 in 2012. Pettit has logged 370 days in space and conducted two spacewalks totaling 13 hours and 17 minutes.
      The Expedition 6 crew launched on STS-113 space shuttle Endeavour expecting to return on STS-114 space shuttle Discovery after a two and a half month mission. Following the space shuttle Columbia accident that grounded the shuttle fleet, the crew returned on the Soyuz TMA-1 spacecraft after five and a half months, landing in Kazakhstan. On his next 16-day mission, STS-126, Pettit helped expand the living quarters of the space station and installed a regenerative life support system to reclaim potable water from urine. During Expedition 30/31, Pettit also captured the first commercial cargo spacecraft, the SpaceX Dragon, using the robotic arm.
      A native from Silverton, Oregon, Pettit holds a bachelor’s degree in chemical engineering from Oregon State University, Corvallis, and a doctorate in chemical engineering from the University of Arizona, Tucson. Prior to his career with NASA, Pettit worked as a staff scientist at the Los Alamos National Laboratory in New Mexico.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Julian Coltre / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      View the full article
    • By NASA
      NASA and the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission team have won the National Aeronautic Association’s (NAA) Robert J. Collier Trophy. NAA awards the trophy annually for what it determines is “the greatest achievement in aerospace and astronautics in America.” The OSIRIS-REx team will be celebrated at an award dinner on June 13, 2024, in Washington, D.C. 
      The NAA bestowed the Robert J. Collier Trophy on the team behind NASA’s OSIRIS-REx, acknowledging the mission’s place in aerospace history by being the first U.S. mission to collect a sample from an asteroid and deliver it to Earth for study.
      A top-down view of the OSIRIS-REx Touch-and-Go-Sample-Acquisition-Mechanism (TAGSAM) head with the lid removed, revealing the remainder of the asteroid sample inside. Erika Blumenfeld, creative lead for the Advanced Imaging and Visualization of Astromaterials (AIVA) and Joe Aebersold, project management lead, captured this picture using manual high-resolution precision photography and a semi-automated focus stacking procedure. The result is an image that can be zoomed in on to show extreme detail of the sample. The remaining sample material includes dust and rocks up to about .4 in (one cm) in size.NASA/Erika Blumenfeld & Joseph Aebersold “Congratulations to the OSIRIS-REx team on this well-deserved honor,” said NASA Administrator Bill Nelson. “By successfully designing, building, and carrying out the first U.S. mission to collect an asteroid sample, NASA proved once again that we do big things. Things that inspire the world. We look forward to the incredible science to come that will tell us more about our solar system and help protect humanity here on Earth.”
      Established more than a century ago, the award has marked major achievements in the timeline of flight, including Orville Wright in 1913 for developing the automatic stabilizer; Air Force test pilot Chuck Yeager for his sound-barrier-breaking 1947 flight of the X-1 rocket plane; the crews of NASA’s Apollo 8, 11, and 15 for their missions to the Moon in the late 1960s and early ’70s; and NASA’s Ingenuity Mars Helicopter.
      The OSIRIS-REx team includes NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin in Littleton, Colorado; University of Arizona, Tucson; and KinetX in Tempe, Arizona.
      The sample from the ancient asteroid Bennu that OSIRIS-REx delivered to Earth in September 2023 will give researchers worldwide a glimpse into the earliest days of our solar system, offering insights into planet formation and the origin of organics essential for life on Earth. Data collected by the spacecraft combined with future analysis of the Bennu sample will also aid our understanding of asteroids that could impact Earth.
      The Collier Trophy adds to the recent Robert H. Goddard Memorial Trophy received by NASA’s OSIRIS-REx team in March 2024.
      Following its successful sample return, the OSIRIS-REx spacecraft was renamed OSIRIS-APEX and will now enter an extended mission to visit and study near-Earth asteroid Apophis in 2029.
      NASA Goddard provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. Processing and curation for OSIRIS-REx’s Bennu sample takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (the Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (the Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate at NASA Headquarters in Washington.
      Find more information about NASA’s OSIRIS-REx mission at:
      https://science.nasa.gov/mission/osiris-rex
      Rob Gutro
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Robert.j.gutro@nasa.gov 
      Karen Fox / Charles Blue
      Headquarters, Washington
      202-358-1257 / 202-802-5345 
      Share
      Details
      Last Updated Mar 26, 2024 Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Goddard Space Flight Center Johnson Space Center View the full article
    • By NASA
      5 min read
      NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
      NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024, to study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet.
      The Atmospheric Perturbations around Eclipse Path (APEP) sounding rockets will launch from NASA’s Wallops Flight Facility in Virginia to study the disturbances in the ionosphere created when the Moon eclipses the Sun. The sounding rockets had been previously launched and successfully recovered from White Sands Test Facility in New Mexico, during the October 2023 annular solar eclipse. They have been refurbished with new instrumentation and will be relaunched in April 2024. The mission is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Florida, where he directs the Space and Atmospheric Instrumentation Lab.
      This photo shows the three APEP sounding rockets and the support team after successful assembly. The team lead, Aroh Barjatya, is at the top center, standing next to the guardrails on the second floor. NASA/Berit Bland The sounding rockets will launch at three different times: 45 minutes before, during, and 45 minutes after the peak local eclipse. These intervals are important to collect data on how the Sun’s sudden disappearance affects the ionosphere, creating disturbances that have the potential to interfere with our communications.
      This conceptual animation is an example of what observers might expect to see during a total solar eclipse, like the one happening over the United States on April 8, 2024. NASA’s Scientific Visualization Studio. The ionosphere is a region of Earth’s atmosphere that is between 55 to 310 miles (90 to 500 kilometers) above the ground. “It’s an electrified region that reflects and refracts radio signals, and also impacts satellite communications as the signals pass through,” said Barjatya. “Understanding the ionosphere and developing models to help us predict disturbances is crucial to making sure our increasingly communication-dependent world operates smoothly.”
      The ionosphere forms the boundary between Earth’s lower atmosphere – where we live and breathe – and the vacuum of space. It is made up of a sea of particles that become ionized, or electrically charged, from the Sun’s energy, or solar radiation. When night falls, the ionosphere thins out as previously ionized particles relax and recombine back into neutral particles. However, Earth’s terrestrial weather and space weather can impact these particles, making it a dynamic region and difficult to know what the ionosphere will be like at a given time. 
      An animation depicts changes in the ionosphere over a 24-hour period. The red and yellow swaths represent high-density ionized particles during the day. The purple dots represent neutral, relaxed particles at night. NASA/Krystofer Kim It’s often difficult to study short-term changes in the ionosphere during an eclipse with satellites because they may not be at the right place or time to cross the eclipse path. Since the exact date and times of the total solar eclipse are known, NASA can launch targeted sounding rockets to study the effects of the eclipse at the right time and at all altitudes of the ionosphere.
      As the eclipse shadow races through the atmosphere, it creates a rapid, localized sunset that triggers large-scale atmospheric waves and small-scale disturbances, or perturbations. These perturbations affect different radio communication frequencies. Gathering the data on these perturbations will help scientists validate and improve current models that help predict potential disturbances to our communications, especially high frequency communication. 
      The animation depicts the waves created by ionized particles during the 2017 total solar eclipse. MIT Haystack Observatory/Shun-rong Zhang. Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017). Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 44(24), 12,067-12,073. https://doi.org/10.1002/2017GL076054. The APEP rockets are expected to reach a maximum altitude of 260 miles (420 kilometers). Each rocket will measure charged and neutral particle density and surrounding electric and magnetic fields. “Each rocket will eject four secondary instruments the size of a two-liter soda bottle that also measure the same data points, so it’s similar to results from fifteen rockets, while only launching three,” explained Barjatya. Three secondary instruments on each rocket were built by Embry-Riddle, and the fourth one was built at Dartmouth College in New Hampshire.
      In addition to the rockets, several teams across the U.S. will also be taking measurements of the ionosphere by various means. A team of students from Embry-Riddle will deploy a series of high-altitude balloons. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Massachusetts, and the Air Force Research Laboratory in New Mexico, will operate a variety of ground-based radars taking measurements. Using this data, a team of scientists from Embry-Riddle and Johns Hopkins University Applied Physics Laboratory are refining existing models. Together, these various investigations will help provide the puzzle pieces needed to see the bigger picture of ionospheric dynamics.
      A sounding rocket is able to carry science instruments between 30 and 300 miles above Earth’s surface. These altitudes are typically too high for science balloons and too low for satellites to access safely, making sounding rockets the only platforms that can carry out direct measurements in these regions. NASA’s Goddard Space Flight Center When the APEP sounding rockets launched during the 2023 annular solar eclipse, scientists saw a sharp reduction in the density of charged particles as the annular eclipse shadow passed over the atmosphere. “We saw the perturbations capable of affecting radio communications in the second and third rockets, but not during the first rocket that was before peak local eclipse” said Barjatya. “We are super excited to relaunch them during the total eclipse, to see if the perturbations start at the same altitude and if their magnitude and scale remain the same.”
      The next total solar eclipse over the contiguous U.S. is not until 2044, so these experiments are a rare opportunity for scientists to collect crucial data.
      The APEP launches will be live streamed via NASA’s Wallops’ official YouTube page and featured in NASA’s official broadcast of the total solar eclipse. The public can also watch the launches in person from 1-4 p.m. at the NASA Wallops Flight Facility Visitor Center.
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 25, 2024 Related Terms
      2024 Solar Eclipse Eclipses Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Ionosphere Science & Research Science Mission Directorate Skywatching Solar Eclipses Sounding Rockets Program Wallops Flight Facility Explore More
      3 min read Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow


      Article


      6 hours ago
      3 min read International Space Station welcomes biological and physical science experiments


      Article


      3 days ago
      2 min read Hubble Spots the Spider Galaxy


      Article


      3 days ago
      Keep Exploring Discover Related Topics
      2024 Total Eclipse



      Safety



      2024 Total Solar Eclipse Broadcast



      Eclipse 2024 Science


      View the full article
    • By NASA
      5 Min Read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      On Feb. 20, 2024, Antarctic sea ice officially reached its minimum extent for the year. This cycle of growth and melting occurs every year, with the ice reaching its smallest size during the Southern Hemisphere's summer. Credits: NASA's Scientific Visualization Studio/Trent L. Schindler Sea ice at both the top and bottom of the planet continued its decline in 2024. In the waters around Antarctica, ice coverage shrank to near-historic lows for the third year in a row. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change, according to scientists at NASA and the National Snow and Ice Data Center. Meanwhile, the 46-year trend of shrinking and thinning ice in the Arctic Ocean shows no sign of reversing.
      “Sea ice acts like a buffer between the ocean and the atmosphere,” said ice scientist Linette Boisvert of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Sea ice prevents much of the exchange of heat and moisture from the relatively warm ocean to the atmosphere above it.”
      Less ice coverage allows the ocean to warm the atmosphere over the poles, leading to more ice melting in a vicious cycle of rising temperatures.
      Historically, the area of sea ice surrounding the Antarctic continent has fluctuated dramatically from year to year while averages over decades have been relatively stable. In recent years, though, sea ice cover around Antarctica has plummeted.
      On Feb. 20, 2024, Antarctic sea ice officially reached its minimum extent for the year. This cycle of growth and melting occurs every year, with the ice reaching its smallest size during the Southern Hemisphere’s summer. According to the National Snow and Ice Data Center, this marks the second-lowest sea ice extent recorded by satellites, reflecting a trend of declining coverage over time.
      Credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio
      Download this video in HD formats from https://svs.gsfc.nasa.gov/14538.
      “In 2016, we saw what some people are calling a regime shift,” said sea ice scientist Walt Meier of the National Snow and Ice Data Center at the University of Colorado, Boulder. “The Antarctic sea ice coverage dropped and has largely remained lower than normal. Over the past seven years, we’ve had three record lows.”
      This year, Antarctic sea ice reached its lowest annual extent on Feb. 20 with a total of 768,000 square miles (1.99 million square kilometers). That’s 30% below the 1981 to 2010 end-of-summer average. The difference in ice cover spans an area about the size of Texas. Sea ice extent is defined as the total area of the ocean in which the ice cover fraction is at least 15%.
      This year’s minimum is tied with February 2022 for the second lowest ice coverage around the Antarctic and close to the 2023 all-time low of 691,000 square miles (1.79 million square kilometers). With the latest ice retreat, this year marks the lowest three-year average for ice coverage observed around the Antarctic continent across more than four decades.
      The changes were observed in data collected with microwave sensors aboard the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA), along with satellites in the Defense Meteorological Satellite Program.
      NASA’s Earth Observatory: Antarctic Sea Ice at Near-Historic Lows Meanwhile, at the other end of the planet, the maximum winter ice coverage in the Arctic Ocean is consistent with an ongoing 46-year decline. Satellite images reveal that the total area of the Arctic Ocean covered in sea ice reached 6 million square miles (15.65 million square kilometers) on March 14. That’s 247,000 square miles (640,000 square kilometers) less ice than the average between 1981 and 2010. Overall, the maximum winter ice coverage in the Arctic has shrunk by an area equivalent to the size of Alaska since 1979.
      This year’s Arctic ice maximum is the 14th lowest on record. Complex weather patterns make it difficult to predict what will happen in any given year.
      The Arctic Ocean sea ice reached its annual maximum on March 14, continuing the long-term decline in ice at the poles.Chart by Lauren Dauphin/NASA Earth Observatory, using data from the National Snow and Ice Data Center. Shrinking ice makes Earth more susceptible to solar heating. “The sea ice and the snow on top of it are very reflective,” Boisvert said. “In the summer, if we have more sea ice, it reflects the Sun’s radiation and helps keep the planet cooler.”
      On the other hand, the exposed ocean is darker and readily absorbs solar radiation, capturing and retaining that energy and ultimately contributing to warming in the planet’s oceans and atmosphere. 
      Sea ice around the poles is more susceptible to the weather than it was a dozen years ago. Ice thickness measurements collected with laser altimeters aboard NASA’s ICESat-2 satellite show that less ice has managed to stick around through the warmer months. This means new ice must form from scratch each year, rather than building on old ice to make thicker layers. Thinner ice, in turn, is more prone to melting than multi-year accumulations.
      “The thought is that in a couple of decades, we’re going to have these essentially ice-free summers,” Boisvert said, with ice coverage reduced below 400,000 square miles (1 million square kilometers) and most of the Arctic Ocean exposed to the Sun’s warming glare.
      It’s too soon to know whether recent sea ice lows at the South Pole point to a long-term change rather than a statistical fluctuation, but Meier believes long term declines are inevitable.
      “It’s only a matter of time,” he said. “After six, seven, eight years, it’s starting to look like maybe it’s happening. It’s just a question of whether there’s enough data to say for sure.”
      Reference: NSIDC Sea Ice Index Daily and Monthly Image Viewer By James Riordon
      NASA’s Earth Science News Team

      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Mar 25, 2024 EditorGoddard Digital TeamLocationGoddard Space Flight Center Related Terms
      Earth Climate Change Goddard Space Flight Center Ice & Glaciers Sea Ice Explore More
      5 min read Arctic Sea Ice 6th Lowest on Record; Antarctic Sees Record Low Growth
      Arctic sea ice likely reached its annual minimum extent on September 19, 2023, making it…
      Article 6 months ago 3 min read NASA Finds 2022 Arctic Winter Sea Ice 10th-Lowest on Record
      Article 2 years ago 5 min read Meet NASA’s Twin Spacecraft Headed to the Ends of the Earth
      Article 1 month ago View the full article
  • Check out these Videos

×
×
  • Create New...