Jump to content

NASA’s Artemis I Mission Return Trip Lunar Flyby


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. NASA and Boeing will host a news conference with mission leadership at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test aboard the International Space Station. NASA previously planned an audio-only media teleconference to host the discussion.
      The agency will provide live coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing United States-based media seeking to attend in person must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 9:30 a.m. EDT Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson or NASA’s Kennedy Space Center in Florida at ksc-newsroom@mail.nasa.gov by 10:30 a.m. the day of the event. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the briefing.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA/Goddard/Conceptual Image Lab NASA’s ICON mission studied the outermost layer of Earth’s atmosphere called the ionosphere. ICON provided critical insights into interplay between space weather and Earth’s weather. The mission gathered unprecedented detail of airglow, showed a relationship between the atmosphere’s ions and Earth’s magnetic field lines, and provided the first concrete observation to confirm Earth’s long-theorized ionospheric dynamo. Nearly a year after ICON accomplished its primary mission, communication was lost in November 2022 for unclear reasons. NASA formally concluded the mission after several months of troubleshooting could not regain contact. After contributing to many important findings on the boundary between Earth’s atmosphere and space, the Ionospheric Connection Explorer (ICON) mission has come to an end. ICON launched in October 2019 and after completing its two-year mission objectives in December 2021, it operated as an extended mission for another year.
      “The ICON mission has truly lived up to its name,” said Joseph Westlake, heliophysics division director at NASA Headquarters in Washington. “ICON not only successfully completed and exceeded its primary mission objectives, it also provided critical insights into the ionosphere and the interplay between space and terrestrial weather.”
      The ICON spacecraft studied a part of our planet’s outermost layer of the atmosphere, called the ionosphere. From there, ICON investigated what events impact the ionosphere, including Earth’s weather from below and space weather from above.
      The ionosphere is the lowest boundary of space, located between 55 miles to 360 miles above Earth’s surface. It is made up of a sea of particles that have been ionized, a mix of positively charged ions and negatively charged electrons called plasma. This frontier of space is a dynamic and busy region, home to many satellites — including the International Space Station — and is a conduit for radio communications and GPS signals.

      Video explaining the features of the ionosphere, Earth’s outmost layer of the atmosphere. It is home to the aurora, the International Space Station, a variety of satellites, and radio communication waves.
      NASA/Goddard/Conceptual Image Lab/Krystofer Kim Both satellites and signals can be disrupted by the complex interactions of terrestrial and space weather. Studying and understanding the ionosphere is crucial to understanding space weather and its effects on our technology.
      The ICON mission captured unprecedented data about the ionosphere with direct measurements of the charged gas in its immediate surroundings alongside images of one of the ionosphere’s most stunning features — airglow.
      ICON tracked the colorful bands as they moved through the ionosphere. Airglow is created by a process similar to what creates the aurora. However, airglow occurs around the world, not just the northern and southern latitudes where auroras are typically found. Although airglow is normally dim, ICON’s instruments were specially designed to capture even the faintest glow to build a picture of the ionosphere’s density, composition, and structure.
      The lowest reaches of space glow with bright bands of color called airglow. NASA Through the principle of Doppler shift, ICON’s sensitive imagers also detected the motion of the atmosphere as it glowed. “It’s like measuring a train’s speed by detecting the change in the pitch of its horn — but with light,” said Thomas J. Immel, ICON mission lead at the University of California, Berkeley. The mission was specifically designed to perform this technically difficult measurement.

      A New Ionospheric Perspective
      The ICON mission’s comprehensive view of the upper atmosphere provided valuable data for scientists to unravel for years to come. For instance, its measurements showed how the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption disrupted electrical currents in the ionosphere.
      “ICON was able to capture the speed of the volcanic eruption, allowing us to directly see how it affected the motion of charged particles in the ionosphere,” Immel said. “This was a clear example of the connection between tropical weather and ionospheric structure. ICON showed us how things that happen in terrestrial weather have a direct correlation with events in space.”
      Another scientific breakthrough was ICON’s measurements of the motion of ions in the atmosphere and their relationship with Earth’s magnetic field lines. “It was truly unique,” Immel remarked. “ICON’s measurements of the motion of ions in the atmosphere was scientifically transformational in our understanding of behavior in the ionosphere.”
      Visualization of ICON orbiting Earth and taking measurements of the wind speed (green arrows) and ion fluctuation and direction (red lines) at the geomagnetic field lines (purple lines). When the wind changes direction, the ion fluctuation changes to flow downward.NASA’s Scientific Visualization Studio/William T. Bridgman With ICON’s help, scientists better understand how these interactions drive a process called the ionospheric dynamo. The dynamo, which lies at the bottom of the ionosphere, remained a mystery for decades because it is difficult to observe.
      ICON provided the first concrete observation of winds fueling the dynamo and how this influences space weather. Unpredictable terrestrial winds move plasma around the ionosphere, sending the charged particles shooting out into space or plummeting toward Earth. This electrically charged tug-of-war between the ionosphere and Earth’s electromagnetic fields acts as a generator, creating complex electric and magnetic fields that can affect both technology and the ionosphere itself.
      “No one had ever seen this before,” Immel said. “ICON finally and conclusively provided experimental confirmation of the wind dynamo theory.”

      An Iconic Legacy
      On Nov. 25, 2022, the ICON team lost contact with the spacecraft. Communication with the spacecraft could not be established, even after performing a power cycle reset using a built-in command loss timer. Though the spacecraft remains intact, other troubleshooting techniques were unable to re-establish contact between the ICON spacecraft and mission operators.
      “ICON’s legacy will live on through the breakthrough knowledge it provided while it was active and the vast dataset from its observations that will continue to yield new science,” Westlake said. “ICON serves as a foundation for new missions to come.”
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Media Contact: Sarah Frazier
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 24, 2024 Related Terms
      Earth’s Atmosphere Earth’s Magnetic Field Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Ionosphere Missions Science Mission Directorate Space Weather The Sun Keep Exploring Discover More Topics From NASA
      Missions
      Sun
      Helio Big Year
      Earth
      Your home. Our Mission. And the one planet that NASA studies more than any other.
      View the full article
    • By NASA
      3 Min Read NASA Sponsors New Research on Orbital Debris, Lunar Sustainability
      From lunar orbit, astronauts pointed cameras out the window of their spacecraft to capture photos of the moon's surface. Credits: NASA As part of NASA’s commitment to foster responsible exploration of the universe for the benefit of humanity, the Office of Technology, Policy, and Strategy (OTPS) is funding space sustainability research proposals from five university-based teams to analyze critical economic, social, and policy issues related to Earth’s orbit and cislunar space.
      The new research awards reflect the agency’s commitment identified in NASA’s Space Sustainability Strategy to ensure safe, peaceful, and responsible space exploration for future generations, and encourage sustainable behaviors in cislunar space and on the lunar surface by ensuring that current operations do not impact those yet to come.
      Three of the five awards will fund research that addresses the growing problem of orbital debris, human-made objects in Earth’s orbit that no longer serve a purpose. This debris can endanger spacecraft, jeopardize access to space, and impede the development of a low-Earth orbit economy. 
      The remaining two awards focus on lunar surface sustainability and will address key policy questions such as the protection of valuable locations and human heritage sites as well as other technical, economic, or cultural considerations that may factor into mission planning. 
      “The sustainable use of space is critical to current and future space exploration,” said Ellen Gertsen, deputy associate administrator for the Office of Technology, Policy, and Strategy (OTPS) at NASA Headquarters in Washington. “Mitigating the risks of orbital debris and ensuring future generations can utilize the lunar surface are of paramount importance. These awards will fund research to help us understand the economics, the policy considerations, and the social elements of sustainability, generating new tools and evidence so we can make better-informed decisions.” 
      A panel of NASA experts selected the following proposals, awarding a total of about $550,000 to fund them: 
      Lunar surface sustainability 
      “A RAD Framework for the Moon: Applying Resist-Accept-Direct Decision-Making,” submitted by Dr. Caitlin Ahrens of the University of Maryland, College Park  “Synthesizing Frameworks of Sustainability for Futures on the Moon,” submitted by research scientist Afreen Siddiqi of Massachusetts Institute of Technology  Orbital Debris and Space Sustainability 
      “Integrated Economic-Debris Modeling of Active Debris Removal to Inform Space Sustainability and Policy,” submitted by researcher Mark Moretto of the University of Colorado, Boulder  “Avoiding the Kessler Syndrome Through Policy Intervention,” submitted by aeronautics and astronautics researcher Richard Linares of the Massachusetts Institute of Technology  “Analysis of Cislunar Space Environment Scenarios, Enabling Deterrence and Incentive-Based Policy,” submitted by mechanical and aerospace engineering researcher Ryne Beeson of Princeton University  Share
      Details
      Last Updated Jul 23, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      Main Takeaways:
      New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background:
      NASA’s LEGS can do more than help Earthlings move about the planet.
      Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.
      NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.
      Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission.
      To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway.
      The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.”
      The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system.
      An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations.
      How it Works:
      As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries.
      The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations.
      LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band.
      The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna.
      The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia.
      These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign.
      The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share
      Details
      Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related Terms
      General Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
      2 min read Working in Tandem: NASA’s Networks Empower Artemis I
      Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission
      The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center…
      Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
      When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
      Article 12 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The latest crew chosen by NASA to venture on a simulated trip to Mars inside the agency’s Human Exploration Research Analog. From left are Sergii Iakymov, Erin Anderson, Brandon Kent, and Sarah Elizabeth McCandless.Credit: C7M3 Crew NASA selected a new team of four research volunteers to participate in a simulated mission to Mars within HERA (Human Exploration Research Analog) at the agency’s Johnson Space Center in Houston.
      Erin Anderson, Sergii Iakymov, Brandon Kent, and Sarah Elizabeth McCandless will begin their simulated trek to Mars on Friday, Aug. 9. The volunteer crew members will stay inside the 650-square-foot habitat for 45 days, exiting Monday, Sept. 23 after a simulated “return” to Earth. Jason Staggs and Anderson Wilder will serve as alternate crew members.
      The HERA missions offer scientific insights into how people react to the type of isolation, confinement, work and life demands, and remote conditions astronauts might experience during deep space missions.
      The facility supports more frequent, shorter-duration simulations in the same building as CHAPEA (Crew Health and Performance Analog). This crew is the third group of volunteers to participate in a simulated Mars mission in HERA this year. The most recent crew completed its HERA mission on June 24. In total, there will be four analog missions in this series.
      During this summer’s simulation, participants will perform a mix of science and operational tasks, including harvesting plants from a hydroponic garden, growing shrimp, deploying a small, cube-shaped satellite (CubeSat) to simulate gathering virtual data for analysis, “walking” on the surface of Mars using virtual reality goggles, and flying simulated drones on the simulated Mars surface. The team members also will encounter increasingly longer communication delays with Mission Control throughout their mission, culminating in five-minute lags as they “near” Mars. Astronauts traveling to Mars may experience communications delays of up to 20 minutes.
      NASA’s Human Research Program will conduct 18 human health experiments during each of the 2024 HERA missions. Collectively, the studies explore how a Mars-like journey may affect the crew members’ mental and physical health. The work also will allow scientists to test certain procedures and equipment designed to keep astronauts safe and healthy on deep space missions.

      Primary Crew
      Erin Anderson
      Erin Anderson is a structural engineer at NASA’s Langley Research Center in Virginia. Her work focuses on manufacturing and building composite structures — using materials engineered to optimize strength, stiffness, and density — that fly in air and space.
      Anderson earned a bachelor’s degree in Aerospace Engineering from the University of Illinois at Urbana-Champaign in 2013. After graduating, she worked as a structural engineer for Boeing on NASA’s SLS (Space Launch System) in Huntsville, Alabama. She moved to New Orleans to support the assembly of the first core stage of the SLS at NASA’s Michoud Assembly Facility. Anderson received a master’s degree in Aeronautical Engineering from Purdue University in West Lafayette, Indiana, in 2020. She started her current job in 2021, continuing her research on carbon fiber composites.
      In her free time, Anderson enjoys playing rugby, doting on her dog, Sesame, and learning how to ride paddleboard at local beaches.

      Sergii Iakymov
      Sergii Iakymov is an aerospace engineer with more than 15 years of experience in research and design, manufacturing, quality control, and project management. Iakymov currently serves as the director of the Mars Desert Research Station, a private, Utah-based research facility that serves as an operational and geological Mars analog.
      Iakymov received a bachelor’s degree in Aviation and Cosmonautics and a master’s in Aircraft Control Systems from Kyiv Polytechnic Institute in Ukraine. His graduate research focused on the motion of satellites equipped with pitch flywheels and magnetic coils.
      Iakymov was born in Germany, raised in Ukraine, and currently splits his time between southern Utah and Chino Hills, California. His hobbies include traveling, running, hiking, scuba diving, photography, and reading.

      Brandon Kent
      Brandon Kent is a medical director in the pharmaceutical industry, supporting ongoing global efforts to develop new therapies across cancer types.
      Kent received a bachelor’s degrees in Biochemistry and Biology from North Carolina State University in Raleigh. He earned his doctorate in Biomedicine from Mount Sinai School of Medicine in New York City, where his work primarily focused on how genetic factors regulate early embryonic development and cancer development.
      Following graduate school, Kent moved into scientific and medical communications consulting in oncology, primarily focusing on clinical trial data disclosures, scientific exchange, and medical education initiatives.
      Kent and his wife have two daughters. In his spare time, he enjoys spending time with his daughters, flying private aircraft, hiking, staying physically fit, and reading. He lives in Kinnelon, New Jersey.

      Sarah Elizabeth McCandless
      Sarah Elizabeth McCandless is a navigation engineer for NASA’s Jet Propulsion Laboratory in Southern California. McCandless’ job involves tracking the location and predicting the future trajectory of spacecraft, including the Mars Perseverance rover, Artemis I, Psyche, and Europa Clipper.
      McCandless received a bachelor’s in Aerospace Engineering from the University of Kansas in Lawrence, and a master’s in Aerospace Engineering from the University of Texas at Austin, focused on orbital mechanics.
      McCandless is originally from Fairway, Kansas, and remains an avid fan of sports teams from her alma mater and hometown. She is active in STEM (science, technology, engineering, and mathematics) outreach and education and enjoys camping, running, traveling with friends and family, and piloting Cessna 172s. She lives in Pasadena, California.

      Alternate Crew
      Jason Staggs
      Jason Staggs is a cybersecurity researcher and adjunct professor of computer science at the University of Tulsa. His research focuses on systems security engineering, infrastructure protection, and resilient autonomous systems. Staggs is an editor for the International Journal of Critical Infrastructure Protection and the Critical Infrastructure Protection book series.
      Staggs supported scientific research expeditions with the National Science Foundation at McMurdo Station in Antarctica. He also previously served as a space engineer and medical officer while working as an analog astronaut in the Hawaii Space Exploration Analog and Simulation (HI-SEAS) atop the Mauna Loa volcano.
      Staggs received his bachelor’s degree in Information Assurance and Forensics at Oklahoma State University and master’s and doctorate degrees in Computer Science from the University of Tulsa. During his postdoctoral studies at Idaho National Laboratory, Idaho Falls, he investigated electric vehicle charging station vulnerabilities.
      In his spare time, Staggs enjoys hiking, building radio systems, communicating with ham radio operators in remote locations, and volunteering as a solar system ambassador for NASA’s Jet Propulsion Laboratory — sharing his passion for astronomy, oceanography, and space exploration with his community.

      Anderson Wilder
      Anderson Wilder is a Florida Institute of Technology in Melbourne graduate student working on his doctorate in psychology. His research focuses on team resiliency and human-machine interactions. Wilder also works in the campus neuroscience lab, investigating how spaceflight contributes to astronaut neurobehavioral changes.
      Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
      Wilder received bachelor’s degrees in Linguistics and Psychology from Ohio State University in Columbus. He also received a master’s degree in Space Studies from International Space University in Strasbourg, France, and is completing a second master’s in Cognitive Experimental Psychology from Cleveland State University in Ohio.
      Outside of school, Wilder works as a parabolic flight coach, teaching people how to experience reduced-gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program (HRP) pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways to keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond.
      Explore More
      2 min read Exploring the Moon: Episode Previews
      Article 3 days ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 2 weeks ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
  • Check out these Videos

×
×
  • Create New...