Jump to content

Martian dust storms churn up Earth-like clouds

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The New Shepard crew capsule descends under parachutes during its launch Tuesday, Dec. 19, 2023.Photo Credit: Blue Origin Researchers are studying data from a recent suborbital flight test to better understand lunar regolith, or Moon dust, and its potentially damaging effects as NASA prepares to send astronauts back to the lunar surface under the Artemis campaign. The experiment, developed jointly by NASA and the University of Central Florida, sheds light on how these abrasive dust grains interact with astronauts, their spacesuits, and other equipment on the Moon. 
      The Electrostatic Regolith Interaction Experiment (ERIE) was one of 14 NASA-supported payloads launched on Dec. 19 aboard Blue Origin’s New Shepard uncrewed rocket from Launch Site One in West Texas. During the flight test, ERIE collected data to help researchers at the agency’s Kennedy Space Center in Florida study tribocharging, or friction-induced charges, in microgravity.  
      The Moon is highly charged by phenomena such as solar wind and ultraviolet light from the Sun. Under those conditions, regolith grains are attracted to lunar explorers and their equipment – think of it as similar to the static created by rubbing a balloon on a person’s head. Enough regolith can cause instruments to overheat or not function as intended.  
      “For example, if you get dust on an astronaut suit and bring it back into the habitat, that dust could unstick and fly around the cabin,” said Krystal Acosta, a researcher for NASA’s triboelectric sensor board component inside the ERIE payload. “One of the major problems is that there’s no way to electrically ground anything on the Moon. So even a lander, rover, or really any object on the Moon will have polarity to it. There’s no good solution to the dust charging problem right now.” 
      A Kennedy team designed and built the triboelectric sensor board inside the ERIE payload, which reached an altitude of 351,248 feet aboard New Shepard. In the microgravity phase of this flight, dust grains simulating regolith particles brushed up against eight insulators within ERIE, creating a tribocharge. The electrometer measured the negative and positive charge of the simulated regolith as it traveled through an electric field applied during microgravity. 
      “We want to know what causes the dust to charge, how it moves around, and where it ultimately settles. The dust has rough edges that can scratch surfaces and block thermal radiators,” said Jay Phillips, lead of Electrostatics Environments and Spacecraft Charging at NASA Kennedy. 
      University of Central Florida (UCF) and NASA physicists who worked on the ERIE payload pose with Blue Origin booster after launch Tuesday, Dec. 19, 2023. From left to right, Addie Dove, UCF PI for ERIE, Krystal Acosta, NASA researcher, and Jay Phillips, NASA researcher. The ERIE payload spent approximately three minutes in microgravity during the New Shepard capsule’s suborbital flight, which lasted about 10 minutes before landing safely back on Earth in the Texas desert. A camera recorded the interactions, and Philips and his team are reviewing the data.  
      The results will inform applications for future missions destined for the lunar surface. For example, by using triboelectric sensors on a rover’s wheels, astronauts can measure the positive and negative charges between the vehicle and regolith on the lunar surface. The end goal is to develop technologies that will help keep it from sticking to and damaging astronaut suits and electronics during missions. 
      The flight was supported by the Flight Opportunities program, part of NASA’s Space Technology Mission Directorate, which rapidly demonstrates space technologies with industry flight providers. 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While stationary for two weeks during Mars solar conjunction in November 2023, NASA’s Curiosity rover used its front and rear black-and-white Hazcams to capture 12 hours of a Martian day. The rover’s shadow is visible on the surface in these images taken by the front Hazcam. Videos from the rover show its shadow moving across the Martian surface during a 12-hour sequence while Curiosity remained parked.
      When NASA’s Curiosity Mars rover isn’t on the move, it works pretty well as a sundial, as seen in two black-and-white videos recorded on Nov. 8, the 4,002nd Martian day, or sol, of the mission. The rover captured its own shadow shifting across the surface of Mars using its black-and-white Hazard-Avoidance Cameras, or Hazcams.
      Instructions to record the videos were part of the last set of commands beamed up to Curiosity just before the start of Mars solar conjunction, a period when the Sun is between Earth and Mars. Because plasma from the Sun can interfere with radio communications, missions hold off on sending commands to Mars spacecraft for several weeks during this time. (The missions weren’t totally out of contact: They still radioed back regular health check-ins throughout conjunction.)
      Rover drivers normally rely on Curiosity’s Hazcams to spot rocks, slopes, and other hazards that may be risky to traverse. But because the rover’s other activities were intentionally scaled back just prior to conjunction, the team decided to use the Hazcams to record 12 hours of snapshots for the first time, hoping to capture clouds or dust devils that could reveal more about the Red Planet’s weather.
      When the images came down to Earth after conjunction, scientists didn’t see any weather of note, but the pair of 25-frame videos they put together do capture the passage of time. Extending from 5:30 a.m. to 5:30 p.m. local time, the videos show Curiosity’s silhouette shifting as the day moves from morning to afternoon to evening.
      The first video, featuring images from the front Hazcam, looks southeast along Gediz Vallis, a valley found on Mount Sharp. Curiosity has been ascending the base of the 3-mile-tall (5-kilometer-tall) mountain, which sits in Gale Crater, since 2014.
      As the sky brightens during sunrise, the shadow of the rover’s 7-foot (2-meter) robotic arm moves to the left, and Curiosity’s front wheels emerge from the darkness on either side of the frame. Also becoming visible at left is a circular calibration target mounted on the shoulder of the robotic arm. Engineers use the target to test the accuracy of the Alpha Particle X-ray Spectrometer, an instrument that detects chemical elements on the Martian surface.
      In the middle of the day, the front Hazcam’s autoexposure algorithm settles on exposure times of around one-third of a second. By nightfall, that exposure time grows to more than a minute, causing the typical sensor noise known as “hot pixels” that appears as white snow across the final image.
      Curiosity’s rear Hazcam captured the shadow of the back of the rover in this 12-hour view looking toward the floor of Gale Crater. A variety of factors caused several image artifacts, including a black speck, the distorted appearance of the Sun, and the rows of white pixels that streak out from the Sun.NASA/JPL-Caltech The second video shows the view of the rear Hazcam as it looks northwest down the slopes of Mount Sharp to the floor of Gale Crater. The rover’s right rear wheel is visible, along with the shadow of Curiosity’s power system. A small black artifact that appears at the left midway through the video, during the 17th frame, resulted from a cosmic ray hitting the camera sensor. Likewise, the bright flashing and other noise at the end of the video are the result of heat from the spacecraft’s power system affecting the Hazcam’s image sensor.
      These images have been re-projected to correct the wide-angle lenses of the Hazcams. The speckled appearance of the images, especially prominent in the rear-camera video, is due to 11 years of Martian dust settling on the lenses.
      More About the Mission
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more about Curiosity, visit:
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Last Updated Dec 28, 2023 Related Terms
      Curiosity (Rover) Mars Planets The Solar System Explore More
      5 min read NASA’s Juno to Get Close Look at Jupiter’s Volcanic Moon Io on Dec. 30
      Article 1 day ago 5 min read NASA Asteroid Sampling Mission Renamed OSIRIS-APEX for New Journey
      The former OSIRIS-REx spacecraft sets off on a journey to study asteroid Apophis and take…
      Article 6 days ago 4 min read NASA’s Hubble Watches ‘Spoke Season’ on Saturn
      This photo of Saturn was taken by NASA’s Hubble Space Telescope on October 22, 2023,…
      Article 1 week ago Keep Exploring Discover Related Topics
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      This 360-degree mosaic from the “Airey Hill” location inside Jezero Crater was generated using 993 individual images taken by the Perseverance Mars rover’s Mastcam-Z from Nov. 3-6. The rover remained parked at Airey Hill for several weeks during solar conjunction.NASA/JPL-Caltech/ASU/MSSS Now at 1,000 days on Mars, the mission has traversed an ancient river and lake system, collecting valuable samples along the way.
      Marking its 1,000th Martian day on the Red Planet, NASA’s Perseverance rover recently completed its exploration of the ancient river delta that holds evidence of a lake that filled Jezero Crater billions of years ago. The six-wheeled scientist has to date collected a total of 23 samples, revealing the geologic history of this region of Mars in the process.
      One sample called “Lefroy Bay” contains a large quantity of fine-grained silica, a material known to preserve ancient fossils on Earth. Another, “Otis Peak,” holds a significant amount of phosphate, which is often associated with life as we know it. Both of these samples are also rich in carbonate, which can preserve a record of the environmental conditions from when the rock was formed.
      The discoveries were shared Tuesday, Dec. 12, at the American Geophysical Union fall meeting in San Francisco.
      “We picked Jezero Crater as a landing site because orbital imagery showed a delta – clear evidence that a large lake once filled the crater. A lake is a potentially habitable environment, and delta rocks are a great environment for entombing signs of ancient life as fossils in the geologic record,” said Perseverance’s project scientist, Ken Farley of Caltech. “After thorough exploration, we’ve pieced together the crater’s geologic history, charting its lake and river phase from beginning to end.”
      This image of Mars’ Jezero Crater is overlaid with mineral data detected from orbit. The green color represents carbonates – minerals that form in watery environments with conditions that might be favorable for preserving signs of ancient life. NASA’s Perseverance is currently exploring the green area above Jezero’s fan (center).NASA/JPL-Caltech/MSSS/JHU-APL Jezero formed from an asteroid impact almost 4 billion years ago. After Perseverance landed in February 2021, the mission team discovered the crater floor is made of igneous rock formed from magma underground or from volcanic activity at the surface. They have since found sandstone and mudstone, signaling the arrival of the first river in the crater hundreds of millions of years later. Above these rocks are salt-rich mudstones, signaling the presence of a shallow lake experiencing evaporation. The team thinks the lake eventually grew as wide as 22 miles (35 kilometers) in diameter and as deep as 100 feet (30 meters).
      Later, fast-flowing water carried in boulders from outside Jezero, distributing them atop of the delta and elsewhere in the crater.
      “We were able to see a broad outline of these chapters in Jezero’s history in orbital images, but it required getting up close with Perseverance to really understand the timeline in detail,” said Libby Ives, a postdoctoral fellow at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission.
      Enticing Samples
      The samples Perseverance gathers are about as big as a piece of classroom chalk and are stored in special metal tubes as part of the Mars Sample Return campaign, a joint effort by NASA and ESA (European Space Agency). Bringing the tubes to Earth would enable scientists to study the samples with powerful lab equipment too large to take to Mars.
      This animated artist’s concept depicts water breaking through the rim of Mars’ Jezero Crater, which NASA’s Perseverance rover is now exploring. Water entered the crater billions of years ago, forming a lake, delta, and rivers before the Red Planet dried up. NASA/JPL-Caltech To decide which samples to collect, Perseverance first uses an abrasion tool to wear away a patch of a prospective rock and then studies the rock’s chemistry using precision science instruments, including the JPL-built Planetary Instrument for X-ray Lithochemistry, or PIXL.
      At a target the team calls “Bills Bay,” PIXL spotted carbonates – minerals that form in watery environments with conditions that might be favorable for preserving organic molecules. (Organic molecules form by both geological and biological processes.) These rocks were also abundant with silica, a material that’s excellent at preserving organic molecules, including those related to life.
      “On Earth, this fine-grained silica is what you often find in a location that was once sandy,” said JPL’s Morgan Cable, the deputy principal investigator of PIXL. “It’s the kind of environment where, on Earth, the remains of ancient life could be preserved and found later.”
      Perseverance’s instruments are capable of detecting both microscopic, fossil-like structures and chemical changes that may have been left by ancient microbes, but they have yet to see evidence for either.
      PIXL, one of the instruments aboard NASA’s Perseverance Mars rover, analyzed the chemical makeup of an area of abraded rock dubbed “Ouzel Falls,” finding it rich in minerals containing phosphate, a material found in the DNA and cell membranes of all known life.NASA/JPL-Caltech/MSSS Analyzing this abraded rock patch dubbed “Bills Bay,” the PIXL instrument on NASA’s Perseverance Mars rover found it rich in carbonates (purple) and silica (green), both of which are good at preserving signs of ancient life. The image is overlaid with the instrument’s chemical data.NASA/JPL-Caltech/MSSS At another target PIXL examined, called “Ouzel Falls,” the instrument detected the presence of iron associated with phosphate. Phosphate is a component of DNA and the cell membranes of all known terrestrial life and is part of a molecule that helps cells carry energy.
      After assessing PIXL’s findings on each of these abrasion patches, the team sent up commands for the rover to collect rock cores close by: Lefroy Bay was collected next to Bills Bay, and Otis Peak at Ouzel Falls.
      “We have ideal conditions for finding signs of ancient life where we find carbonates and phosphates, which point to a watery, habitable environment, as well as silica, which is great at preservation,” Cable said.
      Perseverance’s work is, of course, far from done. The mission’s ongoing fourth science campaign will explore Jezero Crater’s margin, near the canyon entrance where a river once flooded the crater floor. Rich carbonate deposits have been spotted along the margin, which stands out in orbital images like a ring within a bathtub.
      More About the Mission
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      Learn about all the samples collected by Perseverance Where is Perseverance right now? News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Last Updated Dec 12, 2023 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Mars 2020 The Solar System Explore More
      5 min read NASA Sensor Produces First Global Maps of Surface Minerals in Arid Regions
      Article 1 day ago 5 min read NASA’s MAVEN Observes the Disappearing Solar Wind
      Article 1 day ago 3 min read Students Create Elaborate Homemade Machines for JPL Competition
      Article 4 days ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Some of the same properties of light and optics that make the sky blue and cause rainbows can also help scientists unlock mysteries about cloud formation and the effects of tiny particles in our air.
      NASA’s upcoming PACE mission will offer important insights on airborne particles of sea salt, smoke, human-made pollutants, and dust – collectively called aerosols – by observing how they interact with light. With PACE data, scientists will provide better answers to key questions such as how aerosols affect cloud formation or how ice clouds and liquid clouds differ. Understanding the nature of airborne particles and clouds is crucial to deciphering how climate and air quality are changing.
      Two instruments on NASA’s upcoming PACE mission will look at aerosols and clouds – the A and C in the name of the Plankton, Aerosol, Cloud, ocean Ecosystem satellite. After launch in early 2024, the PACE mission will scan the Earth and gather data on the chemical composition, movement, and interaction of aerosols and clouds through the use of two cutting-edge polarimeters – instruments that measure light properties.
      Credit: NASA’s Goddard Space Flight Center
      Download this video in HD formats from NASA Goddard’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/14454/ There are characteristics of light that we can see with our eyes, such as color. Other characteristics are invisible to the human eye, like what scientists call polarization.
      “Polarization is something that we don’t have an intuitive sense for because our eyes don’t see it,” said Kirk Knobelspiesse, polarimetry lead for the PACE mission at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “If you saw the world through eyes that could see polarization, like our sensors can, you would see rainbows everywhere.”  
      Light leaving the Sun moves in all different directions like a wave – this is called unpolarized light, said Brian Cairns, deputy project scientist for PACE. When it interacts with something like a cloud or an aerosol particle, however, light can oscillate more in one direction than the others: It is now polarized light. This quirk of light behavior can help scientists learn more about the characteristics and interactions of aerosols and water droplets in the sky.
      Polarimeters measure the angle at which the light is polarized, which reveals specific characteristics of whatever the light had bounced off of. With these instruments, scientists can piece together the size, composition, abundance, and other traits of the particles in the atmosphere. 
      An example of a cloud bow, taken late on a winter afternoon in Santa Cruz, California. The cloud in this case was light coastal fog, so this could also be referred to as a fog bow. In the scene, the sun was positioned low in the sky directly behind the viewer so that backscattered light is observed. While this observation geometry is rare from the surface of the earth, it will be common for PACE/HARP2.NASA/Kirk Knobelspiesse The two polarimeters on PACE – HARP2 and SPEXone – make a great pair because of the complementary differences in what they measure. HARP2, built at the University of Maryland, Baltimore County, will observe four wavelengths of light from up to 60 different angles. SPEXone, built at the Netherlands Institute for Space Research (SRON) and Airbus Netherlands B.V., will peer down at a narrower swath, using five viewing angles but looking at light at hyperspectral resolution – the full range of colors in a rainbow. Together the polarimeters will offer a picture of Earth’s atmosphere in unprecedented detail.
      Scientists have been observing aerosols from space for decades, though the community has not had polarimetry data for a decade, noted Otto Hasekamp, senior scientist at SRON. PACE will provide polarimeter data from multiple vantage points and, due to technological advancements in the instruments, the data will be of better quality than ever before.
      “It’s exciting to see the culmination of working actively on instrument models and prototypes,” said Jeroen Rietjens, instrument scientist at SRON, “then finally seeing it end up on a real satellite.”
      Jeroen Rietjens in Goddard cleanroom with PACE. “Very proud to be in the Goddard cleanroom and to pose with the fully assembled and tested PACE satellite, which hosts our small SPEXone instrument. The instrument is neatly wrapped in grey thermal blankets and still has the red radiator cover in place. It is surreal to realize that In a few months it will be staring at the Earth and collecting multi-angle spectro-polarimetric data that will enable scientists to infer the amount and type of aerosols in the Earth atmosphere and contribute to a better understanding of the effects of aerosols on climate,” said Rietjens.NASA/Denny Henry After PACE is launched in early 2024, the satellite will scan Earth every two days, gathering immense quantities of data on the chemical composition, movement, and interaction of aerosols and clouds.
      “We want to measure properties of aerosols because aerosols affect climate,” said Hasekamp. They reflect light back into space and can also absorb it, which plays a role in how much of the Sun’s energy reaches Earth’s surface. Aerosols also affect cloud formation and properties, but the details of these relationships are not fully known to scientists. The data PACE collects will help to clarify some of these unknowns.
      The new polarimetry data will also offer real-time insights on air pollution. “PACE measurements will not only answer fundamental science questions, but will also improve people’s quality of life,” said Marcela Loría-Salazar, assistant professor at the School of Meteorology at the University of Oklahoma and PACE early adopter. The PACE Early Adopters program promotes the integration of PACE data into practical applications of science.
      Loría-Salazar is particularly interested in how aerosols change over time and with location, with an extra emphasis on the altitude of aerosols over the middle of the United States. There, PACE will allow scientists to identify aerosols, while also deciphering what they mean for air quality.
      The measurements from PACE’s polarimeters will also help improve our understanding of Earth’s climate. By adding PACE atmospheric data to models, scientists will be able to replace the estimates now used to fill data gaps in those models with data from current measurements.
      “I’m hoping to help gather the data that will reduce model uncertainty and help us make better predictions for how we expect our climate to play out in the next decades and centuries,” Knobelspiesse said.
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Last Updated Dec 12, 2023 EditorErica McNameeContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      5 min read NASA Sensor Produces First Global Maps of Surface Minerals in Arid Regions
      Article 1 day ago 5 min read NASA’s MAVEN Observes the Disappearing Solar Wind
      Article 1 day ago 6 min read NASA’s Webb Stuns With New High-Definition Look at Exploded Star
      Article 2 days ago View the full article
    • By NASA
      Technicians work to process the NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observatory on an Aronson Tilt Table in a high bay at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Monday, Dec. 4, 2023.NASA Lee esta nota de prensa en español aquí.
      Media accreditation is open for the upcoming launch of NASA’s PACE (Plankton, Aerosol, Cloud ocean Ecosystem) Earth observing science mission.
      NASA and SpaceX are targeting no earlier than Tuesday, Feb. 6, for a Falcon 9 rocket to launch PACE to orbit from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Media accreditation application deadlines for the PACE launch are as follows:
      U.S. media and U.S. citizens representing international media must apply by 5 p.m. EST on Wednesday, Jan. 17. International media without U.S. citizenship must apply by 5 p.m. on Tuesday, Jan. 2. Media accreditation requests must be submitted online at:
      NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical needs, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact NASA Kennedy’s newsroom: 321-867-2468.
      The PACE mission will continue and improve NASA’s 20-year record of satellite observations of global ocean biology, aerosols, and clouds. Data from the mission will help NASA understand how the ocean and atmosphere exchange carbon dioxide, measure key atmospheric variables associated with air quality and Earth’s climate, and monitor ocean health, in part by studying phytoplankton, tiny plants and algae that sustain the marine food web.
      NASA will post updates on launch preparations to prepare the spacecraft on the PACE blog.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo at: antonia.jaramillobotero@nasa.gov, 321-501-8425, o Messod Bendayan, 256-930-1371.
      For more information about PACE, visit:
      Alise Fisher / Erin Morton
      Headquarters, Washington
      202-358-2546 / 202-805-9393
      alise.m.fisher@nasa.gov / erin.morton@nasa.gov
      Laura Aguiar / Leejay Lockhart
      Kennedy Space Center, Florida
      laura.aguiar@nasa.gov / leejay.lockhart@nasa.gov
      Last Updated Dec 11, 2023 LocationNASA Headquarters Related Terms
      Earth Missions Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) View the full article
  • Check out these Videos

  • Create New...