Jump to content

NASA Awards Extension for Space, Earth Science Data Analysis Contract


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Drones are being raced against the clock at Delft University of Technology’s ‘Cyber Zoo’ to test the performance of neural-network-based AI control systems planned for next-generation space missions.
      View the full article
    • By NASA
      2 min read
      NASA Releases Hubble Image Taken in New Pointing Mode
      This NASA Hubble Space Telescope features the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU) NASA’s Hubble Space Telescope has taken its first new images since changing to an alternate operating mode that uses one gyro.
      The spacecraft returned to science operations June 14 after being offline for several weeks due to an issue with one of its gyroscopes (gyros), which help control and orient the telescope.
      This new image features NGC 1546, a nearby galaxy in the constellation Dorado. The galaxy’s orientation gives us a good view of dust lanes from slightly above and backlit by the galaxy’s core. This dust absorbs light from the core, reddening it and making the dust appear rusty-brown. The core itself glows brightly in a yellowish light indicating an older population of stars. Brilliant-blue regions of active star formation sparkle through the dust. Several background galaxies also are visible, including an edge-on spiral just to the left of NGC 1546.
      Hubble’s Wide Field Camera 3 captured the image as part of a joint observing program between Hubble and NASA’s James Webb Space Telescope. The program also uses data from the Atacama Large Millimeter/submillimeter Array, allowing scientists to obtain a highly detailed, multiwavelength view of how stars form and evolve.
      The image represents one of the first observations taken with Hubble since transitioning to the new pointing mode, enabling more consistent science operations. The NASA team expects that Hubble can do most of its science observations in this new mode, continuing its groundbreaking observations of the cosmos.
      “Hubble’s new image of a spectacular galaxy demonstrates the full success of our new, more stable pointing mode for the telescope,” said Dr. Jennifer Wiseman, senior project scientist for Hubble at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re poised now for many years of discovery ahead, and we’ll be looking at everything from our solar system to exoplanets to distant galaxies. Hubble plays a powerful role in NASA’s astronomical toolkit.”
      Launched in 1990, Hubble has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries.
      Resources

      Download the image above


      NASA’s Hubble Restarts Science in New Pointing Mode


      Operating Hubble with Only One Gyroscope


      Hubble Pointing and Control


      Hubble Science Highlights


      Hubble Images

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 18, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA’s Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Design



      Hubble Science



      Hubble’s Galaxies


      View the full article
    • By NASA
      3 min read
      Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo
      June 18, 2024
      At NASA we always say that exploration enables science, and science enables exploration. During a recent, quick trip to Tokyo, Japan with our Associate Administrator for the Exploration Systems Development Mission Directorate (ESDMD), Cathy Koerner, I had an opportunity to share this message with our partners at the Japanese Aerospace Exploration Agency (JAXA).
      We explore for several reasons but primarily to benefit humanity. How exactly does exploration benefit humanity? By accepting audacious challenges like retuning to the Moon and venturing on to Mars, we inspire and motivate current and future generations of scientists, engineers, problem solvers, and communicators to contribute to our mission and other national priorities. By conducting scientific investigations in deep space, on the Moon, and on Mars, we enhance our understanding of the universe and our place in it. And finally, what we achieve when we explore, how it’s accomplished, and who participates benefits international partnerships and global cooperation that are essential for enhancing the quality of life for all.
      NASA Associate Administrator for the Science Mission Directorate, Dr. Nicky Fox, and Associate Administrator for the Exploration systems Development Mission Directorate, Cathy Koerner, meet with the Japanese Aerospace Exploration Agency (JAXA) in Tokyo, Japan on June 11, 2024. Credits: NASA In addition to bi-lateral meetings with our JAXA partners, Cathy and I co-presented at the International Space Exploration Symposium where I shared how every NASA Science division has a stake in Artemis. Cathy provided updates on the Orion spacecraft, SLS rocket, Gateway, human landing systems, and advanced spacesuits, and I talked about all of the incredible science we will conduct along the way. The Artemis campaign is a series of increasingly complex missions that provide ever-growing capabilities for scientific exploration of the Moon. From geology to solar, biological, and fundamental physics phenomena, exploration teaches about the earliest solar system environment: whether and how the bombardments of nascent worlds influenced the emergence of life, how the Earth and Moon formed and evolved, and how volatiles (like water) and other potential resources were distributed and transported throughout the solar system.
      Together with our partners like JAXA, NASA is working towards establishing infrastructure for long-term exploration in lunar orbit and on the surface. For example, on Artemis III, JAXA will provide the Lunar Dielectric Analyzer instrument, which once installed near the lunar South Pole, will help collect valuable scientific data about the lunar environment, it’s interior, and how to sustain a long-duration human presence on the Moon. In April, the U.S. and Japan were proud to make a historic announcement for cooperation on the Moon. Japan will design, develop, and operate a pressurized rover for crewed and uncrewed exploration on the Moon. NASA will launch and deliver the rover, and provide two opportunities for Japanese astronauts to travel to the lunar surface. This historic agreement was highlighted by President Biden and Prime Minister Kishida and is an example of the strong relationship between the United States and Japan. The enclosed and pressurized rover will be able to accommodate two astronauts on the lunar surface for 30 days, and will have a lifespan of about 10 years, enabling it to be used for multiple missions. It will enable longer-duration expeditions, so that astronauts can conduct more moonwalks and perform more science in geographically diverse areas near the lunar South Pole.
      Artemis is different than anything humanity has ever done before. The Artemis campaign will bring the world along for this historic journey, forever changing humanity’s perspective of our place in the universe. This is the start of a lunar ecosystem, where we’ll do more science than we can dream of, together.
      Explore More
      3 min read NASA’s Hubble Restarts Science in New Pointing Mode


      Article


      4 days ago
      2 min read Hubble Observes a Cosmic Fossil


      Article


      4 days ago
      5 min read Associate Administrator for the Science Mission Directorate Visits Partners in Spain, United Kingdom, Greece, and France


      Article


      1 week ago
      View the full article
    • By NASA
      Credits: NASA NASA has awarded the Goddard Logistics Services Contract to TRAX International Corporation of Las Vegas to provide logistics services and management for NASA missions.
      The cost-plus-fixed-fee contract includes a base period and up to five options with a potential contract value of approximately $265 million if all options are exercised. The basic period of performance is from Thursday, Aug. 1, 2024, to July 21, 2025. The five option periods, if exercised, would extend the contract through Jan. 31, 2030.
      Under this contract, TRAX will provide disposal operations, export control, equipment management, mail, supply, materials, and transportation for NASA. The work will be performed at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, Wallops Flight Facility in Virginia, and NASA Headquarters in Washington.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2024 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center NASA Centers & Facilities NASA Headquarters Wallops Flight Facility View the full article
    • By NASA
      Conceptualization of the GeoXO constellation.Credits: NOAA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Lockheed Martin Corp. of Littleton, Colorado, to build the spacecraft for NOAA’s Geostationary Extended Observations (GeoXO) satellite program.
      This cost-plus-award-fee contract is valued at approximately $2.27 billion. It includes the development of three spacecraft as well as four options for additional spacecraft. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each spacecraft. The work will take place at Lockheed Martin’s facility in Littleton and NASA’s Kennedy Space Center in Florida.
      The GeoXO constellation will include three operational satellites — east, west and central. Each geostationary, three-axis stabilized spacecraft is designed to host three instruments. The centrally-located spacecraft will carry an infrared sounder and atmospheric composition instrument and can also accommodate a partner payload. Spacecraft in the east and west positions will carry an imager, lightning mapper, and ocean color instrument. They will also support an auxiliary communication payload for the NOAA Data Collection System relay, dissemination, and commanding.
      The contract scope includes the tasks necessary to design, analyze, develop, fabricate, integrate, test, evaluate, and support launch of the GeoXO satellites; provide engineering development units; supply and maintain the ground support equipment and simulators; and support mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the GeoXO program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.
      As part of NOAA’s constellation of geostationary environmental satellites to protect life and property across the Western Hemisphere, the GeoXO program is the follow-on to the Geostationary Operational Environmental Satellites – R (GOES-R) Series Program.
      The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. The advanced capabilities from GeoXO will help assess our changing planet and the evolving needs of the nation’s data users. Together, NASA and NOAA are working to ensure GeoXO’s critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.
      For more information on the GeoXO program, visit:
      https://www.nesdis.noaa.gov/geoxo
      -end-
      Liz Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      John Leslie
      NOAA’s National Environmental Satellite, Data, and Information Service
      202-527-3504
      nesdis.pa@noaa.gov
      Share
      Details
      Last Updated Jun 18, 2024 LocationNASA Headquarters Related Terms
      GOES (Geostationary Operational Environmental Satellite) Earth Observatory Earth Science Division NOAA (National Oceanic and Atmospheric Administration) Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...