Jump to content

Mars Express sets data relay record


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer, NASA welcomed interns with professional teaching experience to help make the agency’s data more interactive and accessible in the classroom. Their efforts are an important step in fostering the education and curiosity of the Artemis Generation of students who will shape the future workforce.
      Diane Ripollone: Making Activities Accessible for Low-Vision Students
      In the center, Diane Ripollone smiles in a blue jacket with the blue, white, and red NASA logo on the left and a SOFIA patch on the right. Behind Diane is the SOFIA aircraft and her arm rests on a railing beside her. Credit: Diane Ripollone A 35-year-veteran educator, Diane Ripollone teaches Earth science, astronomy, and physics to high school students in North Carolina. In her decades of experience, she’s seen firsthand how students with physical challenges can face difficulties in connecting with lessons. She decided to tackle the issue head-on with her internship.
      Ripollone supports the My NASA Data Program, which provides educational materials to interact with live data collected by NASA satellites, observatories, and sensors worldwide. As a NASA intern, she has worked to create physical materials with braille for students with- vision limitations.
      “It’s a start for teachers,” Ripollone said. “Although every classroom is different, this helps to provide teachers a jumpstart to make engaging lesson plans centered around real NASA data.” Her NASA internship has excited and inspired her students, according to Ripollone. “My students have been amazed! I see their eyes open wide,” she said. “They say, ‘My teacher is working for NASA!'”
      Felicia Haseleu: Improving Reading and Writing Skills
      North Dakota teacher  Felicia Haseleu never imagined she’d be a NASA intern until a colleague forwarded the opportunity to her inbox. A teacher on her 11th year, she has seen how COVID-19 has affected students: “It’s caused a regression in reading and writing ability,” a shared impact that was seen in students nationwide.
      A science teacher passionate about reading and writing, Felicia set out to utilize these in the science curriculum. As an intern with My NASA Data, she’s prepared lesson plans that combine using the scientific method with creative writing, allowing students to strengthen their reading and writing skills while immersing themselves in science.
      Haseleu anticipates her NASA internship will provide benefits inside and outside the classroom.
      “It’s going to be awesome to return to the classroom with all of these materials,” she said. “Being a NASA intern has been a great experience! I’ve felt really supported and you can tell that NASA is all encompassing and supports one another. From the camaraderie to NASA investing in interns, it’s nice to feel valued by NASA.”
      Teri Minami: Hands-on Lesson for Neurodivergent and Artistic Students
      Teri Minami poses in a white lab coat, lilac gloves, glasses, and “Dexter” name tag. She is on the right of the image with a coworker on the left. Red school lockers line the wall behind them. Credit: Teri Minami “I’ve never been a data-whiz; I’ve always connected with science hands-on or through art,” said NASA intern Teri Minami, a teacher of 10 years in coastal Virginia. She cites her personal experience in science to guide her to develop lessons using NASA data for neurodivergent students or those with a more artistic background.
      Through her NASA internship, she aims to create lesson plans which allow students to engage first-hand with science while outdoors, such as looking at water quality data, sea level ice, and CO2 emissions, taking their own measurements, and doing their own research on top of that.
      Although many people associate being an intern with being an undergraduate in college, NASA interns come from all ages and backgrounds. In 2024, the agency’s interns ranged in age from 16 to 61 and included high school students, undergraduates, graduate students, doctoral students, and teachers.

      Interested in joining NASA as an intern? Apply at intern.nasa.gov.
      Explore More
      8 min read The Future is Bright: Johnson Space Center Interns Shine Throughout Summer Term
      Article 2 days ago 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024
      Article 7 days ago 3 min read NASA Awards Launch Excitement for STEM Learning Nationwide
      NASA awards inspire the next generation of explorers by helping community institutions like museums, science…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      NASA Internship Programs
      For Educators
      For Colleges and Universities
      Learning Resources
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover discovered “leopard spots” on a reddish rock nicknamed “Cheyava Falls” in Mars’ Jezero Crater in July 2024. Scientists think the spots may indicate that, billions of years ago, the chemical reactions in this rock could have supported microbial life; other explanations are being considered.NASA/JPL-Caltech/MSSS An annotated version of the image of “Cheyava Falls” indicates the markings akin to leopard spots, which have particularly captivated scientists, and the olivine in the rock. The image was captured by the WATSON instrument on NASA’s Perseverance Mars rover on July 18.NASA/JPL-Caltech/MSSS The six-wheeled geologist found a fascinating rock that has some indications it may have hosted microbial life billions of years ago, but further research is needed.
      A vein-filled rock is catching the eye of the science team of NASA’s Perseverance rover. Nicknamed “Cheyava Falls” by the team, the arrowhead-shaped rock contains fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.
      Analysis by instruments aboard the rover indicates the rock possesses qualities that fit the definition of a possible indicator of ancient life. The rock exhibits chemical signatures and structures that could possibly have been formed by life billions of years ago when the area being explored by the rover contained running water. Other explanations for the observed features are being considered by the science team, and future research steps will be required to determine whether ancient life is a valid explanation.
      The rock — the rover’s 22nd rock core sample — was collected on July 21, as the rover explored the northern edge of Neretva Vallis, an ancient river valley measuring a quarter-mile (400 meters) wide that was carved by water rushing into Jezero Crater long ago.
      “Cheyava Falls” (left) shows the dark hole where NASA’s Perseverance took a core sample; the white patch is where the rover abraded the rock to investigate its composition. A rock nicknamed “Steamboat Mountain” (right) also shows an abrasion patch. This image was taken by Mastcam-Z on July 23.NASA/JPL-Caltech/ASU/MSSS NASA’s Perseverance used its Mastcam-Z instrument to view the “Cheyava Falls” rock sample within the rover’s drill bit. Scientists believe markings on the rock contain fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.NASA/JPL-Caltech/ASU/MSSS “We have designed the route for Perseverance to ensure that it goes to areas with the potential for interesting scientific samples,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “This trip through the Neretva Vallis riverbed paid off as we found something we’ve never seen before, which will give our scientists so much to study.”
      Multiple scans of Cheyava Falls by the rover’s SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instrument indicate it contains organic compounds. While such carbon-based molecules are considered the building blocks of life, they also can be formed by non-biological processes.
      “Cheyava Falls is the most puzzling, complex, and potentially important rock yet investigated by Perseverance,” said Ken Farley,Perseverance project scientist of Caltech in Pasadena. “On the one hand, we have our first compelling detection of organic material, distinctive colorful spots indicative of chemical reactions that microbial life could use as an energy source, and clear evidence that water — necessary for life — once passed through the rock. On the other hand, we have been unable to determine exactly how the rock formed and to what extent nearby rocks may have heated Cheyava Falls and contributed to these features.”
      NASA’s Perseverance rover used its Mastcam-Z instrument to capture this 360-degree panorama of a region on Mars called “Bright Angel,” where an ancient river flowed billions of years ago. “Cheyava Falls” was discovered in the area slightly right of center, about 361 feet (110 meters) from the rover.NASA/JPL-Caltech/ASU/MSSS Other details about the rock, which measures 3.2 feet by 2 feet (1 meter by 0.6 meters) and was named after a Grand Canyon waterfall, have intrigued the team, as well.
      How Rocks Get Their Spots
      In its search for signs of ancient microbial life, the Perseverance mission has focused on rocks that may have been created or modified long ago by the presence of water. That’s why the team homed in on Cheyava Falls.
      “This is the kind of key observation that SHERLOC was built for — to seek organic matter as it is an essential component of a search for past life,” said SHERLOC’s principal investigator Kevin Hand of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission.
      Running the length of the rock are large white calcium sulfate veins. Between those veins are bands of material whose reddish color suggests the presence of hematite, one of the minerals that gives Mars its distinctive rusty hue.
      When Perseverance took a closer look at these red regions, it found dozens of irregularly shaped, millimeter-size off-white splotches, each ringed with black material, akin to leopard spots. Perseverance’s PIXL (Planetary Instrument for X-ray Lithochemistry) instrument has determined these black halos contain both iron and phosphate.
      As shown in this graphic, astrobiologists catalog a seven-step scale, called the CoLD (Confidence of Life Detection) scale, to research whether a sample could indicate life. This “Cheyava Falls” sample is an example of Step One: “Detect possible signal.” Much additional research must be conducted to learn more.NASA/Aaron Gronstal “These spots are a big surprise,” said David Flannery, an astrobiologist and member of the Perseverance science team from the Queensland University of Technology in Australia. “On Earth, these types of features in rocks are often associated with the fossilized record of microbes living in the subsurface.”
      Spotting of this type on sedimentary terrestrial rocks can occur when chemical reactions involving hematite turn the rock from red to white. Those reactions can also release iron and phosphate, possibly causing the black halos to form. Reactions of this type can be an energy source for microbes, explaining the association between such features and microbes in a terrestrial setting.
      In one scenario the Perseverance science team is considering, Cheyava Falls was initially deposited as mud with organic compounds mixed in that eventually cemented into rock. Later, a second episode of fluid flow penetrated fissures in the rock, enabling mineral deposits that created the large white calcium sulfate veins seen today and resulting in the spots.
      Another Puzzle Piece
      While both the organic matter and the leopard spots are of great interest, they aren’t the only aspects of the Cheyava Falls rock confounding the science team. They were surprised to find that these veins are filled with millimeter-size crystals of olivine, a mineral that forms from magma. The olivine might be related to rocks that were formed farther up the rim of the river valley and that may have been produced by crystallization of magma.
      If so, the team has another question to answer: Could the olivine and sulfate have been introduced to the rock at uninhabitably high temperatures, creating an abiotic chemical reaction that resulted in the leopard spots?
      “We have zapped that rock with lasers and X-rays and imaged it literally day and night from just about every angle imaginable,” said Farley. “Scientifically, Perseverance has nothing more to give. To fully understand what really happened in that Martian river valley at Jezero Crater billions of years ago, we’d want to bring the Cheyava Falls sample back to Earth, so it can be studied with the powerful instruments available in laboratories.”
      More Mission Information
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Erin Morton
      Headquarters, Washington
      202-358-1600 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      2024-103
      Share
      Details
      Last Updated Jul 25, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Mars Sample Return (MSR) The Solar System Explore More
      4 min read UPDATED: 10 Things for Mars 10
      Scientists from around the world are gathering this week in California to take stock of…
      Article 2 days ago 6 min read NASA-Funded Studies Explain How Climate Is Changing Earth’s Rotation
      Article 6 days ago 3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read 10 Things for Mars 10
      Both Shadow and Substance: The dramatic image of NASA’s Mars Exploration Rover Opportunity’s shadow was taken on sol 180 (July 26, 2004), by the rover’s front hazard-avoidance camera as the rover moved farther into Endurance Crater in the Meridiani Planum region of Mars. Credits:
      NASA/JPL Scientists from around the world are gathering this week in California to take stock of the state of science from Mars and discuss goals for the next steps in exploration of the Red Planet. In the spirit of Mars 10, formally known as the 10th International Conference on Mars, here are 10 recent significant events that got scientists talking:
      1. An International Science Fleet at Mars
      July 2024: Nine spacecraft are now operating at Mars – two surface rovers and seven orbiters. NASA’s fleet includes the Perseverance and Curiosity rovers, and orbiters MAVEN, Mars Reconnaissance Orbiter, and Mars Odyssey.  ESA (European Space Agency) operates Mars Express and the ExoMars Trace Gas Orbiter. Both China and the United Arab Emirates also have spacecraft studying Mars from orbit.
      Mars Relay Network: Interplanetary Internet 2. Curiosity Discovers Mysterious Surge in Methane – Which Then Vanishes
      June 2019: NASA’s Curiosity Mars rover found a surprising result: the largest amount of methane ever measured during the mission. “The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”
      “Curiosity’s Mars Methane Mystery Continues” 3. Curiosity Discovers Evidence of Ancient Wave Ripples From a Lake Bottom
      February 2023: NASA’s Curiosity rover team was surprised to discover the mission’s clearest evidence yet of ancient water ripples that formed within lakes in an area they expected to be much drier.
      “NASA’s Curiosity Finds Surprise Clues to Mars’ Watery Past” 4. InSight Detects First Quake on Another Planet
      April 2019: NASA’s Mars InSight lander measured and recorded for the first time ever a “marsquake.” “InSight’s first readings carry on the science that began with NASA’s Apollo missions,” said InSight Principal Investigator Bruce Banerdt. “We’ve been collecting background noise up until now, but this first event officially kicks off a new field: Martian seismology!”
      “NASA’s InSight Detects First Likely ‘Quake’ on Mars” 5. InSight Provides First View of Mars’ Deep Interior
      July 2021: NASA’s InSight spacecraft’s seismometer revealed details about the planet’s deep interior for the first time, including confirmation that the planet’s center is molten.
      “NASA’s InSight Reveals the Deep Interior of Mars” 6. InSight Finds Stunning Impact on Mars – and Ice
      October 2022: NASA’s InSight felt the ground shake during the impact while cameras aboard the Mars Reconnaissance Orbiter spotted the yawning new crater surrounded by boulder-sized chunks of ice from space.
      “NASA’s InSight Lander Detects Stunning Meteoroid Impact on Mars” 7. Opportunity Rover Comes to an End After Nearly 15 Years
      July 2021: One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission ended after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet.
      “NASA’s Opportunity Rover Mission on Mars Comes to End” 8. Massive Dust Storm Spreads Across Mars
      July 2018: For scientists watching the Red Planet from NASA’s orbiters, summer 2018 was a windfall. “Global” dust storms, where a runaway series of storms create a dust cloud so large they envelop the planet, only appear every six to eight years (that’s 3-4 Mars years). In June 2018, one of these dust events rapidly engulfed the planet. Scientists first observed a smaller-scale dust storm on May 30. By June 20, it had gone global.
      “’Storm Chasers’ on Mars Searching for Dusty Secrets” 9. NASA Maps Water Ice on Mars for Use by Future Astronauts
      October 2023: The map could help the agency decide where the first astronauts to the Red Planet should land. The more available water, the less missions will need to bring.
      “NASA Is Locating Ice on Mars With This New Map” 10. Mars Reconnaissance Orbiter Images Used to Make Massive Interactive Globe of Mars
      April 2023: Cliffsides, impact craters, and dust devil tracks are captured in mesmerizing detail in a new mosaic of the Red Planet composed of 110,000 images from NASA’s Mars Reconnaissance Orbiter (MRO).
      “New Interactive Mosaic Uses NASA Imagery to Show Mars in Vivid Detail” Read More
      The 10th Annual International Conference on Mars NASA’s Mars Exploration Science Goals NASA Mars Missions View the full article
    • By NASA
      The latest crew chosen by NASA to venture on a simulated trip to Mars inside the agency’s Human Exploration Research Analog. From left are Sergii Iakymov, Erin Anderson, Brandon Kent, and Sarah Elizabeth McCandless.Credit: C7M3 Crew NASA selected a new team of four research volunteers to participate in a simulated mission to Mars within HERA (Human Exploration Research Analog) at the agency’s Johnson Space Center in Houston.
      Erin Anderson, Sergii Iakymov, Brandon Kent, and Sarah Elizabeth McCandless will begin their simulated trek to Mars on Friday, Aug. 9. The volunteer crew members will stay inside the 650-square-foot habitat for 45 days, exiting Monday, Sept. 23 after a simulated “return” to Earth. Jason Staggs and Anderson Wilder will serve as alternate crew members.
      The HERA missions offer scientific insights into how people react to the type of isolation, confinement, work and life demands, and remote conditions astronauts might experience during deep space missions.
      The facility supports more frequent, shorter-duration simulations in the same building as CHAPEA (Crew Health and Performance Analog). This crew is the third group of volunteers to participate in a simulated Mars mission in HERA this year. The most recent crew completed its HERA mission on June 24. In total, there will be four analog missions in this series.
      During this summer’s simulation, participants will perform a mix of science and operational tasks, including harvesting plants from a hydroponic garden, growing shrimp, deploying a small, cube-shaped satellite (CubeSat) to simulate gathering virtual data for analysis, “walking” on the surface of Mars using virtual reality goggles, and flying simulated drones on the simulated Mars surface. The team members also will encounter increasingly longer communication delays with Mission Control throughout their mission, culminating in five-minute lags as they “near” Mars. Astronauts traveling to Mars may experience communications delays of up to 20 minutes.
      NASA’s Human Research Program will conduct 18 human health experiments during each of the 2024 HERA missions. Collectively, the studies explore how a Mars-like journey may affect the crew members’ mental and physical health. The work also will allow scientists to test certain procedures and equipment designed to keep astronauts safe and healthy on deep space missions.

      Primary Crew
      Erin Anderson
      Erin Anderson is a structural engineer at NASA’s Langley Research Center in Virginia. Her work focuses on manufacturing and building composite structures — using materials engineered to optimize strength, stiffness, and density — that fly in air and space.
      Anderson earned a bachelor’s degree in Aerospace Engineering from the University of Illinois at Urbana-Champaign in 2013. After graduating, she worked as a structural engineer for Boeing on NASA’s SLS (Space Launch System) in Huntsville, Alabama. She moved to New Orleans to support the assembly of the first core stage of the SLS at NASA’s Michoud Assembly Facility. Anderson received a master’s degree in Aeronautical Engineering from Purdue University in West Lafayette, Indiana, in 2020. She started her current job in 2021, continuing her research on carbon fiber composites.
      In her free time, Anderson enjoys playing rugby, doting on her dog, Sesame, and learning how to ride paddleboard at local beaches.

      Sergii Iakymov
      Sergii Iakymov is an aerospace engineer with more than 15 years of experience in research and design, manufacturing, quality control, and project management. Iakymov currently serves as the director of the Mars Desert Research Station, a private, Utah-based research facility that serves as an operational and geological Mars analog.
      Iakymov received a bachelor’s degree in Aviation and Cosmonautics and a master’s in Aircraft Control Systems from Kyiv Polytechnic Institute in Ukraine. His graduate research focused on the motion of satellites equipped with pitch flywheels and magnetic coils.
      Iakymov was born in Germany, raised in Ukraine, and currently splits his time between southern Utah and Chino Hills, California. His hobbies include traveling, running, hiking, scuba diving, photography, and reading.

      Brandon Kent
      Brandon Kent is a medical director in the pharmaceutical industry, supporting ongoing global efforts to develop new therapies across cancer types.
      Kent received a bachelor’s degrees in Biochemistry and Biology from North Carolina State University in Raleigh. He earned his doctorate in Biomedicine from Mount Sinai School of Medicine in New York City, where his work primarily focused on how genetic factors regulate early embryonic development and cancer development.
      Following graduate school, Kent moved into scientific and medical communications consulting in oncology, primarily focusing on clinical trial data disclosures, scientific exchange, and medical education initiatives.
      Kent and his wife have two daughters. In his spare time, he enjoys spending time with his daughters, flying private aircraft, hiking, staying physically fit, and reading. He lives in Kinnelon, New Jersey.

      Sarah Elizabeth McCandless
      Sarah Elizabeth McCandless is a navigation engineer for NASA’s Jet Propulsion Laboratory in Southern California. McCandless’ job involves tracking the location and predicting the future trajectory of spacecraft, including the Mars Perseverance rover, Artemis I, Psyche, and Europa Clipper.
      McCandless received a bachelor’s in Aerospace Engineering from the University of Kansas in Lawrence, and a master’s in Aerospace Engineering from the University of Texas at Austin, focused on orbital mechanics.
      McCandless is originally from Fairway, Kansas, and remains an avid fan of sports teams from her alma mater and hometown. She is active in STEM (science, technology, engineering, and mathematics) outreach and education and enjoys camping, running, traveling with friends and family, and piloting Cessna 172s. She lives in Pasadena, California.

      Alternate Crew
      Jason Staggs
      Jason Staggs is a cybersecurity researcher and adjunct professor of computer science at the University of Tulsa. His research focuses on systems security engineering, infrastructure protection, and resilient autonomous systems. Staggs is an editor for the International Journal of Critical Infrastructure Protection and the Critical Infrastructure Protection book series.
      Staggs supported scientific research expeditions with the National Science Foundation at McMurdo Station in Antarctica. He also previously served as a space engineer and medical officer while working as an analog astronaut in the Hawaii Space Exploration Analog and Simulation (HI-SEAS) atop the Mauna Loa volcano.
      Staggs received his bachelor’s degree in Information Assurance and Forensics at Oklahoma State University and master’s and doctorate degrees in Computer Science from the University of Tulsa. During his postdoctoral studies at Idaho National Laboratory, Idaho Falls, he investigated electric vehicle charging station vulnerabilities.
      In his spare time, Staggs enjoys hiking, building radio systems, communicating with ham radio operators in remote locations, and volunteering as a solar system ambassador for NASA’s Jet Propulsion Laboratory — sharing his passion for astronomy, oceanography, and space exploration with his community.

      Anderson Wilder
      Anderson Wilder is a Florida Institute of Technology in Melbourne graduate student working on his doctorate in psychology. His research focuses on team resiliency and human-machine interactions. Wilder also works in the campus neuroscience lab, investigating how spaceflight contributes to astronaut neurobehavioral changes.
      Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
      Wilder received bachelor’s degrees in Linguistics and Psychology from Ohio State University in Columbus. He also received a master’s degree in Space Studies from International Space University in Strasbourg, France, and is completing a second master’s in Cognitive Experimental Psychology from Cleveland State University in Ohio.
      Outside of school, Wilder works as a parabolic flight coach, teaching people how to experience reduced-gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program (HRP) pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways to keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond.
      Explore More
      2 min read Exploring the Moon: Episode Previews
      Article 3 days ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 2 weeks ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson, and Aleksandr Gorbunov.Credit: NASA NASA will host a pair of news conferences Friday, July 26, from the agency’s Johnson Space Center in Houston to highlight upcoming crew rotation missions to the International Space Station.
      NASA will host a mission overview news conference at 12 p.m. EDT and provide coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. The news conference will cover NASA’s SpaceX Crew-9 mission to the microgravity laboratory and Expeditions 71 and 72.
      NASA also will host a crew news conference at 2 p.m., and provide coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website, followed by individual astronaut interviews at 3 p.m. Learn how to stream NASA TV through a variety of platforms, including social media.
      The Crew-9 mission, targeted to launch in mid-August, will carry NASA astronauts Zena Cardman, Nick Hague, Stephanie Wilson, and cosmonaut Alexsandr Gorbunov of Roscosmos to the orbiting laboratory. A SpaceX Falcon 9 rocket will launch the crew aboard a Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on the company’s ninth crew rotation mission for NASA.
      These events will be the final media opportunity to speak to the Crew-9 astronauts before they travel to NASA Kennedy for launch. United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m., Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.
      U.S. or international media seeking remote interviews must submit requests to the NASA Johnson newsroom by 5 p.m., Thursday, July 25. A copy of NASA’s media accreditation policy is online.
      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):
      12 p.m.: Mission Overview News. Conference
      Steve Stich, manager, Commercial Crew Program, NASA Johnson Dana Weigel, manager, International Space Station Program, NASA Johnson Sarah Walker, director, Dragon Mission Management, SpaceX Sergei Krikalev, executive director of Human Space Flight Programs, Roscosmos 2 p.m.: Crew News Conference
      Zena Cardman, spacecraft commander, NASA Nick Hague, pilot, NASA Stephanie Wilson, mission specialist, NASA Alexsandr Gorbunov, mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-9 members available for a limited number of interviews The Crew-9 mission will be the first spaceflight for Cardman, who was selected as a NASA astronaut in 2017. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was a doctoral candidate in geosciences. Cardman’s research focused on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and development for lunar surface exploration. Follow @zenanaut on X and @zenanaut on Instagram.
      With 203 days logged in space, this will be Hague’s third launch and second mission to the orbiting laboratory. During his first launch in 2018, Hague and his crewmate, Roscosmos cosmonaut Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight launch abort and safe landing for their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft. As an active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Department of Defense in Washington, where he served as the USSF director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment. Follow @astrohague on X and @astrohauge on Instagram.
      A veteran of three spaceflights aboard space shuttle Discovery, Wilson has spent 42 days in space. During her first mission, STS-121, in July 2006, she and her crewmates spent 13 days in orbit. Wilson served as the robotic arm operator for spacecraft inspection, the installation of the “Leonardo” Multi-Purpose Logistics Module, and spacewalk support. In October 2007, Wilson and her STS-120 crewmates delivered the Harmony module to the station and relocated a solar array. In April 2010, Wilson and her STS-131 crewmates completed another resupply mission to the orbiting complex, delivering a new ammonia tank for the station cooling system, new crew sleeping quarters, a window observation facility, and a freezer for experiments. During nearly 30 years with NASA, Wilson served as the integration branch chief for NASA’s Astronaut Office, focusing on International Space Station systems and payload operations. She also completed a nine-month detail as the acting chief of NASA’s Program and Project Integration Office at the agency’s Glenn Research Center in Cleveland. Follow @astro_stephanie on X.
      This will be Gorbunov’s first trip to space and the station. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before being selected as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corporation Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome.
      Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jul 19, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...