Jump to content

Rising Earth


Recommended Posts

Rising_Earth_card_full.jpg Image:

NASA’s Orion spacecraft, powered by ESA’s European Service Module, shares a stunning new take on ‘Earth rise’ following the return powered flyby of the Moon.  

This image was taken on 5 December, flight day 20, after the spacecraft completed a 3 minute 27 second burn to swing around the Moon and back to Earth.  

Just before the burn, Orion made its second and final close approach to the Moon at 17:43 CET (16:43 GMT), passing 130 km above the lunar surface.  

The burn, which used the European Service Module’s main engine, changed the velocity of the spacecraft by about 1054 km/h. It was the final major engine burn of the Artemis I mission.  

Orion is due to splashdown in the Pacific Ocean on 11 December to complete the 25-day Artemis I mission.  

“Orion is heading home!” said NASA administrator Bill Nelson. “The lunar flyby enabled the spacecraft to harness the Moon’s gravity and slingshot it back toward Earth for splashdown. Next up, reentry!” 

Sadly, but necessarily, the European Service Module’s contribution to Artemis ends 40 minutes before splashdown. Together with the Crew Module Adapter these elements of the Orion spacecraft will detach from the Crew Module and burn up harmlessly in the atmosphere, leaving Orion on its own for the last crucial minutes to splashdown. 

Find Artemis I mission updates and flight day logs on ESA’s Orion blog.  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Bill Ingalls NASA Administrator Bill Nelson and Kirk Johnson, Sant Director of the Smithsonian’s National Museum of Natural History in Washington, preview the agency’s new Earth Information Center exhibit on Monday, Oct. 8, 2024. This new exhibit is the Earth Information Center’s second physical location.
      The exhibit at the Smithsonian includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8, and will remain on display through 2028.
      Image Credit: NASA/Bill Ingalls
      View the full article
    • By NASA
      NASA Administrator Bill Nelson, left, and Kirk Johnson, Sant director, the Smithsonian’s National Museum of Natural History, preview NASA’s new Earth Information Center at the museum in Washington on Oct. 7, 2024. The exhibit includes a video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson joined the director of the Smithsonian’s National Museum of Natural History in Washington and agency leadership to unveil the new Earth Information Center exhibit during an early preview on Monday.
      “NASA has studied Earth and our changing climate for more than 60 years. The Earth Information Center at the Smithsonian Museum of Natural History will expand access to NASA’s data and our decades of Earth observation to even more people,” said Nelson. “Together with the Smithsonian, we are providing detailed, usable, and scalable information to enable the public to better understand the climate crisis and take action in their community.”
      The exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8. 
      “The new Earth Information Center at the National Museum of Natural History will bring Smithsonian and NASA data on the Earth’s environment and climate to thousands of museum visitors every year,” said Kirk Johnson, the museum’s Sant director. “It is an honor to partner with NASA to bring this dynamic view of Earth to museumgoers and connect people more deeply with their home planet.”
      Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences. The exhibit will remain on display through 2028.
      “The Earth Information Center allows people to see our planet as we at NASA see it – an awe-inspiring and complex system of oceans, land, ice, atmosphere, and the life they support,” said Karen St. Germain, division director, Earth Sciences Division at NASA Headquarters in Washington. “We are thrilled that this collaboration puts NASA’s Earth science at the fingertips of Smithsonian visitors for the benefit of all.”
      With more than two dozen missions in orbit, NASA observes our planet’s oceans, land, ice, and atmosphere, and measure how a change in one drives change in others. NASA develops new ways to build long-term data records of how our planet evolves. The agency freely shares this unique knowledge and works with institutions around the world.
      As part of NASA’s ongoing mission to better understand our home planet, NASA created the Earth Information Center which draws insights from across all NASA centers and its federal partners – the National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to those changes.
      NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible Earth information, enabling global understanding of our changing planet.
      The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW.
      To learn more about the Earth Information Center, visit:
      https://earth.gov
      -end-
      Meira Bernstein / Elizabeth Vlock
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.vlock@nasa.gov
      Share
      Details
      Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Earth Climate Change View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image captures the intricate blend of natural, rural and urban landscapes around Kunshan, a city in eastern China. View the full article
    • By NASA
      4 min read
      NASA’s Instruments Capture Sharpest Image of Earth’s Radiation Belt
      From Aug. 19-20, ESA’s (European Space Agency’s) Juice (Jupiter Icy Moons Explorer) mission made history with a daring lunar-Earth flyby and double gravity assist maneuver, a spaceflight first. As the spacecraft zipped past our Moon and home planet, Juice’s instruments came online for a dry run of what they’ll do when they reach Jupiter. During that time, two of NASA’s onboard instruments added another first to the list: capturing the sharpest-ever image of Earth’s radiation belts – swaths of charged particles trapped in Earth’s magnetic shield, or magnetosphere. 
      The Jovian Energetic Neutrals and Ions (JENI) instrument, built and managed by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, on behalf of NASA, took the image as Juice soared away from Earth. What it captured is invisible to the human eye. Unlike traditional cameras that rely on light, JENI uses special sensors to capture energetic neutral atoms emitted by charged particles interacting with the extended atmospheric hydrogen gas surrounding Earth. The JENI instrument is the newest generation of this type of camera, building on the success of a similar instrument on NASA’s Cassini mission that revealed the magnetospheres of Saturn and Jupiter.
      An illustration showing the trajectory of ESA’s Juice spacecraft during its lunar-Earth gravity assist, featuring a high-resolution ENA image of the million-degree hot plasma halo encircling Earth captured by NASA’s JENI instrument. The white rings denote equatorial distance of 4 and 6 Earth radii. The inset showcases measurements taken by the NASA’s JENI and JoEE instruments during their passage through the radiation belts, revealing a highly structured energetic ion and electron environment. Credit: ESA/NASA/Johns Hopkins APL/Josh Diaz “As soon as we saw the crisp, new images, high fives went around the room,” said Matina Gkioulidou, deputy lead of JENI at APL. “It was clear we had captured the vast ring of hot plasma encircling Earth in unprecedented detail, an achievement that has sparked excitement for what is to come at Jupiter.”
      On Aug. 19, JENI and its companion particle instrument Jovian Energetic Electrons (JoEE) made the most of their brief 30-minute encounter with the Moon. As Juice zoomed just 465 miles (750 kilometers) above the lunar surface, the instruments gathered data on the space environment’s interaction with our nearest celestial companion. It’s an interaction scientists expect to see magnified at Jupiter’s moons, as the gas giant’s radiation-rich magnetosphere barrels over them. 
      On Aug. 20, Juice hurled into Earth’s magnetosphere, passing some 37,000 miles (60,000 km) above the Pacific Ocean, where the instruments got their first taste of the harsh environment that awaits at Jupiter. Racing through the magnetotail, JoEE and JENI encountered the dense, lower-energy plasma characteristic of this region before plunging into the heart of the radiation belts. There, the instruments measured the million-degree plasma encircling Earth to investigate the secrets of plasma heating that are known to fuel dramatic phenomena in planetary magnetospheres. 
      “I couldn’t have hoped for a better flyby,” said Pontus Brandt, principal investigator of JoEE and JENI at APL. “The richness of the data from our deep-dive through the magnetosphere is astounding. JENI’s image of the entire system we just flew through was the cherry on top. It’s a powerful combination we will exploit in the Jovian system.”
      Now after using the Moon’s and Earth’s gravity, Juice’s trajectory has been successfully adjusted for a future encounter with Venus in August 2025. That Venus flyby will serve as a gravitational slingshot, propelling Juice back toward Earth and priming it for two additional flybys in September 2026 and January 2029. Only then will the spacecraft, now boosted into high gear, make its grand arrival at Jupiter in July 2031.
      The Johns Hopkins Applied Physics Laboratory, in Laurel, Maryland, manages the JoEE and JENI instruments, which together make up the Particle Environment Package (PEP-Hi) instrument suite, for NASA on ESA’s Juice mission. The JoEE and JENI instruments are part of the Solar System Exploration Program, managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington. 
      For more information on NASA’s involvement with ESA’s Juice mission, visit:
      https://science.nasa.gov/mission/juice/
      Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Planetary Science



      Jupiter



      Asteroids



      Solar System


      View the full article
    • By NASA
      3 Min Read October’s Night Sky Notes: Catch Andromeda Rising!
      Hot stars burn brightly in this new image from NASA’s Galaxy Evolution Explorer, showing the ultraviolet side of a familiar face. At approximately 2.5 million light-years away, the Andromeda galaxy, or M31, is our Milky Way’s largest galactic neighbor. Credits:
      NASA If you’re thinking of a galaxy, the image in your head is probably the Andromeda Galaxy! Studies of this massive neighboring galaxy, also called M31, have played an incredibly important role in shaping modern astronomy. As a bonus for stargazers, the Andromeda Galaxy is also a beautiful sight.
      Spot the Andromeda Galaxy! M31’s more common name comes from its parent constellation, which becomes prominent as autumn arrives in the Northern Hemisphere. Surprising amounts of detail can be observed with unaided eyes when seen from dark sky sites. Hints of it can even be made out from light polluted areas. Use the Great Square of Pegasus or the Cassiopeia constellation as guides to find it. Credit: Stellarium Web Have you heard that all the stars you see at night are part of our Milky Way galaxy? While that is mostly true, one star-like object located near the border between the constellations of Andromeda and Cassiopeia appears fuzzy to unaided eyes. That’s because it’s not a star, but the Andromeda Galaxy, its trillion stars appearing to our eyes as a 3.4 magnitude patch of haze. Why so dim? Distance! It’s outside our galaxy, around 2.5 million light years distant – so far away that the light you see left M31’s stars when our earliest ancestors figured out stone tools. Binoculars show more detail: M31’s bright core stands out, along with a bit of its wispy, saucer-shaped disc. Telescopes bring out greater detail but often can’t view the entire galaxy at once. Depending on the quality of your skies and your magnification, you may be able to make out individual globular clusters, structure, and at least two of its orbiting dwarf galaxies: M110 and M32. Light pollution and thin clouds, smoke, or haze will severely hamper observing fainter detail, as they will for any “faint fuzzy.” Surprisingly, persistent stargazers can still spot M31’s core from areas of moderate light pollution as long as skies are otherwise clear.
      Generated version of the Andromeda Galaxy and its companion galaxies M32 and M110. Stellarium Web Modern astronomy was greatly shaped by studies of the Andromeda Galaxy. A hundred years ago, the idea that there were other galaxies beside our own was not widely accepted, and so M31 was called the “Andromeda Nebula.” Increasingly detailed observations of M31 caused astronomers to question its place in our universe – was M31 its own “island universe,” and not part of our Milky Way? Harlow Shapley and Heber Curtis engaged in the “Great Debate” of 1920 over its nature. Curtis argued forcefully from his observations of dimmer than expected nova, dust lanes, and other oddities that the “nebula” was in fact an entirely different galaxy from our own. A few years later, Edwin Hubble, building on Henrietta Leavitt’s work on Cepheid variable stars as a “standard candle” for distance measurement, concluded that M31 was indeed another galaxy after he observed Cepheids in photos of Andromeda, and estimated M31’s distance as far outside our galaxy’s boundaries. And so, the Andromeda Nebula became known as the Andromeda Galaxy.
      This illustration shows the location of the 43 quasars scientists used to probe Andromeda’s gaseous halo. These quasars—the very distant, brilliant cores of active galaxies powered by black holes—are scattered far behind the halo, allowing scientists to probe multiple regions. Looking through the immense halo at the quasars’ light, the team observed how this light is absorbed by the halo and how that absorption changes in different regions. By tracing the absorption of light coming from the background quasars, scientists are able to probe the halo’s material. NASA, ESA, and E. Wheatley (STScI) These discoveries inspire astronomers to this day, who continue to observe M31 and many other galaxies for hints about the nature of our universe. One of the Hubble Space Telescope’s longest-running observing campaigns was a study of M31: the Panchromatic Hubble Andromeda Treasury (PHAT). Dig into NASA’s latest discoveries about the Andromeda Galaxy, on their Messier 31 page.
      Originally posted by Dave Prosper: September 2021
      Last Updated by Kat Troche: September 2024
      View the full article
  • Check out these Videos

×
×
  • Create New...