Jump to content

ESA Orion blog with icon


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Crane operator Rebekah Tolatovicz, a shift mechanical technician lead for Artic Slope Regional Corporation at NASA’s Kennedy Space Center in Florida, operates a 30-ton crane to lift the agency’s Artemis II Orion spacecraft out of the recently renovated altitude chamber to the Final Assembly and Systems Testing, or FAST, cell inside NASA Kennedy’s Neil A. Armstrong Operations and Checkout Building on April 27.
      During her most recent lift July 10, Tolatovicz helped transfer Orion back to the FAST cell following vacuum chamber qualification testing in the altitude chamber earlier this month. This lift is one of around 250 annual lifts performed at NASA Kennedy by seven operator/directors and 14 crane operators on the ASRC Orion team.
      “At the time of the spacecraft lift, I focus solely on what’s going on in the moment of the operation,” explains Tolatovicz. “Listening for the commands from the lift director, making sure everyone is safe, verifying the vehicle is clear, and ensuring the crane is moving correctly.”
      All Orion crane operators are certified after classroom and on-the-job training focusing on areas such as rigging, weight and center of gravity, mastering crane controls, crane securing, assessing safety issues, and emergency procedures. Once certified, they progress through a series of the different lifts required for Orion spacecraft operations, from simple moves to the complex full spacecraft lift.
      “It’s not until after the move is complete and the vehicle is secured that I have a moment to think about how awesome it is to be a part of history on the Orion Program and do what I get to do every day with a team of the most amazing people,” Tolatovicz said.
      Photo credit: NASA/Amanda Stevenson
      View the full article
    • By European Space Agency
      Participants of ESA’s Industry Space Days (ISD 2024) share insights and tips on how to make the most of this space technology business event on 18–19 September at ESA-ESTEC in Noordwijk, The Netherlands.
      View the full article
    • By NASA
      ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA/Goddard/Conceptual Image Lab NASA’s ICON mission studied the outermost layer of Earth’s atmosphere called the ionosphere. ICON provided critical insights into interplay between space weather and Earth’s weather. The mission gathered unprecedented detail of airglow, showed a relationship between the atmosphere’s ions and Earth’s magnetic field lines, and provided the first concrete observation to confirm Earth’s long-theorized ionospheric dynamo. Nearly a year after ICON accomplished its primary mission, communication was lost in November 2022 for unclear reasons. NASA formally concluded the mission after several months of troubleshooting could not regain contact. After contributing to many important findings on the boundary between Earth’s atmosphere and space, the Ionospheric Connection Explorer (ICON) mission has come to an end. ICON launched in October 2019 and after completing its two-year mission objectives in December 2021, it operated as an extended mission for another year.
      “The ICON mission has truly lived up to its name,” said Joseph Westlake, heliophysics division director at NASA Headquarters in Washington. “ICON not only successfully completed and exceeded its primary mission objectives, it also provided critical insights into the ionosphere and the interplay between space and terrestrial weather.”
      The ICON spacecraft studied a part of our planet’s outermost layer of the atmosphere, called the ionosphere. From there, ICON investigated what events impact the ionosphere, including Earth’s weather from below and space weather from above.
      The ionosphere is the lowest boundary of space, located between 55 miles to 360 miles above Earth’s surface. It is made up of a sea of particles that have been ionized, a mix of positively charged ions and negatively charged electrons called plasma. This frontier of space is a dynamic and busy region, home to many satellites — including the International Space Station — and is a conduit for radio communications and GPS signals.

      Video explaining the features of the ionosphere, Earth’s outmost layer of the atmosphere. It is home to the aurora, the International Space Station, a variety of satellites, and radio communication waves.
      NASA/Goddard/Conceptual Image Lab/Krystofer Kim Both satellites and signals can be disrupted by the complex interactions of terrestrial and space weather. Studying and understanding the ionosphere is crucial to understanding space weather and its effects on our technology.
      The ICON mission captured unprecedented data about the ionosphere with direct measurements of the charged gas in its immediate surroundings alongside images of one of the ionosphere’s most stunning features — airglow.
      ICON tracked the colorful bands as they moved through the ionosphere. Airglow is created by a process similar to what creates the aurora. However, airglow occurs around the world, not just the northern and southern latitudes where auroras are typically found. Although airglow is normally dim, ICON’s instruments were specially designed to capture even the faintest glow to build a picture of the ionosphere’s density, composition, and structure.
      The lowest reaches of space glow with bright bands of color called airglow. NASA Through the principle of Doppler shift, ICON’s sensitive imagers also detected the motion of the atmosphere as it glowed. “It’s like measuring a train’s speed by detecting the change in the pitch of its horn — but with light,” said Thomas J. Immel, ICON mission lead at the University of California, Berkeley. The mission was specifically designed to perform this technically difficult measurement.

      A New Ionospheric Perspective
      The ICON mission’s comprehensive view of the upper atmosphere provided valuable data for scientists to unravel for years to come. For instance, its measurements showed how the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption disrupted electrical currents in the ionosphere.
      “ICON was able to capture the speed of the volcanic eruption, allowing us to directly see how it affected the motion of charged particles in the ionosphere,” Immel said. “This was a clear example of the connection between tropical weather and ionospheric structure. ICON showed us how things that happen in terrestrial weather have a direct correlation with events in space.”
      Another scientific breakthrough was ICON’s measurements of the motion of ions in the atmosphere and their relationship with Earth’s magnetic field lines. “It was truly unique,” Immel remarked. “ICON’s measurements of the motion of ions in the atmosphere was scientifically transformational in our understanding of behavior in the ionosphere.”
      Visualization of ICON orbiting Earth and taking measurements of the wind speed (green arrows) and ion fluctuation and direction (red lines) at the geomagnetic field lines (purple lines). When the wind changes direction, the ion fluctuation changes to flow downward.NASA’s Scientific Visualization Studio/William T. Bridgman With ICON’s help, scientists better understand how these interactions drive a process called the ionospheric dynamo. The dynamo, which lies at the bottom of the ionosphere, remained a mystery for decades because it is difficult to observe.
      ICON provided the first concrete observation of winds fueling the dynamo and how this influences space weather. Unpredictable terrestrial winds move plasma around the ionosphere, sending the charged particles shooting out into space or plummeting toward Earth. This electrically charged tug-of-war between the ionosphere and Earth’s electromagnetic fields acts as a generator, creating complex electric and magnetic fields that can affect both technology and the ionosphere itself.
      “No one had ever seen this before,” Immel said. “ICON finally and conclusively provided experimental confirmation of the wind dynamo theory.”

      An Iconic Legacy
      On Nov. 25, 2022, the ICON team lost contact with the spacecraft. Communication with the spacecraft could not be established, even after performing a power cycle reset using a built-in command loss timer. Though the spacecraft remains intact, other troubleshooting techniques were unable to re-establish contact between the ICON spacecraft and mission operators.
      “ICON’s legacy will live on through the breakthrough knowledge it provided while it was active and the vast dataset from its observations that will continue to yield new science,” Westlake said. “ICON serves as a foundation for new missions to come.”
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Media Contact: Sarah Frazier
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 24, 2024 Related Terms
      Earth’s Atmosphere Earth’s Magnetic Field Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Ionosphere Missions Science Mission Directorate Space Weather The Sun Keep Exploring Discover More Topics From NASA
      Missions
      Sun
      Helio Big Year
      Earth
      Your home. Our Mission. And the one planet that NASA studies more than any other.
      View the full article
    • By European Space Agency
      The Farnborough International Airshow is set to return for its 76th edition. Held every two years, the UK’s largest trade airshow will be back at the historic Farnborough Airport in Hampshire from 22 to 26 July 2024. ESA will be there to showcase the agency’s latest achievements and to highlight its next steps and future vision for Europe in space. An intense programme of panels and sessions awaits industry professionals and trade visitors on the first four days, while the public is welcome on 26 July for the public day.
      View the full article
  • Check out these Videos

×
×
  • Create New...