Jump to content

Recommended Posts

Posted
low_keystone.png

What looks like a celestial hummingbird is really the result of a collision between a spiral and an elliptical galaxy at a whopping 326 million light- years away. The flat disk of the spiral NGC 2936 is warped into the profile of a bird by the gravitational tug of the companion NGC 2937. The object was first cataloged as a "peculiar galaxy" by Halton Arp in the 1960s. This interacting galaxy duo is collectively called Arp 142.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This article is from the 2024 Technical Update

      Autonomous flight termination systems (AFTS) are being progressively employed onboard launch vehicles to replace ground personnel and infrastructure needed to terminate flight or destruct the vehicle should an anomaly occur. This automation uses on-board real-time data and encoded logic to determine if the flight should be self-terminated. For uncrewed launch vehicles, FTS systems are required to protect the public and governed by the United States Space Force (USSF). For crewed missions, NASA must augment range AFTS requirements for crew safety and certify each flight according to human rating standards, thus adding unique requirements for reuse of software originally intended for uncrewed missions. This bulletin summarizes new information relating to AFTS to raise awareness of key distinctions, summarize considerations and outline best practices for incorporating AFTS into human-rated systems.
      Key Distinctions – Crewed v. Uncrewed
      There are inherent behavioral differences between uncrewed and crewed AFTS related to design philosophy and fault tolerance. Uncrewed AFTS generally favor fault tolerance against failure-to-destruct over failing silent
      in the presence of faults. This tenet permeates the design, even downto the software unit level. Uncrewed AFTS become zero-fault-to-destruct tolerant to many unrecoverable AFTS errors, whereas general single fault
      tolerance against vehicle destruct is required for crewed missions. Additionally, unique needs to delay destruction for crew escape, provide abort options and special rules, and assess human-in-the-loop insight, command, and/or override throughout a launch sequence must be considered and introduces additional requirements and integration complexities.

      AFTS Software Architecture Components and Best-Practice Use Guidelines
      A detailed study of the sole AFTS currently approved by USSF and utilized/planned for several launch vehicles was conducted to understand its characteristics, and any unique risk and mitigation techniques for effective human-rating reuse. While alternate software systems may be designed in the future, this summary focuses on an architecture employing the Core Autonomous Safety Software (CASS). Considerations herein are intended for extrapolation to future systems. Components of the AFTS software architecture are shown, consisting of the CASS, “Wrapper”, and Mission Data Load (MDL) along with key characteristics and use guidelines. A more comprehensive description of each and recommendations for developmental use is found in Ref. 1.
      Best Practices Certifying AFTS Software
      Below are non-exhaustive guidelines to help achieve a human-rating
      certification for an AFTS.

      References
      NASA/TP-20240009981: Best Practices and Considerations for Using
      Autonomous Flight Termination Software In Crewed Launch Vehicles
      https://ntrs.nasa.gov/citations/20240009981 “Launch Safety,” 14 C.F.R., § 417 (2024). NPR 8705.2C, Human-Rating Requirements for Space Systems, Jul 2017,
      nodis3.gsfc.nasa.gov/ NASA Software Engineering Requirements, NPR 7150.2D, Mar 2022,
      nodis3.gsfc.nasa.gov/ RCC 319-19 Flight Termination Systems Commonality Standard, White
      Sands, NM, June 2019. “Considerations for Software Fault Prevention and Tolerance”, NESC
      Technical Bulletin No. 23-06 https://ntrs.nasa.gov/citations/20230013383 “Safety Considerations when Repurposing Commercially Available Flight
      Termination Systems from Uncrewed to Crewed Launch Vehicles”, NESC
      Technical Bulletin No. 23-02 https://ntrs.nasa.gov/citations/20230001890 View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Steve Parcel The most effective way to prove a new idea is to start small, test, learn, and test again. A team of researchers developing an atmospheric probe at NASA’s Armstrong Flight Research Center in Edwards, California, are taking that approach. The concept could offer future scientists a potentially better and more economical way to collect data on other planets.
      The latest iteration of the atmospheric probe flew after release from a quad-rotor remotely piloted aircraft on Oct. 22 above Rogers Dry Lake, a flight area adjacent to NASA Armstrong. The probe benefits from NASA 1960s research on lifting body aircraft, which use the aircraft’s shape for lift instead of wings. Testing demonstrated the shape of the probe works.
      “I’m ecstatic,” said John Bodylski, atmospheric probe principal investigator at NASA Armstrong. “It was completely stable in flight. We will be looking at releasing it from a higher altitude to keep it flying longer and demonstrate more maneuvers.”
      An atmospheric probe model attached upside down to a quad rotor remotely piloted aircraft ascends with the Moon visible on Oct. 22, 2024. The quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Starting with a Center Innovation Fund award in 2023, Bodylski worked closely with the center’s Dale Reed Subscale Flight Research Laboratory to design and build three atmospheric probe models, each vehicle 28 inches long from nose to tail. One model is a visual to show what the concept looks like, while two additional prototypes improved the technology’s readiness.
      The road to the successful flight wasn’t smooth, which is expected with any new flight idea. The first flight on Aug. 1 didn’t go as planned. The release mechanism didn’t work as expected and air movement from the quad rotor aircraft was greater than anticipated. It was that failure that inspired the research team to take another look at everything about the vehicle, leading to many improvements, said Justin Hall, NASA Armstrong chief pilot of small, unmanned aircraft systems.
      Fast forward to Oct. 22, where the redesign of the release mechanism, in addition to an upside-down release and modified flight control surfaces, led to a stable and level flight. “Everything we learned from the first vehicle failing and integrating what we learned into this one seemed to work well,” Hall said. “This is a win for us. We have a good place to go from here and there’s some more changes we can make to improve it.”
      Justin Link, left, small unmanned aircraft systems pilot; John Bodylski, atmospheric probe principal investigator; and Justin Hall, chief pilot of small unmanned aircraft systems, discuss details of the atmospheric probe flight plan on Oct. 22, 2024. A quad rotor remotely piloted aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Bodylski added, “We are going to focus on getting the aircraft to pull up sooner to give us more flight time to learn more about the prototype. We will go to a higher altitude [this flight started at 560 feet altitude] on the next flight because we are not worried about the aircraft’s stability.”
      When the team reviewed flight photos and video from the Oct. 22 flight they identified additional areas for improvement. Another atmospheric probe will be built with enhancements and flown. Following another successful flight, the team plans to instrument a future atmospheric probe that will gather data and improve computer models. Data gathering is the main goal for the current flights to give scientists confidence in additional probe shapes for atmospheric missions on other planets.
      If this concept is eventually chosen for a mission, it would ride on a satellite to its destination. From there, the probe would separate as the parent satellite orbits around a planet, then enter and dive through the atmosphere as it gathers information for clues of how the solar system formed.
      Justin Hall, chief pilot of small unmanned aircraft systems, prepares the atmospheric probe for flight above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. At right, Justin Link, small unmanned aircraft systems pilot, assists. The probe, designed and built at the center, flew after release from a quad rotor remotely piloted aircraft on Oct. 22, 2024.NASA/Steve Freeman Derek Abramson, left, chief engineer for the Dale Reed Subscale Flight Research Laboratory, and Justin Link, small unmanned aircraft system pilot, carry the atmospheric probe model and a quad rotor remotely piloted aircraft to position it for flight on Oct. 24, 2024. John Bodylski, probe principal investigator, right, and videographer Jacob Shaw watch the preparations. Once at altitude, the quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent to NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman A quad rotor remotely piloted aircraft releases the atmospheric probe model above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 22, 2024. The probe was designed and built at the center.NASA/Carla Thomas Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Armstrong Flight Research Center Aeronautics Center Innovation Fund Flight Innovation Space Technology Mission Directorate Explore More
      3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
      Article 24 hours ago 1 min read NASA TechLeap Prize: Space Technology Payload Challenge
      Article 1 day ago 1 min read 3D Printable Bioreactor for Deep Space Food Production
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Capabilities & Facilities
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By European Space Agency
      For the first time, the NASA/ESA/CSA James Webb Space Telescope has detected and ‘weighed’ a galaxy, in the early Universe, that has a mass that is similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Found at around 600 million years after the Big Bang, this lightweight galaxy, nicknamed the Firefly Sparkle, is gleaming with star clusters – 10 in total – that researchers examined in great detail. Other galaxies Webb has detected at this period in the history of the Universe are significantly more massive.
      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Found: First Actively Forming Galaxy as Lightweight as Young Milky Way
      Hundreds of overlapping objects at various distances are spread across this field. At the very center is a tiny galaxy nicknamed Firefly Sparkle that looks like a long, angled, dotted line. Smaller companions are nearby. Credits:
      NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) For the first time, NASA’s James Webb Space Telescope has detected and “weighed” a galaxy that not only existed around 600 million years after the big bang, but is also similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Other galaxies Webb has detected at this time period are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters — 10 in all — each of which researchers examined in great detail.
      Image A: Firefly Sparkle Galaxy and Companions in Galaxy Cluster MACS J1423 (NIRCam Image)
      For the first time, astronomers using NASA’s James Webb Space Telescope have identified a galaxy, nicknamed the Firefly Sparkle, that not only is in the process of assembling and forming stars around 600 million years after the big bang, but also weighs about the same as our Milky Way galaxy if we could “wind back the clock” to weigh it as it developed. Two companion galaxies are close by, which may ultimately affect how this galaxy forms and builds mass over billions of years. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “I didn’t think it would be possible to resolve a galaxy that existed so early in the universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”
      Webb was able to image the galaxy in crisp detail for two reasons. One is a benefit of the cosmos: A massive foreground galaxy cluster radically enhanced the distant galaxy’s appearance through a natural effect known as gravitational lensing. And when combined with the telescope’s specialization in high-resolution infrared light, Webb delivered unprecedented new data about the galaxy’s contents.
      Image B: Galaxy Cluster MACS J1423 (NIRCam Image)
      In this image from NASA’s James Webb Space Telescope, thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest, bright white oval is a supergiant elliptical galaxy. The galaxy cluster acts like a lens, magnifying and distorting the light of objects that lie well behind it, an effect known as gravitational lensing. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “Without the benefit of this gravitational lens, we would not be able to resolve this galaxy,” said Kartheik Iyer, co-lead author and NASA Hubble Fellow at Columbia University in New York. “We knew to expect it based on current physics, but it’s surprising that we actually saw it.”
      Mowla, who spotted the galaxy in Webb’s image, was drawn to its gleaming star clusters, because objects that sparkle typically indicate they are extremely clumpy and complicated. Since the galaxy looks like a “sparkle” or swarm of lightning bugs on a warm summer night, they named it the Firefly Sparkle galaxy.
      Reconstructing the Galaxy’s Appearance
      The research team modeled what the galaxy might have looked like if it weren’t stretched and discovered that it resembled an elongated raindrop. Suspended within it are two star clusters toward the top and eight toward the bottom. “Our reconstruction shows that clumps of actively forming stars are surrounded by diffuse light from other unresolved stars,” said Iyer. “This galaxy is literally in the process of assembling.”
      Webb’s data shows the Firefly Sparkle galaxy is on the smaller side, falling into the category of a low-mass galaxy. Billions of years will pass before it builds its full heft and a distinct shape. “Most of the other galaxies Webb has shown us aren’t magnified or stretched, and we are not able to see their ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” Mowla said.
      Stretched Out and Shining, Ready for Close Analysis
      Since the galaxy is warped into a long arc, the researchers easily picked out 10 distinct star clusters, which are emitting the bulk of the galaxy’s light. They are represented here in shades of pink, purple, and blue. Those colors in Webb’s images and its supporting spectra confirmed that star formation didn’t happen all at once in this galaxy, but was staggered in time.
      “This galaxy has a diverse population of star clusters, and it is remarkable that we can see them separately at such an early age of the universe,” said Chris Willott from the National Research Council of Canada’s Herzberg Astronomy and Astrophysics Research Centre, a co-author and the observation program’s principal investigator. “Each clump of stars is undergoing a different phase of formation or evolution.”
      The galaxy’s projected shape shows that its stars haven’t settled into a central bulge or a thin, flattened disk, another piece of evidence that the galaxy is still forming.
      Image C: Illustration of the Firefly Sparkle Galaxy in the Early Universe (Artist’s Concept)
      This artist concept depicts a reconstruction of what the Firefly Sparkle galaxy looked like about 600 million years after the big bang if it wasn’t stretched and distorted by a natural effect known as gravitational lensing. This illustration is based on images and data from NASA’s James Webb Space Telescope. Illustration: NASA, ESA, CSA, Ralf Crawford (STScI). Science: Lamiya Mowla (Wellesley College), Guillaume Desprez (Saint Mary’s University) Video: “Firefly Sparkle” Reveals Early Galaxy
      ‘Glowing’ Companions
      Researchers can’t predict how this disorganized galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are “hanging out” within a tight perimeter and may influence how it builds mass over billions of years.
      Firefly Sparkle is only 6,500 light-years away from its first companion, and its second companion is separated by 42,000 light-years. For context, the fully formed Milky Way is about 100,000 light-years across — all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.
      Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps, adding to the galaxies’ masses. “It has long been predicted that galaxies in the early universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”
      The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey (CANUCS), which includes near-infrared images from NIRCam (Near-Infrared Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that NASA’s Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble (CLASH) program.
      This work has been published on December 11, 2024 in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Video: How are Distant Galaxies Magnified Through Gravitational Lensing?
      Article: Webb Science: Galaxies Through Time
      Article: Spectroscopy 101
      Interactive: Learn how the Webb microshutter array (MSA) works
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Dec 10, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.
      Credit: Firefly Aerospace
      NASA will host a media teleconference at 1 p.m. EST Tuesday, Dec. 17, to discuss the agency science and technology flying aboard Firefly Aerospace’s first delivery to the Moon as part of the NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. 

      Audio of the call will livestream on the agency’s website at:
      https://www.nasa.gov/live
      Briefing participants include:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Ryan Watkins, program scientist, Exploration Science Strategy and Integration Office, NASA Headquarters Jason Kim, chief executive officer, Firefly Aerospace
      To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov.

      Firefly’s Blue Ghost lunar lander will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The six-day launch window opens no earlier than mid-January 2025.

      The lunar mission, named Ghost Riders in the Sky, will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The mission will carry 10 NASA instruments and first-of-their-kind demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach.  
      Science investigations on this flight include testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact Earth.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is to be one of many customers on future flights.

      For updates, follow on:
      https://blogs.nasa.gov/artemis/
      -end-

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov   

      Wynn Scott / Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Dec 10, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS)
      View the full article
  • Check out these Videos

×
×
  • Create New...