Jump to content

Mars Express sets data relay record


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      NASA Data Shows How Drought Changes Wildfire Recovery in the West
      California’s 2017 Thomas Fire (shown) was included in a new analysis of more than 1,500 wildland fires teasing out how drought and fire combine to affect western U.S. lands.USDA Forest Service/ Stuart Palley A new study using NASA satellite data reveals how drought affects the recovery of western ecosystems from fire, a result that could provide meaningful information for conservation efforts.
      The West has been witnessing a trend of increasing number and intensity of wildland fires. Historically a natural part of the region’s ecology, fires have been exacerbated by climate change—including more frequent and intense droughts—and past efforts to suppress fires, which can lead to the accumulation of combustible material like fallen branches and leaves. But quantifying how fire and drought jointly affect ecosystems has proven difficult.
      In the new study, researchers analyzed over 1,500 fires from 2014 to 2020 across the West, and also gathered data on drought conditions dating back to 1984. They found that droughts make it harder for grasslands and shrublands, such as those in Nevada and Utah, to recover after fires—even the less severe blazes. Forests, if not burned too badly, rebound better than grasslands and shrublands because some forest roots can tap into water deeper in the ground. The team reported its findings in the February 2024 issue of Nature Ecology & Environment.
      “Many of the West’s grasslands experience low-severity fires,” said Shahryar Ahmed, lead author of the study and a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This study shows that even those blazes can trigger a slow recovery in these ecosystems if accompanied by a preceding drought.”
      If ecosystems don’t have enough time to bounce back before another drought or fire, that could lead to permanent changes in the types of plants growing there. That, in turn, can increase the risk of soil erosion and landslides, and alter the usual patterns of water running off into streams and lakes.
      “Once a fire is contained, that’s when the remediation efforts happen,” said Everett Hinkley, the national remote sensing program manager for the U.S. Forest Service, who wasn’t involved in the new research. “Understanding how a particular ecosystem and land cover type is going to respond after the fire informs what actions you need to take to restore the landscape.”
      Without such restoration, changes in land cover can cascade to potentially affect agriculture, tourism, and other community livelihoods. To track the recovery of the different ecosystems, the researchers examined changes in evapotranspiration (ET)—the transfer of water to the atmosphere through evaporation from soil and open water and transpiration from plants—before and after the fires. Monitoring evapotranspiration helped the team identify whether different ecosystems, such as forests and grasslands, completely recovered after a fire, or if the recovery was delayed or disrupted.
      That evapotranspiration data came from OpenET, a tool that calculates evapotranspiration at the scale of a quarter-acre across the western United States. It does so using models that harness publicly available data from the Landsat program, a partnership between NASA and the U.S. Geological Survey, along with other NASA and NOAA satellites.
      “This study highlights the dominant control of drought on altering resilience of vegetation to fires in the West,” said Erin Urquhart, the water resources program manager at NASA Headquarters in Washington. “With ongoing climate change, it is imperative that land managers, policymakers, and communities work together, informed by such research, to adapt to these changes, mitigating risks and ensuring the sustainable use of water and other natural resources.”
      The research also showed that forests, grasslands, and shrublands all struggle to recover from droughts that occur close in time with high-severity fires, which are becoming more common in the West. That can lead to potentially lasting changes not only in the plant communities but also in local and regional water dynamics.
      Severe fires damage plants to such an extent that evapotranspiration is greatly reduced in the following years, the researchers found. So instead of evaporating into the atmosphere, more water sinks into the ground as recharge or becomes runoff.
      Using a subset of nearly 800 fires from 2016 to 2018, the researchers calculated that across all the ecoregions in the study, an average of about 528 billion gallons (two cubic kilometers) of water was diverted as runoff or recharge during the first year after a fire. That’s equivalent to North Dakota’s annual water demand, or one quarter of Shasta Lake, California’s largest humanmade lake.
      When more water becomes runoff, it means less could be available for ecosystem recovery or agriculture. As Earth’s climate continues to warm, understanding these shifts is crucial for developing strategies to manage water resources more effectively and ensure water security for future generations.

      By: Emily DeMarco, NASA Earth Science Division
      Share
      Details
      Last Updated Mar 27, 2024 EditorEmily DeMarcoContactEmily DeMarcoemily.p.demarco@nasa.gov Related Terms
      Earth Natural Disasters Explore More
      5 min read Early Adopters of NASA’s PACE Data to Study Air Quality, Ocean Health
      Article 2 days ago 4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
      Article 4 weeks ago 5 min read OpenET Study Helps Water Managers and Farmers Put NASA Data to Work
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      ESA’s Mars Express recently looped around Mars for the 25 000th time – and the orbiter has captured yet another spectacular view of the Red Planet to mark the occasion.
      View the full article
    • By European Space Agency
      When it comes to predicting what our climate will be like in the future, vegetation matters. Plants and trees exert a powerful influence over both the energy cycle and the water cycle. And, crucially, it is estimated that vegetation draws down well over three billion tonnes of carbon from the atmosphere each year – this is equivalent to a third of greenhouse-gas emissions from human activity.
      Accounting for vegetation growth is clearly important in the complex climate puzzle – and the release of a new satellite dataset is set to help climate modellers with the challenge of evaluating the impacts of climate change.
      View the full article
    • By NASA
      NASA/JPL-Caltech Two full-scale development model rovers, part of NASA’s Cooperative Autonomous Distributed Robotic Exploration (CADRE) technology demonstration, drive in the Mars Yard at the agency’s Jet Propulsion Laboratory in Southern California in this image from August 2023. The project is designed to show that a group of robotic spacecraft can work together as a team to accomplish tasks and record data autonomously – without explicit commands from mission controllers on Earth.
      A series of Mars Yard tests with the development models confirmed CADRE hardware and software can work together to accomplish key goals for the project. The rovers drove together in formation and adjusted their plans as a group when faced with unexpected obstacles.
      CADRE is slated to arrive at the Reiner Gamma region of the Moon through NASA’s Commercial Lunar Payload Services (CLPS) initiative. The network of robots will spend the daylight hours of a single lunar day – about 14 Earth days – conducting experiments that will test their capabilities.
      Image Credit: NASA/JPL-Caltech
      View the full article
    • By European Space Agency
      A team of European scientists have published the most detailed geologic map of Oxia Planum – the landing site for ESA’s Rosalind Franklin rover on Mars. This thorough look at the geography and geological history of the area will help the rover scout the once water-rich terrain, in the search for signs of past and present life.
      View the full article
  • Check out these Videos

×
×
  • Create New...