Jump to content

Building lasting partnerships with ally Australia

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A portrait of Dorothy Vaughan, a mathematician, computer programmer, and NASA’s first Black manager.Credit: NASA NASA’s Johnson Space Center in Houston will recognize legendary human computer Dorothy Vaughan and the women of Apollo with activities marking their achievements, including a renaming and ribbon-cutting ceremony at the center’s “Building 12,” on Friday, July 19, the eve of the 55th anniversary of the Apollo 11 Moon landing.
      At 9 a.m. CDT, NASA Johnson Director Vanessa Wyche will begin with a discussion about the importance of Vaughan and the women of Apollo’s contributions to the agency’s lunar landing program and their significance to today’s Artemis campaign. Other highlights include a poetry reading, a recital by Texas Southern University’s Dr. Thomas F. Freeman Debate Team, and a “Women in Human Spaceflight” panel discussion.
      The panel in NASA Johnson’s Teague Auditorium will be moderated by Debbie Korth, the agency’s Orion Program deputy manager, and include:
      Christina Koch, NASA astronaut Sandy Johnson, Barrios Technology CEO Lara Kearney, NASA Extravehicular Activity and Human Surface Mobility Program manager Andrea Mosie, NASA Lunar Materials Repository Laboratory manager and senior sample processor Dr. Shirley Price, former NASA Equal Opportunity specialist Following the program, the ribbon-cutting ceremony will begin at Building 12, which will thereafter be named the “Dorothy Vaughan Center in Honor of the Women of Apollo.” The dedication is a tribute to the people who made humanity’s first steps on the Moon possible.
      All interested media must request credentials by 12 p.m. Thursday, July 18, by email at jsccommu@mail.nasa.gov or by calling the Johnson newsroom at 281-483-5111. Media should arrive onsite for setup by 8:15 a.m. July 19, at the Teague Auditorium in Building 2 South. U.S. media are invited to attend and will have an opportunity to ask questions during the panel discussion and may request brief interviews with available NASA officials following the ribbon cutting.
      Distinguished guests are expected to include local elected officials, NASA senior leadership, members of NASA’s Alumni League, and the families of Dorothy Vaughan and the women of Apollo.
      “On behalf of NASA’s Johnson Space Center, we are proud to host this historic event as the agency honors the significant contributions women have made to the space industry, particularly trailblazers who persevered against many challenges of their era,” Wyche said. “As we prepare to return to the Moon for long-term science and exploration, NASA’s Artemis missions will land the first woman and first person of color on the Moon. It’s a privilege to dedicate Johnson’s Building 12 to the innovative women who laid the foundation to our nation’s space program.”
      Vaughan’s personal commitment and determination during the Apollo missions advanced the agency’s current diverse workforce and leadership – particularly at Johnson — as human computers transitioned from Langley Research Center in Virginia to Houston, supporting Mission Control from Building 12. She was a steadfast advocate for the women who worked as human computers, and for all the individuals under her leadership.
      Learn about the life and legacy of Dorothy Vaughan here:
      Tiernan Doyle
      Headquarters, Washington
      Laura Rochon
      Johnson Space Center, Houston
      Last Updated Jul 15, 2024 LocationNASA Headquarters Related Terms
      Johnson Space Center Apollo Langley Research Center Women at NASA View the full article
    • By NASA
      Buzzing with bees, baby birds, and wildflowers, the rooftop garden atop building 12 at Johnson Space Center in Houston reflects NASA’s commitment to environmental stewardship. Originally constructed in 1963, the facility was transformed in 2012, incorporating energy-efficient features that earned it LEED Gold certification. The certification is a globally recognized symbol of sustainability achievement and leadership. Today, the building serves as a testament to NASA’s commitment to ecological innovation.  

      Nestled between the Mission Control Center and building 16, this hidden gem is part of a series of pioneering efforts at Johnson to demonstrate how even the most unexpected locations can become vibrant ecosystems. 
      Aerial views of Johnson Space Center’s rooftop garden. NASA/Bill Stafford Initiated by Joel Walker, director of Center Operations, and designed alongside NASA engineers, the rooftop garden exemplifies green architecture with integrated solar panels, an underfloor air distribution system, and wind turbines.  

      “It was something of an experiment to see what worked well and what we might use in future projects,” said Walker. 
      Native Texas Bluebonnet atop building 12 at NASA’s Johnson Space Center in Houston. The Center Operations team leads sustainability efforts at Johnson, working across multiple directorates and teams. Together, they manage Johnson’s 1,600 acres, which host a diverse array of plants and wildlife.

      Building 12’s green roof provides benefits such as reduced potable water and energy usage, better stormwater management, protection from UV rays, and increased stability in high winds. This unique space provides an ideal environment for nesting birds and visiting pollinators and boasts a projected lifespan of 50 years, significantly longer than the 20 to 25 years typical of a conventional roof.  

      “I was genuinely surprised by the variety of native species thriving in our rooftop garden,” said Johnson’s wildlife biologist Strausser. “We’ve observed far more species than we ever anticipated, which is both fascinating and encouraging for our conservation efforts.” 
      Johnson team members meet on the building 12 rooftop to assess and monitor the plants. Initially, the project started with non-native ornamental plants that failed in the harsh Houston climate. Replanting the garden yielded mixed results until the team hand-scattered a blend of native grass seed and wildflowers. This method proved to be a successful, at a fraction of the cost estimated for professional planting. 

      “Sometimes the easiest way is the best!” said Walker. “It looks great now and is much more durable too.” 
      View the full article
    • By NASA
      From the left, NASA Kennedy Space Center’s, Maui Dalton, project manager, engineering; Katherine Zeringue, cultural resources manager; Janet Petro, NASA Kennedy Space Center director; and Ismael Otero, project manager, engineering, unveil a large bronze historical marker plaque at the location of NASA Kennedy’s original headquarters building on Tuesday, May 28, 2024. Approved in April 2023 as part of the State of Florida’s Historical Markers program in celebration of National Historic Preservation Month, the marker commemorates the early days of space exploration and is displayed permanently just west of the seven-story, 200,000 square foot Central Campus Headquarters Building, which replaced the old building in 2019.Photo credit:: NASA/Mike Chambers Current and former employees of NASA’s Kennedy Space Center in Florida gathered recently to celebrate the installation of a Florida Historical Marker cast in bronze at the location of the spaceport’s old headquarters building.
      The first of its kind inside the center’s secure area, the marker is the latest example of the center’s commitment to remembering its rich history as it continues to launch humanity’s future.
      At the forefront of NASA Kennedy’s commitment to preservation is Katherine Zeringue, who serves as cultural resources manager, overseeing the center’s historic resources from buildings to historic districts to archaeological sites.
      “Traditional approaches attempt to preserve things to a specific time period, including historic materials,” Zeringue said. “But that’s a challenge here because we still actively use our historic assets, which need to be modified to accommodate new missions and new spacecraft. Therefore, we rely on an adaptive reuse approach, in which the active use of a historic property helps to ensure its preservation.”
      Many iconic structures are still in service at NASA Kennedy, like the Beach House where Apollo astronauts congregated with their families, the Vehicle Assembly Building where NASA rockets are still stacked, the Launch Control Center, and Launch Complex 39A. All told, 83 buildings, seven historic districts, and one National Historic Landmark are either listed or are eligible for listing on the National Register of Historic Places.
      To conserve these resources, the spaceport follows a variety of federal laws, regulations, and executive orders, including the National Historic Preservation Act of 1966. This includes making a reasonable and good faith effort to identify any historic properties under its care and considering how its decisions affect historic properties.
      “The Cultural Resources Management Program aims to balance historic preservation considerations with the agency’s mission and mandate to ensure reliable access to space for government and commercial payloads,” Zeringue said. “Finding that proper balance is challenging in the dynamic environment of our spaceport.”
      Perhaps no other location embodies the center’s commitment to the past and the future more than Launch Complex 39A. Created in 1965, the launch complex was initially designed to support the Saturn V rocket, which powered the agency’s Apollo Program as it made numerous trips to the Moon. Outside of launching Skylab in 1973, the pad stood unused following Apollo’s end in 1972 until the agency’s Space Shuttle Program debuted in 1981. The transition from Apollo to space shuttle saw Launch Complex 39A transform from support of a single-use rocket to supporting the nation’s first reusable space launch and landing system.
      By the time the program ended in 2011, 135 space shuttle launches had taken place within Kennedy’s boundary, 82 of which were at Launch Complex 39A. Many of those were among the program’s most notable, including the flights of astronauts Sally Ride, NASA’s first woman in space, and Guion Bluford, NASA’s first Black astronaut in space, as well as the first flight to the newly created International Space Station in 1998.
      The launch complex began another transformation in 2014 when NASA signed a 20-year lease agreement with SpaceX as part of Kennedy’s transformation into a multi-user spaceport. SpaceX reconfigured Launch Complex 39A to support its Falcon 9 and Falcon Heavy rockets, which today launch robotic science missions and other government and commercial payloads, as well as crew and cargo to the space station. Apollo-era infrastructure is incorporated in the SpaceX Crew Launch Tower.
      “Launch Complex 39A exemplifies the balance between historic preservation and supporting the mission,” Zeringue noted. “Each chapter of the space program brings change, and those changes become additional chapters in the center’s historical legacy as we continue to build the future in space exploration.”
      View the full article
    • By Space Force
      The Honorable Kristyn Jones, Assistant Secretary of the Air Force for Financial Management and Comptroller, traveled to Australia May 25 to June 4.
      View the full article
    • By NASA
      NASA and its partners are developing the foundational systems needed for long-term exploration at the Moon for the benefit of all with NASA’s Artemis campaign. Following the Artemis III mission that will land the first people near the Moon’s South Pole, astronauts on Artemis IV will live and work in humanity’s first lunar space station, Gateway, which will enable new opportunities for science and preparation for human missions to Mars. The mission will bring together an intricate choreography of multiple launches and spacecraft dockings in lunar orbit, and will feature the debut of NASA’s larger, more powerful version of its SLS (Space Launch System) rocket and new mobile launcher.
      Artemis Generation Science
      Artemis missions are accelerating scientific research on the surface of the Moon, and soon, in lunar orbit aboard Gateway. Built with international and commercial partnerships, Gateway will include docking ports for a variety of visiting spacecraft, space for crew to live, work, and prepare for lunar surface missions, and instruments for science investigations to study heliophysics, human health, and life sciences, among other areas.
      Artist’s concept of the full Gateway configuration.NASA Gateway’s oval-shaped orbit passes over both the North and South Pole areas of the Moon, and it provides unparalleled opportunities for science and access to the lunar surface. The orbit combines the benefits of surface access from low lunar orbit with the fuel efficiency of distant retrograde orbit, all while offering unique views of the Earth, Moon, Sun, and deep space for scientific study.
      Mission prelude
      Gateway is taking shape on the ground, and engineers will connect its first two modules — the Power and Propulsion Element (PPE) built by Maxar, and the Habitation and Logistics Outpost (HALO) built by Northrop Grumman — for launch aboard a SpaceX Falcon Heavy rocket. The elements will spend about a year traveling to lunar orbit, taking advantage of highly efficient solar-electric propulsion and the gravity of the Earth, Moon, and Sun to reach its destination. Multiple scientific instruments on and in HALO and PPE will provide scientific data on radiation during transit and while Gateway is in lunar orbit.

      Once in its orbit around the Moon, Gateway’s computers will run through a checklist of items to prepare for the arrival of a second habitation element with the Artemis IV crew — the International Habitation module, or I-Hab, provided by ESA (European Space Agency). I-Hab will expand where Gateway’s astronauts will live, work, conduct groundbreaking science, and prepare for their lunar surface missions. I-Hab also includes the critical life support systems provided by JAXA (Japanese Space Agency) to enable longer stays aboard Gateway.
      Prior to launching the crew and I-Hab with the SLS rocket, NASA and its partners will pre-position two additional spacecraft for the mission: SpaceX’s Starship Human Landing System that will carry the next-generation spacesuits for moonwalks, and the SpaceX Dragon XL logistics module carrying science experiments and other supplies for the mission. An upgraded Starship will support Artemis IV with expanded capabilities for long-term exploration and future missions, including docking with Gateway.
      Bigger boost for crew, Moon-bound module
      Artist’s concept of the Block 1B crew configuration of NASA’s Space Launch System (SLS) rocket during lift-off from a new mobile launcher for a night launch.NASA Four Artemis IV crew members will lift off from Launch Pad 39B at NASA’s Kennedy Space Center in Florida aboard the agency’s Orion spacecraft on NASA’s upgraded SLS rocket. The Block 1B version of the rocket is capable of hoisting 84,000 pounds to the Moon using a more powerful upper stage, and it also features an adapter with more than 10,000 cubic feet of space to send large cargos, such as I-Hab, to the Moon along with the crew. NASA’s new mobile launcher will accommodate the larger rocket, which will stand about 40 feet taller than current configurations, and additional weight of increased payload capacity.

      After the SLS rocket completes its initial launch and ascent, the core stage will separate from the upper stage, which will remain connected to Orion and I-Hab. After the upper stage performs a translunar injection burn to set Orion and I-Hab on their path to the Moon, Orion will act as a spacefaring tugboat, flipping itself 180 degrees to extract I-Hab from the adapter using Orion’s docking system, and transporting the module to Gateway where it will connect to the lunar station’s HALO module.
      The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission. Surface operations
      When Orion and I-Hab rendezvous with Gateway, Orion will maneuver I-Hab into position to dock with the HALO module. The astronauts will enter the world’s first lunar space station and fully activate its hardware and systems, and the crew also will check out the human landing system, unload supplies and science experiments from the logistics module, and prepare for their work at the Moon.

      After several days performing initial checkouts aboard Gateway and readying for the surface expedition, two crew members will enter Starship and undock to spend about six days on the lunar surface. The other pair stay at Gateway to continue setup, conduct research, and monitor surface activities.

      Like on Artemis III, the astronauts will conduct several moonwalks, donning advanced spacesuits and taking Starship’s elevator down to the surface to accomplish their exploratory to-do list. The crew will conduct field geology, deploy instruments, and collect samples that will help us understand the history of our solar system.
      Artist’s concept of SpaceX Starship human landing system.SpaceX Until next time (Artemis V)
      With surface expeditions complete, the two astronauts will board Starship, fly back to Gateway, and all four astronauts will prepare for the quarter-million-mile journey back to Earth aboard Orion. 

      Prior to departing Gateway, the crew will transfer scientific samples to Orion and prepare the outpost to hum along without human tenants. Then, after reaching the optimal departure point, Orion will undock, fire its engines, and harness the Moon’s gravity to slingshot home, where recovery teams will await the crew’s return in the Pacific Ocean.

      With Artemis, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface and establish long-term exploration for scientific discovery and to prepare for human missions to Mars. The agency’s SLS rocket, Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway are NASA’s foundation for deep space exploration. 
      Artemis IV Mission Map
      Artemis IV will be the first mission to the Gateway space station in lunar orbit, bringing together a complex choreography of multiple launches and spacecraft dockings in lunar orbit, and debuting NASA’s more powerful version of its SLS (Space Launch System) rocket and new mobile launcher.NASAView the full article
  • Check out these Videos

  • Create New...