Jump to content

The Earth and the Moon Seen From The Orion Spacecraft #Artemis1 #Shorts


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Conceptualization of the GeoXO constellation.Credits: NOAA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Lockheed Martin Corp. of Littleton, Colorado, to build the spacecraft for NOAA’s Geostationary Extended Observations (GeoXO) satellite program.
      This cost-plus-award-fee contract is valued at approximately $2.27 billion. It includes the development of three spacecraft as well as four options for additional spacecraft. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each spacecraft. The work will take place at Lockheed Martin’s facility in Littleton and NASA’s Kennedy Space Center in Florida.
      The GeoXO constellation will include three operational satellites — east, west and central. Each geostationary, three-axis stabilized spacecraft is designed to host three instruments. The centrally-located spacecraft will carry an infrared sounder and atmospheric composition instrument and can also accommodate a partner payload. Spacecraft in the east and west positions will carry an imager, lightning mapper, and ocean color instrument. They will also support an auxiliary communication payload for the NOAA Data Collection System relay, dissemination, and commanding.
      The contract scope includes the tasks necessary to design, analyze, develop, fabricate, integrate, test, evaluate, and support launch of the GeoXO satellites; provide engineering development units; supply and maintain the ground support equipment and simulators; and support mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the GeoXO program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.
      As part of NOAA’s constellation of geostationary environmental satellites to protect life and property across the Western Hemisphere, the GeoXO program is the follow-on to the Geostationary Operational Environmental Satellites – R (GOES-R) Series Program.
      The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. The advanced capabilities from GeoXO will help assess our changing planet and the evolving needs of the nation’s data users. Together, NASA and NOAA are working to ensure GeoXO’s critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.
      For more information on the GeoXO program, visit:
      https://www.nesdis.noaa.gov/geoxo
      -end-
      Liz Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      John Leslie
      NOAA’s National Environmental Satellite, Data, and Information Service
      202-527-3504
      nesdis.pa@noaa.gov
      Share
      Details
      Last Updated Jun 18, 2024 LocationNASA Headquarters Related Terms
      GOES (Geostationary Operational Environmental Satellite) Earth Observatory Earth Science Division NOAA (National Oceanic and Atmospheric Administration) Science Mission Directorate View the full article
    • By NASA
      The Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) launched together from Cape Canaveral Air Force, now Space Force, Station on June 18, 2009, atop an Atlas V launch vehicle. The primary mission of the LRO, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, involved imaging the entire Moon’s surface to create a 3-D map with ~50-centimeter resolution to aid in the planning of future robotic and crewed missions. In addition, LRO would map the polar regions and search for the presence of water ice. Although its primary mission intended to last only one year, it continues to operate after 15 years in lunar orbit. The LCROSS, managed by NASA’s Ames Research Center in California’s Silicon Valley, planned to further investigate the presence of water ice in permanently shaded areas of the Moon’s polar regions. The two components of LCROSS, the Centaur upper stage of the launch vehicle and the Shepherding Satellite, planned to deliberately crash into the Moon. Instruments on Earth and aboard LRO and the LCROSS Shepherding Satellite would observe the resulting plumes and analyze them for the presence of water.

      Left: Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud. Right: Launch of LRO and LCROSS on an Atlas V rocket.
      The LRO spacecraft carries seven scientific instruments:
      the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to characterize the lunar radiation environment; the Diviner Lunar Radiometer Experiment (DLRE) to identify areas cold enough to trap ice; the Lyman-Alpha Mapping Project (LMAP) to search for ice in the lunar polar regions; the Lunar Exploration Neutron Detector (LEND) to create a map of hydrogen distribution and to determine the neutron component of the lunar radiation environment; the Lunar Orbiter Laser Altimeter (LOLA) to measure slopes and roughness of potential landing sites; the Lunar Reconnaissance Orbiter Camera (LROC) consisting of two-narrow angle and one wide-angle camera to take high-resolution images of the lunar surface; and the Mini Radio Frequency (Mini-RF) experiment, an advanced radar system to image the polar regions and search for water ice.
      Left: Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments. Right: Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left.
      The LCROSS Shepherding Satellite carried nine instruments – five cameras (one visible, two near-infrared, and two mid-infrared); three spectrometers (one visible and two near-infrared); and a photometer. They monitored the plume sent up by the impact of the Centaur upper stage.

      Left: Illustration of the Lunar Reconnaissance Orbiter in lunar orbit. Right: Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact.
      On June 23, 2009, after a four-and-a-half-day journey from Earth, LRO entered an elliptical polar orbit around the Moon. Over the next four days, four engine burns refined the spacecraft’s orbit and engineers on the ground began commissioning its instruments. The LROC returned its first image of the Moon on June 30 of an area near the Mare Nubium. On Sept. 15, 2009, LRO began its primary one-year mission to map the lunar surface from its science orbit 31 miles above the Moon.  
      On Oct. 9, 2009, first the Centaur upper stage followed five minutes later by the LCROSS Shepherding Satellite crashed into the Moon’s Cabeus Crater near the lunar south pole. Although the impacts created smaller plumes than anticipated, instruments detected signs of water in the ejected debris.
      In September 2010, LRO completed its primary mapping mission and began an extended science mission around the Moon. On Dec. 17, NASA released the most detailed topographic map covering more than 98 percent of the Moon’s surface based on data from LRO’s LOLA instrument. The map continues to be updated as new data are received from the spacecraft. On March 15, 2011, LRO had made available more than 192 terabytes of data from its primary mission to the NASA Planetary Data System, or PDS, to make the information available to researchers, students, media, and the general public. LRO  continues to deliver data to the PDS, having generated the largest volume of data from a NASA planetary science mission ever.

      Left: First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Middle: Mosaic of LRO images of the Moon’s near side. Right: Mosaic of LRO images of the Moon’s far side.

      Left: Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole. Right: Mosaic of LRO images of the lunar south pole.
      The LCROSS data showed that the lunar soil within shadowy craters is rich in useful materials, such as hydrogen gas, ammonia, and methane, which could be used to produce fuel for space missions. Large amounts of light metals, such as sodium, mercury, and silver, were discovered. The data revealed that there is perhaps as much as hundreds of millions of tons of frozen water on the Moon, enough to make it an effective oasis for future explorers.
      Thanks to its unique vantage point in a low altitude lunar orbit, LRO’s camera has taken remarkably detailed images of all six Apollo landing sites. The detail is such that not only can the Lunar Module (LM) descent stages be clearly identified, but disturbances of the lunar soil by the astronauts’ boots, the shadows of the American flag are visible at five of the landing sites, and the Lunar Rovers from the last three missions are even visible. The scientific instruments, and in at least three of the landing sites, the U.S. flag left by the astronauts can be discerned. The flag at the Apollo 11 site cannot be seen because it most likely was blown over by the exhaust of the LM’s ascent stage engine when the astronauts lifted off. In addition to the Apollo landing sites, LRO has also imaged crash and soft-landing sites of other American, Soviet, Chinese, Indian, and Israeli spacecraft, including craters left by the deliberate impacts of Apollo S-IVB upper stages. It also imaged a Korean satellite in lunar orbit as the two flew within a few miles of each other at high speed. LRO also turned its camera Earthward to catch stunning Earthrise views, one image with Mars in the background, and the Moon’s shadow on the Earth during the total solar eclipse on April 8, 2024.

      Lunar Reconnaissance Orbiter images of the Apollo 11, left, 12, and 14 landing sites.

      Lunar Reconnaissance Orbiter images of the Apollo 15, left, 16, and 17 landing sites.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed. Middle: LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019. Right: LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024. Middle: LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour. Right: LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015. Middle: LRO image of Earth and Mars taken Oct. 2, 2014. Right: LRO image of the total solar eclipse taken on April 8, 2024.
      The LRO mission continues with the spacecraft returning images and data from its instruments. LRO has enough fuel on board to operate until 2027. The spacecraft can support new robotic lunar activities and the knowledge from the mission will help aid in the return of humans to the lunar surface. 
      View the full article
    • By USH
      Over the years, much has been published about the strange things that happen on the dark side of the moon. 

      The far side of the moon has been a mystery since the dawn of the space age. But is it just a barren, crater-filled wasteland? 
      Shocking claims from astronauts, whistleblowers, and classified documents suggest there's more to the story. Eerie sounds, inexplicable sightings, and covert missions point to something astounding hidden from public view. 
      Before delving into the evidence, which ranges from Apollo-era transcripts to insights from modern military insiders, it's worth noting an intriguing paper recently released by Harvard. Titled "The Cryptoterrestrial Hypothesis. This paper proposes among other themes that UAPs (Unidentified Aerial Phenomena) might be the result of activities by intelligent beings hidden here on Earth eventually underground or in nearby areas such as the moon. (Notion: The dark of the side of the moon could be an excellent place to hide.) 
      But the Harvard paper has suddenly disappeared... though we saved you a copy: https://bit.ly/4b1xk11 
      The implications are staggering, hinting at a secret history beyond our world.
        View the full article
    • By NASA
      This image from NASA’s Lunar Reconnaissance Orbiter shows China’s Chang’e 6 lander in the Apollo basin on the far side of the Moon on June 7, 2024. The lander is the bright dot in the center of the image. The image is about 0.4 miles wide (650 meters); lunar north is up.Credit: NASA/Goddard/Arizona State University NASA’s LRO (Lunar Reconnaissance Orbiter) imaged China’s Chang’e 6 sample return spacecraft on the far side of the Moon on June 7. Chang’e 6 landed on June 1, and when LRO passed over the landing site almost a week later, it acquired an image showing the lander on the rim of an eroded, 55-yard-diameter (about 50 meters) crater. 
      The LRO Camera team computed the landing site coordinates as about 42 degrees south latitude, 206 degrees east longitude, at an elevation of about minus 3.27 miles (minus 5,256 meters).
      This before and after animation of LRO images shows the appearance of the Chang’e 6 lander. The increased brightness of the terrain surrounding the lander is due to disturbance from the lander’s engines and is similar to the blast zone seen around other lunar landers. The before image is from March 3, 2022, and the after image is from June 7, 2024.Credit: NASA/Goddard/Arizona State University The Chang’e 6 landing site is situated toward the southern edge of the Apollo basin (about 306 miles or 492 km in diameter, centered at 36.1 degrees south latitude, 208.3 degrees east longitude). Basaltic lava erupted south of Chaffee S crater about 3.1 billion years ago and flowed downhill to the west until it encountered a local topographic high, likely related to a fault. Several wrinkle ridges in this region have deformed and raised the mare surface. The landing site sits about halfway between two of these prominent ridges. This basaltic flow also overlaps a slightly older flow (about 3.3 billion years old), visible further west, but the younger flow is distinct because it has higher iron oxide and titanium dioxide abundances.
      A regional context map of the Chang’e 6 landing site. Color differences have been enhanced for clarity. The dark area is a basaltic mare deposit; bluer areas of the mare are higher-titanium flows. Contour lines marking 100-meter (about 328 feet) elevation intervals are overlaid to provide a sense of the topography. Image is about 118 miles (190 km) across. Credit: NASA/Goddard/Arizona State University LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University's LRO Camera website Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAGoddard@NASAMoon@NASASolarSystem @NASAGoddard@NASAMoon@NASASolarSystem Instagram logo @NASAGoddard@NASASolarSystem Share
      Details
      Last Updated Jun 14, 2024 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon Goddard Space Flight Center Planetary Science The Solar System Explore More
      1 min read NASA’s LRO Spots Japan’s Moon Lander 
      Article 5 months ago 2 min read NASA’s LRO Images Intuitive Machine’s Odysseus Lander
      Article 4 months ago 2 min read NASA’s LRO Finds Photo Op as It Zips Past SKorea’s Danuri Moon Orbiter
      Article 2 months ago View the full article
    • By NASA
      NASA’s Pegasus barge delivers the SLS (Space Launch System) rocket’s core stage for the 2022 Artemis I mission to the turn basin at Kennedy Space Center in Florida in April 2021. Credits: NASA/Michael Downs Media are invited in late July to NASA’s Kennedy Space Center in Florida to see progress on the agency’s SLS (Space Launch System) Moon rocket as preparations continue for the Artemis II test flight around the Moon.
      Participants joining the multi-day events will see the arrival and unloading of the 212-foot-tall SLS core stage at the center’s turn basin before it is transported to the nearby Vehicle Assembly Building. The stage will arrive on NASA’s Pegasus barge from the agency’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
      Media also will see the twin pair of solid rocket boosters inside the Rotation, Processing, and Surge Facility at the spaceport, where NASA’s Exploration Ground Systems Program is processing the motor segments in preparation for rocket assembly. NASA and industry subject matter experts will be available to answer questions. At launch, the SLS rocket’s two solid rocket boosters and four RS-25 engines, located at the base of its core stage, will produce 8.8 million pounds of thrust to send the first crewed mission of the Artemis campaign around the Moon.
      Media interested in participating must apply for credentials at:
      https://media.ksc.nasa.gov
      To receive credentials, international media must apply by Friday, June 28, and U.S. citizens must apply by Thursday, July 5.
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the activities when they are finalized. NASA’s media accreditation policy is available online. For questions about accreditation, please email ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      The approximately 10-day Artemis II flight will test NASA’s SLS rocket, Orion spacecraft, and ground systems for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon.
      Learn more about Artemis at:
      www.nasa.gov/artemis/
      -end-
      Rachel Kraft 
      Headquarters, Washington 
      281-358-1100  
      rachel.h.kraft@nasa.gov  
      Tiffany Fairley/Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      tiffany.l.fairley@nasa.gov/antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Humans in Space Kennedy Space Center Space Launch System (SLS) View the full article
  • Check out these Videos

×
×
  • Create New...