Members Can Post Anonymously On This Site
Euclid completes thermal vacuum testing
-
Similar Topics
-
By NASA
NASA Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification Testing
Verifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering Test
Teams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications Testing
Integrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration Test
Teams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End Test
Test to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress Rehearsal
Teams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
View the full article
-
By NASA
6 Min Read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
The numbers are notable – 34 years of testing space shuttle main engines at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, 3,244 individual tests, more than 820,000 seconds (totaling more than nine days) of cumulative hot fire.
The story behind the numbers is unforgettable.
“It is hard to describe the full impact of the space shuttle main engine test campaign on NASA Stennis,” Center Director John Bailey said. “It is hundreds of stories, affecting all areas of center life, within one great story of team achievement and accomplishment.”
NASA Stennis tested space shuttle main engines from May 19, 1975, to July 29, 2009. The testing made history, enabling 135 shuttle missions and notable space milestones, like deployment of the Hubble Space Telescope and construction of the International Space Station.
The testing also:
Established NASA Stennis as the center of excellence for large propulsion testing. Broadened and deepened the expertise of the NASA Stennis test team. Demonstrated and expanded the propulsion test capabilities of NASA Stennis. Ensured the future of the Mississippi site. The first space shuttle main engine is installed on May 8, 1975, at the Fred Haise Test Stand (formerly A-1). The engine would be used for the first six tests and featured a shortened thrust chamber assembly.NASA Assignment and Beginning
NASA Stennis was not the immediate choice to test space shuttle main engines. Two other sites also sought the assignment – NASA’s Marshall Flight Center in Alabama and Edwards Air Force Base in California. However, following presentations and evaluations, NASA announced March 1, 1971, that the test campaign would take place in south Mississippi.
“(NASA Stennis) was now assured of a future in propulsion testing for decades,” summarized Way Station to Space, a history of the center’s first decades.
Testing did not begin immediately. First, NASA Stennis had to complete an ambitious project to convert stands built the previous decade for rocket stage testing to facilities supporting single-engine hot fire.
Propellant run tanks were installed and calibrated. A system was fashioned to measure and verify engine thrust. A gimbaling capability was developed on the Fred Haise Test Stand to allow operators to move engines as they must pivot in flight to control rocket trajectory. Likewise, engineers designed a diffuser capability for the A-2 Test Stand to allow operators to test at simulated altitudes up to 60,000 feet.
NASA Stennis teams also had to learn how to handle cryogenic propellants in a new way. For Apollo testing, propellants were loaded into stage tanks to support hot fires. For space shuttle, propellants had to be provided by the stand to the engine. New stand run tanks were not large enough to support a full-duration (500 seconds) hot fire, so teams had to provide real-time transfer of propellants from barges, to the run tanks, to the engine.
The process required careful engineering and calibration. “There was a lot to learn to manage real-time operations,” said Maury Vander, chief of NASA Stennis test operations. “Teams had to develop a way to accurately measure propellant levels in the tanks and to control the flow from barges to the tanks and from the tanks to the engine. It is a very precise process.”
NASA Stennis teams conduct a hot fire of the space shuttle Main Propulsion Test Article in 1979 on the B-2 side of the Thad Cochran Test Stand. The testing involved installing a shuttle external fuel tank, a mockup of the shuttle orbiter, and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously as during an actual launch.NASA Testing the Way
The biggest challenge was operation of the engine itself. Not only was it the most sophisticated ever developed, but teams would be testing a full engine from the outset. Typically, individual components are developed and tested prior to assembling a full engine. Shuttle testing began on full-scale engines, although several initial tests did feature a trimmed down thrust chamber assembly.
The initial test on May 19, 1975, provided an evaluation of team and engine. The so-called “burp” test did not feature full ignition, but it set the stage for moving forward.
“The first test was a monstrous milestone,” Vander said. “Teams had to overcome all sorts of challenges, and I can only imagine what it must have felt like to go from a mostly theoretical engine to seeing it almost light. It is the kind of moment engineers love – fruits-of-all-your-hard-labor moment.”
NASA Stennis teams conducted another five tests in quick succession. On June 23/24, with a complete engine thrust chamber assembly in place, teams achieved full ignition. By year’s end, teams had conducted 27 tests. In the next five years, they recorded more than 100 annual hot fires, a challenging pace. By the close of 1980, NASA Stennis had accumulated over 28 hours of hot fire.
The learning curve remained steep as teams developed a defined engine start, power up, power down, and shutdown sequences. They also identified anomalies and experienced various engine failures.
“Each test is a semi-controlled explosion,” Vander said. “And every test is like a work of art because of all that goes on behind the scenes to make it happen, and no two tests are exactly the same. There were a lot of knowledge and lessons learned that we continue to build on today.”
NASA Stennis test conductor Brian Childers leads Test Control Center operations during the 1000th test of a space shuttle main engine on the Fred Haise Test Stand (formerly A-1). on Aug. 17, 2006.NASA Powering History
Teams took a giant step forward in 1978 to 1981 with testing of the Main Propulsion Test Article, which involved installing three engines (configured as during an actual launch), with a space shuttle external tank and a mock orbiter, on the B-2 side of the Thad Cochran Test Stand.
Teams conducted 18 tests of the article, proving conclusively that the shuttle configuration would fly as needed. On April 12, 1981, shuttle Columbia launched on the maiden STS-1 mission of the new era. Unlike previous vehicles, this one had no uncrewed test flight. The first launch of shuttle carried astronauts John Young and Bob Crippen.
“The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees during a post-test visit to the site. “We couldn’t even make it look hard.”
Testing proceeded steadily for the next 28 years. Engine anomalies, upgrades, system changes – all were tested at NASA Stennis. Limits of the engine were tested and proven. Site teams gained tremendous testing experience and expertise. NASA Stennis personnel became experts in handling cryogenics.
Following the loss of shuttles Challenger and Columbia, NASA Stennis teams completed rigorous test campaigns to ensure future mission safety. The space shuttle main engine arguably became the most tested, and best understood, large rocket engine in the world – and NASA Stennis teams were among those at the forefront of knowledge.
NASA conducts the final space shuttle main engine test on July 29, 2009, on the A-2 Test Stand at NASA Stennis. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission in July 2011.NASA A Foundation for the Future
NASA recognized the effort of the NASA Stennis team, establishing the site as the center of excellence for large propulsion test work. In the meanwhile, NASA Stennis moved to solidify its future, growing as a federal city, home to more than 50 resident agencies, organizations, and companies.
Shuttle testing opened the door for the variety of commercial aerospace test projects the site now supports. It also established and solidified the test team’s unique capabilities and gave all of Mississippi a sense of prideful ownership in the Space Shuttle Program – and its defining missions.
No one can say what would have happened to NASA Stennis without the space shuttle main engine test campaign. However, everything NASA Stennis now is rests squarely on the record and work of that history-making campaign.
“Everyone knows NASA Stennis as the site that tested the Apollo rockets that took humans to the Moon – but space shuttle main engine testing really built this site,” said Joe Schuyler, director of NASA Stennis engineering and test operations. “We are what we are because of that test campaign – and all that we become is built on that foundation.”
Share
Details
Last Updated May 19, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
9 min read 45 Years Ago: First Main Propulsion Test Assembly Firing of Space Shuttle Main Engines
The development of the space shuttle in the 1970s required several new technologies, including powerful…
Article 2 years ago 5 min read 40 Years Ago: Six Months until the STS-1 Launch
Article 5 years ago 8 min read 55 Years Ago: First Saturn V Stage Tested in Mississippi Facility
Article 4 years ago View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft is seen during its “aluminum bird” systems testing at Lockheed Martin’s Skunk Works facility in Palmdale, California. The test verified how the aircraft’s hardware and software work together, responding to pilot inputs and handling injected system failures. Lockheed Martin / Garry Tice NASA’s X-59 quiet supersonic research aircraft successfully completed a critical series of tests in which the airplane was put through its paces for cruising high above the California desert – all without ever leaving the ground.
“The idea behind these tests is to command the airplane’s subsystems and flight computer to function as if it is flying,” said Yohan Lin, the X-59’s lead avionics engineer at NASA’s Armstrong Flight Research Center in Edwards, California.
The goal of ground-based simulation testing was to make sure the hardware and software that will allow the X-59 to fly safely are properly working together and able to handle any unexpected problems.
Any new aircraft is a combination of systems, and identifying the little adjustments required to optimize performance is an important step in a disciplined approach toward flight.
“We thought we might find a few things during the tests that would prompt us to go back and tweak them to work better, especially with some of the software, and that’s what we wound up experiencing. So, these tests were very helpful,” Lin said.
Completing the tests marks another milestone off the checklist of things to do before the X-59 makes its first flight this year, continuing NASA’s Quesst mission to help enable commercial supersonic air travel over land.
Simulating the Sky
During the testing, engineers from NASA and contractor Lockheed Martin turned on most of the X-59’s systems, leaving the engine off. For example, if the pilot moved the control stick a certain way, the flight computer moved the aircraft’s rudder or other control surfaces, just as it would in flight.
At the same time, the airplane was electronically connected to a ground computer that sends simulated signals – which the X-59 interpreted as real – such as changes in altitude, speed, temperature, or the health of various systems.
Sitting in the cockpit, the pilot “flew” the aircraft to see how the airplane would respond.
“These were simple maneuvers, nothing too crazy,” Lin said. “We would then inject failures into the airplane to see how it would respond. Would the system compensate for the failure? Was the pilot able to recover?”
Unlike in typical astronaut training simulations, where flight crews do not know what scenarios they might encounter, the X-59 pilots mostly knew what the aircraft would experience during every test and even helped plan them to better focus on the aircraft systems’ response.
NASA test pilot James Less sits in the cockpit of the X-59 quiet supersonic research aircraft as he participates in a series of “aluminum bird” systems tests at Lockheed Martin’s Skunk Works facility in Palmdale, California.Lockheed Martin / Garry Tice Aluminum vs. Iron
In aircraft development, this work is known as “iron bird” testing, named for a simple metal frame on which representations of the aircraft’s subsystems are installed, connected, and checked out.
Building such a testbed is a common practice for development programs in which many aircraft will be manufactured. But since the X-59 is a one-of-a-kind airplane, officials decided it was better and less expensive to use the aircraft itself.
As a result, engineers dubbed this series of exercises “aluminum bird” testing, since that’s the metal the X-59 is mostly made of.
So, instead of testing an “iron bird” with copies of an aircraft’s systems on a non-descript frame, the “aluminum bird” used the actual aircraft and its systems, which in turn meant the test results gave everyone higher confidence in the design,
“It’s a perfect example of the old tried and true adage in aviation that says ‘Test what you fly. Fly what you test,’” Lin said.
Still Ahead for the X-59
With aluminum bird testing in the rearview mirror, the next milestone on the X-59’s path to first flight is take the airplane out on the taxiways at the airport adjacent to Lockheed Martin’s Skunk Works facility in Palmdale, California, where the X-59 was built. First flight would follow those taxi tests.
Already in the X-59’s logbook since the fully assembled and painted airplane made its public debut in January 2024:
A Flight Readiness Review in which a board of independent experts from across NASA completed a study of the X-59 project team’s approach to safety for the public and staff during ground and flight testing. A trio of important structural tests and critical inspections that included “shaking” the airplane to make sure there were no unexpected problems from the vibrations. Firing up the GE Aerospace jet engine for the first time after installation into the X-59, including a series of tests of the engine running with full afterburner. Checking the wiring that ties together the X-59’s flight computer, electronic systems, and other hardware to be sure there were no concerns about electromagnetic interference. Testing the aircraft’s ability to maintain a certain speed while flying, essentially a check of the X-59’s version of cruise control. The X-59 Tests in 59
Watch this video about the X-59 aluminum bird testing. It only takes a minute. Well, 59 seconds to be precise. About the Author
Jim Banke
Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
Article 13 hours ago 3 min read NASA Selects Student Teams for Drone Hurricane Response and Cybersecurity Research
Article 16 hours ago 1 min read NASA Glenn Showcases Stirling Engine Technology at Piston Powered Auto-Rama
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated May 15, 2025 EditorJim BankeContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
By NASA
Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
“The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
“Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
For more information on the Artemis Campaign, visit:
https://www.nasa.gov/feature/artemis/
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
View the full article
-
By NASA
One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
“The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 10 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.