Jump to content

Artemis 1 onboard launch footage / Slowed down 5X - #Shorts


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A NASA camera on the Deep Space Climate Observatory satellite captures a view of the entire sunlit side of Earth from one million miles away.Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected SpaceX (Space Exploration Technologies Corporation) to provide launch services for NOAA’s JPSS-4 mission. The spacecraft is part of the multi-satellite cooperative Joint Polar Satellite System (JPSS) program, a partnership between NASA and NOAA. This mission is the next satellite in the program, which began with the Suomi National Polar-orbiting Partnership.
      This is a firm fixed price contract with a value of approximately $112.7 million, which includes launch services and other mission related costs. The JPSS-4 mission currently is targeted to launch in 2027, on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      The JPSS constellation of satellites collects global multi-spectral radiometry and other specialized meteorologic, oceanographic, and solar-geophysical data via remote sensing of land, sea, and atmospheric properties. These data support NOAA’s mission for continuous observation of Earth’s environment to understand and predict changes in weather, climate, oceans, and coasts to support the nation’s economy and protect lives and property. NASA uses the instruments aboard the JPSS satellites to continue decades of Earth science research for the betterment of humanity. When launched, JPSS-4, will carry the NASA Earth Venture mission Libera, an instrument that will improve our understanding of trends in Earth’s energy imbalance and our changing climate.
      NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch services. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the JPSS Flight Projects Office, which oversees the acquisition of the JPSS series instruments and spacecraft. A collaborative NOAA and NASA team manages the JPSS Program.
      For more information about NASA programs and missions, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      Tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Jul 22, 2024 LocationNASA Headquarters Related Terms
      Joint Polar Satellite System (JPSS) Joint Agency Satellite Division NOAA (National Oceanic and Atmospheric Administration) Science Mission Directorate View the full article
    • By NASA
      Main Takeaways:
      New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background:
      NASA’s LEGS can do more than help Earthlings move about the planet.
      Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.
      NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.
      Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission.
      To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway.
      The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.”
      The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system.
      An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations.
      How it Works:
      As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries.
      The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations.
      LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band.
      The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna.
      The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia.
      These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign.
      The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share
      Details
      Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related Terms
      General Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
      2 min read Working in Tandem: NASA’s Networks Empower Artemis I
      Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission
      The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center…
      Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
      When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
      Article 12 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA’s Pegasus barge July 15. NASA How do you move NASA’s SLS (Space Launch System) rocket’s massive 212-foot-long core stage across the country? You do it with a 300-foot-long barge. However, NASA’s Pegasus barge isn’t just any barge. It’s a vessel with a history, and John Campbell, a logistics engineer for the agency based at NASA’s Marshall Space Flight Center in Huntsville, Alabama, is one of the few people who get to be a part of its legacy.
      For Campbell, this journey is more than just a job – it’s a lifelong passion realized. “Ever since I was a boy, I’ve been fascinated by engineering,” he said. “But to be entrusted with managing NASA’s Pegasus barge, transporting history-making hardware for human spaceflight across state lines and waterways – is something I never imagined.”
      NASA has used barges to ferry the large,and heavy hardware elements of its rockets since the Apollo Program. Replacing the agency’s Poseidon and Orion barges, Pegasus was originally crafted for the Space Shuttle Program and updated in recent years to help usher in the Artemis Generation and accommodate the mammoth dimensions of the SLS core stage. The barge plays a big role in NASA’s logistical operations, navigating rivers and coastal waters across the Southeast, and has transported key structural test hardware for SLS in recent years.
      Campbell grew up in Muscle Shoals, Alabama. After graduating from the University of Alabama with a degree in mechanical engineering, he ventured south to Panama City, Florida, where he spent a few years with a heating, ventilation, and air conditioning consulting team. Looking for an opportunity to move home, he applied for and landed a contractor position with NASA and soon moved to his current civil service role.
      With 17 years under his belt, Campbell has many fond memories during his time with the agency. One standout moment was witnessing the space shuttle stacked in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. But it’s not all about rockets and launch pads for Campbell. When he isn’t in his office making sure  Pegasus has everything it needs for its next trip out, he is on the water accompanying important pieces of hardware to their next destinations. With eight trips on Pegasus under his belt, the journey never gets old.
      “There is something peaceful when you look out and it’s just you, the water, one or two other boats, and wildlife,” Campbell said. “On one trip we had a pod of at least 20 dolphins surrounding us. You get to see all kinds of cool wildlife and scenery.” From cherishing special moments like this to ensuring the success of each journey, Campbell recognizes the vital role he plays in the agency’s goals to travel back to the Moon and beyond and does not take his responsibility lightly.
      “To be a part of the Artemis campaign and the future of space is just cool. I was there when the barge underwent its transformation to accommodate the colossal core stage, and in that moment, I realized I was witnessing history unfold. Though I couldn’t be present at the launch of Artemis I, watching it on TV was an emotional experience. To see something you’ve been a part of, something you’ve watched evolve from mere components to a giant spacecraft hurtling into space – it’s a feeling beyond words.”
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      Read other I am Artemis features.
      View the full article
    • By NASA
      3 Min Read NASA Awards Launch Excitement for STEM Learning Nationwide
      Southwest Girl Scout Council Leaders test out their “cereal box” pin-hole viewers to study the sun during educator training program. NASA awards inspire the next generation of explorers by helping community institutions like museums, science centers, libraries, and other informal education institutions and their partners bring science, technology, engineering, and mathematics (STEM) content to their communities. NASA’s Next Generation STEM project has expanded the Teams Engaging Affiliated Museums and Informal Institutions (TEAM II) program to include a new tier of funding and provide even more opportunities to informal educational institutions across the country.
      The new STEM Innovator tier will fund awards of approximately $250,000, the Community Anchor tier will continue to offer awards up to $50,000, and the highest award level will be designated the National Connector and fund initiatives up to $900,000. Fiscal year 2024 solicitations will target the Community Anchor and the new STEM Innovator award levels. Community Anchor and National Connector awards will be the focus for the fiscal year 2025 solicitation.
      The TEAM II program was first expanded to include Community Anchors in 2022. Since then, the program has designated over 50 institutions across 29 states as NASA Community Anchors. These awards support proposals that strengthen the STEM impact of many community organizations, including:
      5th-8th Graders from Whiting Village School join Flight Director Tyson as they embark on a Destination Mars Virtual Mission from their two-room schoolhouse in rural Maine.NASA The Challenger Learning Center of Maine reached more than 960 K-8 students statewide through 58 virtual programs touching 27 mainland schools and four island schools, hosted a STEM community night for residents of rural Whiting, Maine, and held two virtual programs featuring NASA women engineers for girls across the state.
      “NASA’s funding allowed Challenger Maine to provide this Mars mission experience for free to schools, no matter their size,” said Kirsten Hibbard, executive director of the Challenger Learning Center of Maine. “We’ve connected with new schools and become this resource, literally a community anchor of STEM, for these schools.”
      Youth at the Standing Arrow Powwow on the Flathead Reservation experience remote sensing content with virtual reality.NASA The University of Montana spectrUM Discovery Area engaged western Montana’s rural and tribal communities in understanding the role NASA and its partners play in sensing and responding to fire. SpectrUM developed the Montana Virtual Reality Fire Sensing Experience. Using ClassVR headsets, visitors learned about NOAA’s (National Oceanic and Atmospheric Administration) Joint Polar Satellite System satellites, JPSS-1 and JPSS-2, and how they are used to remotely sense the Earth.
      SpectrUM collaborated with its community advisory group, SciNation on the Flathead Reservation, to incorporate fire and Earth science curricula developed by the Confederated Salish and Kootenai Tribes into their field trip and educational programs, impacting hundreds of students.
      A student from Barksdale Air Force Base in Louisiana is excited to complete an activity in the “Aeronautics Museum in a Box” kit developed by NASA’s Aeronautics Research Mission Directorate; Community Anchor grantee Sci-Port Discovery Center in Shreveport, Louisiana; and Central Creativity, an education center in Laurel, Mississippi.NASA Sci-Port Discovery Center Shreveport, Louisiana introduced middle and high school students to NASA aeronautics content through their Aeronautics Museum in a Box kits. The kits were developed in collaboration with NASA’s Aeronautics Research Mission Directorate, Sci-Port, and Central Creativity. The kits include fun, hands-on activities focusing on the parts of an airplane, principles of flight, airplane structure and materials, propulsion, future of flight, careers, and more. Students and families from underserved communities across Northwest Louisiana tested the kits and shared feedback with developers.
      “Museum in a Box brought our participants to new heights beyond their imagination. They see themselves as teachers for their children, as a source of guidance for STEM careers instead of gangs,” said Dr. Heather Kleiner, director, Northwest LaSTEM Innovation Center, Sci-Port Discovery Center.
      U.S. informal education institutions interested in proposing for these awards are invited to attend an optional pre-proposal webinar Thursday, July 25, or Tuesday, August 13. Event times and connection details are available here.
      More information about funding opportunities can be found on NASA’s TEAM II Grant Forecasting webpage.
      To learn more about TEAM II Community Anchors, visit:TEAM II Community Anchors – NASA
      Keep Exploring Discover More Topics From NASA
      Outside the Classroom
      About STEM Engagement at NASA
      For Educators
      Learning Resources
      View the full article
    • By NASA
      Members of the Artemis II crew met with the crew of NASA’s Pegasus barge prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast.
      NASA astronaut and pilot of the Artemis II mission Victor Glover met the crew July 15.
      From left to right: Ashley Marlar, Jamie Crews, Nick Owen, Jeffery Whitehead, Scott Ledet, Jason Dickerson, John Campbell, NASA astronaut Victor Glover, Farid Sayah, Kelton Hutchinson, Terry Fitzgerald, Bryan Jones, and Joe Robinson.NASA/Brandon Hancock NASA astronaut Reid Wiseman, commander, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, mission specialist, visited the barge July 16 shortly before the flight hardware was loaded onto it.
      The Pegasus crew and team, from left, includes Kelton Hutchinson, Jeffery Whitehead, Jason Dickerson, Arlan Cochran, John Brunson, NASA astronaut Reid Wiseman, Marc Verhage, Terry Fitzgerald, Scott Ledet, CSA astronaut Jeremy Hansen, Wil Daly, Ashley Marlar, Farid Sayah, Jamie Crews, Joe Robinson, and Nick Owen.NASA/Sam Lott Pegasus is currently transporting the SLS core stage from NASA’s Michoud Assembly Facility in New Orleans to NASA’s Kennedy Space Center in Florida, where it will be integrated and prepared for launch. During the Artemis II test flight, the core stage with its four RS-25 engines will provide more than 2 million pounds of thrust to help send the Artemis II crew around the Moon.
      Pegasus, which was previously used to ferry space shuttle tanks, was modified and refurbished to ferry the SLS rocket’s massive core stage. At 212 feet in length and 27.6 feet in diameter, the Moon rocket stage is more than 50 feet longer than the space shuttle external tank.
      See more images:
      Members of NASA’s Pegasus barge crew meet with Artemis II crew members at NASA’s Michoud Assembly Facility in New Orleans July 15 and 16. NASA/Eric Bordelon Members of NASA’s Pegasus barge crew meet with Artemis II crew members at NASA’s Michoud Assembly Facility in New Orleans July 15 and 16. NASA/Eric Bordelon Members of NASA’s Pegasus barge crew meet with Artemis II crew members at NASA’s Michoud Assembly Facility in New Orleans July 15 and 16. NASA/Brandon Hancock Members of NASA’s Pegasus barge crew meet with Artemis II crew members at NASA’s Michoud Assembly Facility in New Orleans July 15 and 16.NASA/Evan DeRoche NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      View the full article
  • Check out these Videos

×
×
  • Create New...