Jump to content

Hall of mirrors for Proba-3 laser testing


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. Leadership from NASA and Boeing will participate in a media teleconference at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test mission aboard the International Space Station.
      Audio of the media teleconference will stream live on the agency’s website:
      https://www.nasa.gov/nasatv
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour prior to the start of the call at ksc-newsroom@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the call.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
    • By Space Force
      In partnership with NASA and the National Geospatial-Intelligence Agency, the U.S. Space Force GPS III Program Office has delivered two laser retroflector arrays to Lockheed Martin.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coby Asselin, from left, Adam Curry, and L. J. Hantsche set up the data acquisition systems used during testing of a senor to determine parachute canopy material strength at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris Landing rovers and helicopters on Mars is a challenge. It’s an even bigger challenge when you don’t have enough information about how the parachutes are enduring strain during the descent to the surface. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California, are experimenting with readily available, highly elastic sensors that can be fixed to a parachute during testing to provide the missing data.
      Knowing how the canopy material stretches during deployment can enhance safety and performance by quantifying the limits of the fabric and improving existing computer models for more reliable parachutes for tasks such as landing astronauts on Earth or delivering scientific instruments and payloads to Mars. This is the work Enhancing Parachutes by Instrumenting the Canopy, or EPIC, seeks to advance the ability to measure the strain on a parachute.
      “We are aiming to prove which sensors will work for determining the strain on parachute canopy material without compromising it,” said L.J. Hantsche, project manager. NASA’s Space Technology Mission Directorate funds the team’s work through the Early Career Initiative project.
      Starting with 50 potential sensor candidates, the team narrowed down and tested 10 kinds of different sensors, including commercially available and developmental sensors. The team selected the three most promising sensors for continued testing. Those include a silicone-based sensor that works by measuring a change in storage of electrical charge as the sensor is stretched. It is also easy to attach to data recording systems, Hantsche explained. The second sensor is a small, stretchable braided sensor that measures the change in electrical storage. The third sensor is made by printing with a metallic ink onto a thin and pliable plastic.
      The test team prepares a test fixture with a nylon fabric sample at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Pressure is applied to a test fixture with a nylon fabric sample until it fails at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. In this frame, the silicone bladder is visible underneath the torn fabric after it was inflated to failure. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Determining methods to bond each of the sensors to super thin and slippery canopy material was hard, Hantsche said. Once the team figured out how to attach the sensors to the fabric, they were ready to begin testing.
      “We started with uniaxial testing, where each end of the parachute material is secured and then pulled to failure,” she said. “The test is important because the stretching of the sensor causes its electrical response. Determining the correlation of strain and the sensor response when it is on the fabric is one of our main measurement goals.”
      This stage of testing was accomplished in partnership with NASA’s Jet Propulsion Laboratory in Pasadena, California. A high-speed version of this test, which simulates the speed of the parachute deployment, was performed at NASA’s Glenn Research Center in Cleveland.
      The team used a bubble test for the sensors, which simulates testing of a 3D parachute. It consists of the fabric sample and a silicone membrane sandwiched between a four-inch-diameter ring and the test structure. When it is pressurized from the inside, the silicone membrane expands the fabric and sensor into a bubble shape. The test is used to validate the sensor’s performance as it bends and is compared to the other test results.
      Erick Rossi De La Fuente, from left, John Rudy, L. J. Hantsche, Adam Curry, Jeff Howell, Coby Asselin, Benjamin Mayeux, and Paul Bean pose with a test fixture, material, sensor, and data acquisition systems at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris With the EPIC project nearing completion, follow-on work could include temperature tests, developing the data acquisition system for flight, determining if the sensor can be packed with a parachute without adverse effects, and operating the system in flight. The EPIC team is also working with researchers at NASA’s Langley Research Center in Hampton, Virginia, to flight test their sensors later this year using the center’s drone test, which drops a capsule with a parachute.
      In addition, the EPIC team is partnering with the Entry Systems Modeling Group at NASA’s Ames Research Center in California’s Silicon Valley to propose an all-encompassing parachute project aimed at better understanding parachutes through modeling and test flights. The collaborative NASA project may result in better parachutes that are safer and more dependable for the approaching era of exploration.
      Share
      Details
      Last Updated Jun 27, 2024 Related Terms
      Armstrong Flight Research Center Ames Research Center Glenn Research Center Jet Propulsion Laboratory Langley Research Center Space Technology Mission Directorate Explore More
      1 min read Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families
      Article 43 mins ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits
      Article 1 hour ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 22 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      “HuskyWorks,” a team from Michigan Technological University’s Planetary Surface Technology Development Lab, tests the excavation tools of a robot on a concrete slab, held by a gravity-offloading crane on June 12 at NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. Led by Professor Paul van Susante, the team aimed to mimic the conditions of the lunar South Pole, winning an invitation to use the thermal vacuum chambers at NASA’s Marshall Space Flight Center to continue robotic testing. Read more about NASA’s Break the Ice Lunar Challenge.
      NASA/Jonathan Deal 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Yvette Harris shares her story with the audience during the Military Basketball Association Hall of Fame Induction. Credit:  The Montford Point Marine Association/Joe Geeter  The Military Basketball Association (MBA) has inducted Yvette V. Harris, Office of Diversity and Equal Opportunity director at NASA’s Glenn Research Center in Cleveland, into the 2024 MBA Hall of Fame. Harris, a United States Marine Corps veteran, was inducted during a ceremony on May 23 in Philadelphia. 
      Harris joined the Marines Corps in 1985, and the day she checked in at Camp Lejeune she became a member of the All-Camp Basketball Team. There were 10 female basketball teams on the installation, and the All-Camp Team consisted of the best 12 players.  
      For the next 14 years, regardless of her duty station, Harris played for Camp Lejeune. She was stationed with the Navy from 1989 to 1991 and was team captain on that team. They won several tournaments. While stationed at the Marine Corps Air Station in Cherry Point, North Carolina, from 1991 to 1993, Harris was named Female Athlete of the Year for that base, named Tournament Most Valuable Player, and received various All-Camp Awards. 
        
      Prior to Harris’ arrival at the Marine Corps Logistics Base in Albany, Georgia, in 1996, there was no women’s basketball program at the installation. Harris began recruiting players and a coach, and she was the team captain from 1997 to 2001.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Visits Duluth for Air and Aviation Expo, STEAM Festival  
      Article 9 mins ago 1 min read TECH Day at NASA Attracts Middle School Students 
      Article 9 mins ago 21 min read NASA Ames Astrogram – May/June 2024
      Article 4 days ago View the full article
  • Check out these Videos

×
×
  • Create New...