Jump to content

Rocket Camera Footage from the World's Most Powerful Rocket


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Kevin O’Brien Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By USH
      Some time ago, while visiting the Grand Canyon in Arizona, a photographer captured several short video clips of the landscape. In one of those clips, an unusual anomaly was discovered. 

      The original footage is only 1.9 seconds long, but within that moment, something remarkable was caught on camera. An unidentified aerial phenomenon (UAP) flashed across the frame, visible for less than a second, only noticeable when the video was paused and analyzed frame by frame. 
      The object was moving at an astonishing speed, covering an estimated two to three miles in under a second, far beyond the capabilities of any conventional aircraft, drone, or helicopter. 
      This isn’t the first time such anomalous flying objects have been observed. Their characteristics defy comparison with known aerial technology. 
      Some skeptics have proposed that the object might have been a rock thrown into the canyon from behind the camera. However, that explanation seems unlikely. Most people can only throw objects at speeds of 10 to 20 meters per second (approximately 22 to 45 mph). The velocity of this object far exceeded that range, and its near-invisibility in the unedited video suggests it was moving much faster.
        View the full article
    • By NASA
      NASA/Kevin O’Brien NASA’s SLS (Space Launch System) solid rocket boosters are the largest, most powerful solid propellant boosters to ever fly. Standing 17 stories tall and burning approximately six tons of propellant every second, each booster generates 3.6 million pounds of a thrust for a total of 7.2 million pounds: more thrust than 14 four-engine jumbo commercial airliners. Together, the SLS twin boosters provide more than 75 percent of the total thrust at launch. Each booster houses eight booster separation motors which are responsible for separating the boosters from the core stage during flight.
      At the top of each booster is the frustum—a truncated cone-shaped structure that, along with the nose cone, forms the aerodynamic fairing. This frustum houses four of the separation motors, while the remaining four are located at the bottom within the aft skirt.
      Image Credit: NASA/Kevin O’Brien
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4564 NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
      Earth planning date: Monday, June 9, 2025
      The image above shows the drill poised on the surface of Mars at the start of our attempt to collect sample at “Altadena” over the weekend. Now we know, from subsequent imaging and telemetry, that the drill activity was successful, allowing planning today to focus on delivering sample powder to CheMin and SAM. CheMin and SAM will give us their distinct and valuable insights into the mineralogy (CheMin) and volatiles and organic compounds (SAM) within Altadena, which are key to our continued unravelling the history of Mt. Sharp. It is always exciting to find out what each of these instruments uncovers from Martian samples.
      In addition to those sample deliveries, we had three other Altadena-focused activities. We acquired ChemCam RMI of the drill hole which helps ChemCam refine their laser targeting for future LIBS analyses of the drill hole. We planned a ChemCam passive spectroscopy observation of the cuttings around the drill hole for more insight into the mineralogy of the sample. We also included a single Mastcam M100 image of the drill hole which helps us track the wind activity at the drill site and thus the stability of the cuttings ahead of planned observations with APXS and MAHLI.
      The weekend activities ran faster and more efficiently than modeled so that we had power to add additional science observations into the plan. We gathered more ChemCam data from the bedrock near Altadena at the target “Bolsa Chica,” and planned two ChemCam RMI long distance mosaics on sedimentary structures within “Texoli” butte and nearby boxwork structures. We kept track of the environment around us with yet more Mastcam imaging for wind-induced changes in the “Camp Williams” area, regular RAD and REMS measurements, two DAN measurements, and Navcam dust devil imaging and cloud movies.
      Explore More
      4 min read Sols 4561-4562: Prepping to Drill at Altadena


      Article


      5 days ago
      2 min read Searching for Ancient Rocks in the ‘Forlandet’ Flats


      Article


      5 days ago
      3 min read Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars



      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the TFINER concept.NASA/James Bickford James Bickford
      Charles Stark Draper Laboratory, Inc.
      The Thin-Film Nuclear Engine Rocket (TFINER) is a novel space propulsion technology that enables aggressive space exploration for missions that are impossible with existing approaches. The concept uses thin layers of energetic radioisotopes to directly generate thrust. The emission direction of its natural decay products is biased by a substrate to accelerate the spacecraft. A single stage design is very simple and can generate velocity changes of ~100 km/s using a few kilograms of fuel and potentially more than 150 km/s for more advanced architectures.
      The propulsion system enables a rendezvous with intriguing interstellar objects such as ‘Oumuamua that are on hyperbolic orbits through our solar system. A particular advantage is the ability to maneuver in deep space to find objects with uncertainty in their location. The same capabilities also enable a fast trip to the solar gravitational focus to image multiple potentially habitable exoplanets. Both types of missions require propulsion outside the solar system that is an order of magnitude beyond the performance of existing technology. The phase 2 effort will continue to mature TFINER and the mission design. The program will work towards small scale thruster experiments in the near term. In parallel, isotope production paths that can also be leveraged for other space exploration and medical applications will be pursued. Finally, advanced architectures such as an Oberth solar dive maneuver and hybrid approaches that leverage solar sails near the Sun, will be explored to enhance mission performance.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...