Jump to content

NASA Awards Contract for NASA Financial Support Services


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 quiet supersonic research aircraft is dramatically lit for a “glamour shot,” captured before its Jan. 12, 2024, rollout at Lockheed Martin’s Skunk Works facility in Palmdale where the airplane was constructed.Credit: Lockheed Martin / Michael Jackson NASA has issued new grants to five universities to help develop education plans for the community overflight phase of the agency’s Quesst mission, which aims to demonstrate the possibility of supersonic flight without the typical loud sonic booms.
      The new grants, from NASA’s Office of STEM Engagement, will provide each university team with $40,000 to develop science, technology, engineering, and mathematics (STEM) engagement strategic implementation plans for those Quesst community overflights. The awards will focus on plans for engaging with students and educators in the communities that NASA will eventually select for overflights. This will help ensure communities are accurately informed about this phase of Quesst and what involvement in the mission will look like for their community.
      “The Quesst mission is unique at NASA, with community input playing a major part in its success,” said Eric Miller, deputy mission integration manager for Quesst. “These new awards will allow NASA to learn from other STEM professionals, informing us as we develop a framework to effectively engage with students and educators.”
      The selected institutions and their projects, are:
      Carthage College, Kenosha, Wisconsin – STEM Quesst, Wisconsin Space Grant Cornell University, Ithaca, New York –Quesst Community Overflight STEM Engagement New York Space Grant Consortium Old Dominion University, Norfolk, Virginia – Engaging the National NASA Space Grant Network in Support of the Quesst Community Overflight STEM Engagement University of Puerto Rico, San Juan, San Juan, Puerto Rico – Space Grant Quesst Community Overflight STEM Engagement: Sounds of Our World University of California, San Diego, San Diego, California – California Space Grant Planning Support for the Quesst Community Overflight STEM Engagement The deliverables from the awards will help inform a student engagement approach that can be implemented in any community, state, and region that may be selected. NASA has yet to select communities for the overflights.
      Through Quesst, NASA is developing its X-59 experimental aircraft, which will fly faster than the speed of sound while producing only a quiet sonic “thump.” After the X-59 completes a series of flight tests, NASA will fly it over a number of communities across the country, gathering data about what people below hear.
      For more information about Quesst, visit:
      https://www.nasa.gov/mission/quesst/
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-4637
      gerelle.q.dodson@nasa.gov
      Share
      Details
      Last Updated Feb 27, 2024 LocationNASA Headquarters Related Terms
      Quesst (X-59) Aeronautics Research Mission Directorate For Kids and Students Learning Resources NASA Headquarters Quesst: The Mission Quesst: The Science Quesst: The Team STEM Engagement at NASA View the full article
    • By NASA
      NASA's SpaceX Crew-8 Launch (Official NASA Broadcast in 4K)
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Meredith Patterson, front row, center right, poses with her teammates in the High-Powered Rocketry Club at North Carolina State University on the day they launched the rocket they built for NASA’s 2023 Student Launch. The experience and knowledge Patterson gained from her years participating in the annual competition helped pave the way for a career at NASA after graduation. High-Powered Rocketry Club at NC State By Jessica Barnett
      Sometimes, all it takes is a few years and the right people to completely change a person’s career trajectory. One such example is Meredith Patterson, an aerospace engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, who went from knowing little to nothing about rockets to being part of the team that is working to put humans back on the Moon.
      She credits her success in large part to NASA’s Student Launch, which not only helped her uncover her passion for aerospace engineering but gave her the knowledge and experience she needed to get where she is today.
      The annual Student Launch competition invites student teams from across the U.S. to spend nine months designing, building, and testing a high-powered rocket carrying a scientific or engineering payload. The hands-on, research-based engineering activity culminates each year in a final launch in Huntsville. This year’s challenge conclusion is set for April 10-14, with the final launch date set for April 13 at Bragg Farms in Toney, Alabama.
      While Student Launch is open to students as young as sixth grade, Patterson was in her junior year of high school when she learned about the competition during a tour of North Carolina State University.
      “When I walked into the rocketry lab there, I knew then, however many years it was going to take, I wanted to be the person who was able to run that and help put together everything for us to be successful in Student Launch,” Patterson said.
      Meredith Patterson, then-freshman at North Carolina State University, assembles the competition vehicle used by the school’s high-powered rocketry club in this photo from the NASA’s 2019 Student Launch. Patterson was a member of the club and a regular participant in Student Launch for five years before graduating and turning her experience into a full-time career as an aerospace engineer at NASA. High-Powered Rocketry Club at NC State She attended North Carolina State for five years, participating in each year’s Student Launch competition and leading the team to a fourth-place win during her final year. She received her Level I and Level II certifications from Tripoli Rocketry Association through Student Launch, and she was able to connect with mentors from Tripoli and the National Rocketry Association that helped her get the hands-on experience and technical know-how she believes are key to success in the aerospace industry.
      “My leadership skills grew, my system engineering skills grew, and my technical writing skills grew,” Patterson said. “Having mentors through the competition allowed me to ask questions and learn on the technical side of things, too. I think I use more information from Student Launch day to day than from almost any of my classes in college.”
      She said attending an engineering camp at 16 years old first unlocked her interest in spaceflight and rocketry, but it was through Student Launch that she got to really dive in and deepen her passion.
      “It’s crazy to think that less than 10 years ago, I had never even built a rocket, and now I can build Level II-sized rockets on my own and I’m actively working on the biggest solid rocket boosters in the world,” Patterson said. “Just in the past year, I’ve gone from the L-class motor that we used for Student Launch to casting 11-inch motors to now actively watching the casting of the SLS (Space Launch System) boosters.”
      Meredith Patterson, a former competitor in NASA’s Student Launch Challenge, now works as an aerospace engineer at NASA’s Marshall Space Flight Center.NASA Student Launch is part of NASA’s Artemis Student Challenges. Seventy teams representing 24 states and Puerto Rico were selected to compete in the 2024 Student Launch Challenge.
      Marshall hosts the Student Launch challenge with management support provided by NASA’s Office of STEM Engagement – Southeast Region. Funding is provided, in part, by NASA’s Space Operations Mission Directorate and NASA’s Next Gen STEM project.
      Share
      Details
      Last Updated Feb 27, 2024 Related Terms
      Marshall Space Flight Center Explore More
      5 min read NASA’s Planetary Protection Team Conducts Vital Research for Deep Space Missions
      Article 5 days ago 3 min read NASA to Continue Testing for New Artemis Moon Rocket Engines
      Article 5 days ago 30 min read The Marshall Star for February 21, 2024
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Faces of STEM
      NASA Student Launch Challenge
      Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload.
      Marshall Space Flight Center
      HERC Teams
      View the full article
    • By NASA
      NASA and the agency’s international partners are sending scientific investigations to the International Space Station on the 30th SpaceX commercial resupply services mission, including tests of technologies to monitor sea ice, automate 3D mapping, and create nanoparticle solar cells. The company’s Dragon cargo spacecraft is scheduled to launch from Cape Canaveral Space Force Station in Florida in early March.
      Read more about some of the research making the journey to the orbiting laboratory:
      Plants off the Planet
      Plants can be used in regenerative life support systems, to provide food, and to contribute to the well-being of astronauts on future deep space exploration missions. C4 Photosynthesis in Space (APEX-09) examines how microgravity affects the mechanisms by which two types of grasses, known as C3 and C4, capture carbon dioxide from the atmosphere.
      “Plants respond to stressful conditions based on their genetic makeup and the environment,” said Pubudu Handakumbura, principal investigator with the Pacific Northwest National Laboratory. “We aim to uncover the molecular changes involved in plants exposed to spaceflight stressors and develop an understanding of the mechanisms of photosynthesis in space.” Results could clarify plant responses to stressful environments and inform the design of bio-regenerative support systems on future missions, as well as systems for plant growth on Earth.
      Seedlings germinating for the APEX-09 C4 Space investigation. Pubudu Handakumbura Sensing the Sea
      The ocean significantly affects the global climate. A technique called Global Navigation Satellite System reflectometry (GNSS-R), which receives satellite signals reflected from the surface of Earth, shows promise as a way to monitor ocean phenomena and improve climate models. Killick-1: A GNSS Reflectometry CubeSat for Measuring Sea Ice Thickness and Extent (Nanoracks KILLICK-1) tests using this technique to measure sea ice. The project supports development of space and science capabilities in Newfoundland and Labrador, Canada, by providing hands-on experience with space systems and Earth observation. More than 100 undergraduate and graduate engineering students participated in the project.
      “The most exciting aspect of this project is that students have the opportunity to launch a mission into space,” said Desmond Power, a co-investigator with C-CORE of Canada. “It is also exciting to build a tiny satellite that does different things, including contributing to our knowledge of climate change.”
      GNSS-R technology is low-cost, light, and energy efficient. Its potential applications on Earth include providing data for weather and climate models and improving the understanding of ocean phenomena such as surface winds and storm surge.
      The KILLICK-1 CubeSat ready to pack for launch. Memorial University, Canada Automated Autonomous Assistance
      Multi-resolution Scanner (MRS) Payload for the Astrobee (Multi-Resolution Scanning) tests technology to automate 3D sensing, mapping, and situational awareness systems.
      “Our MRS on an Astrobee free-flying robot will create 3D maps inside the space station,” said Marc Elmouttie, project lead with the Australian Commonwealth Scientific and Industrial Research Organization. “The technology combines multiple sensors, which compensates for weaknesses in any one of them and provides very high-resolution 3D data and more accurate trajectory data to understand how the robot moves around in space.”
      The technology could be used for autonomous operation of spacecraft with minimal or no human occupancy where robots must sense the environment and precisely maneuver, including the lunar Gateway space station. Other uses could be to inspect and maintain spacecraft and for autonomous vehicle operations on other celestial bodies. Results also support improvements in robotic technologies for harsh and dangerous environments on Earth.
      Project Lead Marc Elmouttie with the MRS hardware housed in an Astrobee robot. NASA Placement of Particles
      The Nano Particle Haloing Suspension investigation examines how nanoparticles and microparticles interact within an electrical field. A process called nanoparticle haloing uses charged nanoparticles to enable precise particle arrangements that improve the efficiency of quantum-dot synthesized solar cells, according to Stuart J. Williams, principal investigator with the University of Louisville Department of Mechanical Engineering.
      Quantum dots are tiny spheres of semiconductor material with the potential to convert sunlight into energy much more efficiently. Conducting these processes in microgravity provides insight into the relationship between shape, charge, concentration, and interaction of particles.
      The investigation is supported by NASA’s Established Program to Stimulate Competitive Research (EPSCoR), which partners with government, higher education, and industry on projects to improve a research infrastructure and research and development capacity and competitiveness.
      A capstone student assembles part of the Nano Particle Haloing Suspension hardware.University of Louisville Download high-resolution photos and videos of the research mentioned in this article.
      Melissa Gaskill
      International Space Station Program Research Office
      Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned above.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Gateway Space Station
      Station Science 101: Biology and Biotechnology
      Astrobee
      View the full article
    • By NASA
      The day before asteroid 2008 OS7 made its close approach with Earth on Feb. 2, this series of images was captured by the powerful 230-foot (70-meter) Goldstone Solar System Radar antenna near Barstow, California.NASA/JPL-Caltech During the close approach of 2008 OS7 with Earth on Feb. 2, the agency’s Deep Space Network planetary radar gathered the first detailed images of the stadium-size asteroid.
      On Feb. 2, a large asteroid safely drifted past Earth at a distance of about 1.8 million miles (2.9 million kilometers, or 7 ½ times the distance between Earth and the Moon). There was no risk of the asteroid – called 2008 OS7 – impacting our planet, but scientists at NASA’s Jet Propulsion Laboratory in Southern California used a powerful radio antenna to better determine the size, rotation, shape, and surface details of this near-Earth object (NEO). Until this close approach, asteroid 2008 OS7 had been too far from Earth for planetary radar systems to image it.
      The asteroid was discovered on July 30, 2008, during routine search operations for NEOs by the NASA-funded Catalina Sky Survey, which is headquartered at the University of Arizona in Tucson. After discovery, observations of the amount of light reflected from the asteroid’s surface revealed that it was roughly between 650 to 1,640 feet (200 and 500 meters) wide and that it is comparatively slow rotating, completing one rotation every 29 ½ hours.
      The rotational period of 2008 OS7 was determined by Petr Pravec, at the Astronomical Institute of the Czech Academy of Sciences in Ondřejov, Czech Republic, who observed the asteroid’s light curve – or how the brightness of the object changes over time. As the asteroid spins, variations in its shape change the brightness of reflected light astronomers see, and those changes are recorded to understand the period of the asteroid’s rotation.
      During the Feb. 2 close approach, JPL’s radar group used the powerful 230-foot (70-meter) Goldstone Solar System Radar antenna dish at the Deep Space Network’s facility near Barstow, California, to image the asteroid. What scientists found was that its surface has a mix of rounded and more angular regions with a small concavity. They also found the asteroid is smaller than previously estimated – about 500 to 650 feet (150 to 200 meters) wide – and confirmed its uncommonly slow rotation.
      The Goldstone radar observations also provided key measurements of the asteroid’s distance from Earth as it passed by. Those measurements can help scientists at NASA’s Center for Near Earth Object Studies (CNEOS) refine calculations of the asteroid’s orbital path around the Sun. Asteroid 2008 OS7 orbits the Sun once every 2.6 years, traveling from within the orbit of Venus and past the orbit of Mars at its farthest point.
      CNEOS, which is managed by JPL, calculates every known NEO orbit to provide assessments of potential impact hazards. Due to the proximity of its orbit to that of the Earth and its size, 2008 OS7 is classified as a potentially hazardous asteroid, but the Feb. 2 close approach is the nearest it will come to our planet for at least 200 years.
      While NASA reports on NEOs of all sizes, the agency has been tasked by Congress with detecting and tracking objects 460 feet (140 meters) in size and larger that could cause significant damage on the ground if they should impact our planet.
      The Goldstone Solar System Radar Group and CNEOS are supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. The Deep Space Network receives programmatic oversight from Space Communications and Navigation (SCaN) program office within the Space Operations Mission Directorate, also at the agency’s headquarters.
      More information about planetary radar, CNEOS, and near-Earth objects can be found at:
      https://www.jpl.nasa.gov/asteroid-watch
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-019
      Share
      Details
      Last Updated Feb 26, 2024 Related Terms
      Asteroids Deep Space Network Jet Propulsion Laboratory Near-Earth Asteroid (NEA) Planetary Defense Planetary Defense Coordination Office Potentially Hazardous Asteroid (PHA) Space Communications & Navigation Program Explore More
      6 min read NASA Telescopes Find New Clues About Mysterious Deep Space Signals
      Article 2 weeks ago 3 min read Team Assessing SHERLOC Instrument on NASA’s Perseverance Rover
      Article 2 weeks ago 5 min read NASA’s New Experimental Antenna Tracks Deep Space Laser
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...