Jump to content

Mars Express sets data relay record


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Crews transport NOAA’s (National Oceanic and Atmospheric Administration) Geostationary Operational Environmental Satellite (GOES-U) from the Astrotech Space Operations facility to the SpaceX hangar at Launch Complex 39A at NASA’s Kennedy Space Center in Florida beginning on Friday, June 14, 2024, with the operation finishing early Saturday, June 15, 2024. The fourth and final weather-observing and environmental monitoring satellite in NOAA’s GOES-R Series will assist meteorologists in providing advanced weather forecasting and warning capabilities. The two-hour window for liftoff opens 5:16 p.m. EDT Tuesday, June 25, aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. (NASA/Ben Smegelsky) NASA will provide live coverage of prelaunch and launch activities for the National Oceanic and Atmospheric Administration’s (NOAA) GOES-U (Geostationary Operational Environmental Satellite U) mission. The two-hour launch window opens at 5:16 p.m. EDT Tuesday, June 25, for the satellite’s launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. 
      The GOES-U satellite, the final addition to GOES-R series, will help to prepare for two kinds of weather — Earth and space weather. The GOES satellites serve a critical role in providing continuous coverage of the Western Hemisphere, including monitoring tropical systems in the eastern Pacific and Atlantic oceans. This continuous monitoring aids scientists and forecasters in issuing timely warnings and forecasts to help protect the one billion people who live and work in the Americas. Additionally, GOES-U carries a new compact coronagraph that will image the outer layer of the Sun’s atmosphere to detect and characterize coronal mass ejections. 
      The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov. 
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): 
      Monday, June 24 
      9:30 a.m. – NASA EDGE GOES-U prelaunch show on NASA+, the NASA app, and the agency’s website. 
      11 a.m. – GOES-U science briefing with the following participants: 
      Charles Webb, deputy director, Joint Agency Satellite Division, NASA  Ken Graham, director, NOAA’s National Weather Service  Dan Lindsey, chief scientist, GOES-R Program, NOAA  Elsayed Talaat, director, NOAA’s Office of Space Weather Observations  Chris Wood, NOAA Hurricane Hunter pilot  Coverage of the science news conference will stream live on NASA+, the NASA app, YouTube, and the agency’s website. 
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. 
      3:15 p.m. – NASA Social panel at Kennedy with the following participants: 
      Jade Zsiros, telemetry engineer, NASA’s Launch Services Program  Ellen Ramirez, deputy division chief, Mission Operations Division, National Environmental Satellite, Data, and Information Service Office of Satellite and Product Operations, NOAA  Dakota Smith, satellite analyst and communicator, NOAA’s Cooperative Institute for Research in the Atmosphere  Allana Nepomuceno, senior manager, GOES-U Assembly, Test, and Launch Operations, Lockheed Martin  Chris Reith, program manager, Advanced Baseline Imager, L3Harris Technologies  The panel will stream live on NASA Kennedy’s YouTube, X and Facebook accounts. Members of the public may ask questions online by posting to the YouTube, X, and Facebook live streams or using #AskNASA. 
      5 p.m. – Prelaunch news conference at Kennedy (following completion of the Launch Readiness Review), with the following participants: 
      Denton Gibson, launch director, Launch Services Program, NASA  Steve Volz, assistant administrator, NOAA’s Satellite and Information Service  Pam Sullivan, director, GOES-R Program, NOAA  John Gagosian, director, Joint Agency Satellite Division  Julianna Scheiman, director, NASA Science Missions, SpaceX  Brian Cizek, launch weather officer, 45th Weather Squadron, U.S. Space Force  Coverage of the prelaunch news conference will stream live on NASA+, the NASA app, YouTube, and the agency’s website. 
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. 
      Tuesday, June 25 
      1 p.m. – Media one-on-one interviews with the following: 
      Michael Morgan, Assistant Secretary of Commerce for Environmental Observation and Prediction, NOAA  Michael Brennan, director, NOAA’s National Hurricane Center  James Spann, senior scientist, Office of Space Weather Observations, NOAA  John Gagosian, director, Joint Agency Satellite Division  Krizia Negron, language program lead, National Weather Service Office of Science and Technology Integration, NOAA (bilingual, available for Spanish interviews)  Dan Lindsey, chief scientist, GOES-R Program, NOAA  Jagdeep Shergill, program director, GEO Weather, Lockheed Martin  Chris Reith, program manager, Advanced Baseline Imager, L3Harris Technologies  4:15 p.m. – NASA launch coverage begins on NASA+, the agency’s website, and other digital channels.  
      5:16 p.m. – Two-hour launch window opens 
      Audio Only Coverage 
      Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television media launch commentary, will be carried on 321-867-7135. 
      Live Video Coverage Prior to Launch 
      NASA will provide a live video feed of Launch Complex 39A approximately 24 hours prior to the planned liftoff of the mission on NASA Kennedy’s YouTube: https://youtube.com/kscnewsroom. The feed will be uninterrupted until the prelaunch broadcast begins on NASA Television media channel. 
      NASA Website Launch Coverage 
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include live streaming and blog updates beginning no earlier than 3 p.m., June 25, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. 
      For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the GOES blog. 
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: antonia.jaramillobotero@nasa.gov o Messod Bendayan: messod.c.bendayan@nasa.gov 
      Attend the Launch Virtually 
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. 
      Watch, Engage on Social Media 
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #ReadyToGOES and #NASASocial. You can also stay connected by following and tagging these accounts: 
      X: @NASA, @NASA_LSP, @NASAKennedy, @NOAASatellites, @NASAGoddard 
      Facebook: NASA, NASA LSP, NASA Kennedy, NOAA Satellites, NASA Goddard 
      Instagram: NASA, NASA Kennedy, NOAA Satellites 
      For more information about the mission, visit: 
      https://www.nasa.gov/goes-u
      -end- 
      Liz Vlock 
      Headquarters, Washington 
      202-358-1600 
      elizabeth.a.vlock@nasa.gov 
      Peter Jacobs 
      Goddard Space Flight Center, Greenbelt, Maryland 
      301-286-0535 
      peter.jacobs@nasa.gov 
      Leejay Lockhart 
      Kennedy Space Center, Florida 
      321-747-8310 
      leejay.lockhart@nasa.gov 


      View the full article
    • By European Space Agency
      Image: Metallic Mars View the full article
    • By NASA
      Perseverance Perseverance Mission Overview Rover Components Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Science Objectives Science Instruments Science Highlights News and Features Multimedia Perseverance Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Perseverance Finds Popcorn on Planet Mars
      Mars Perseverance Sol 1175 – Right Mastcam-Z Camera: A jumbled field of light toned rocks with unusual ‘popcorn’-like textures and abundant mineral veins. NASA’s Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on June 10, 2024 (Sol 1175) at the local mean solar time of 14:04:57. NASA/JPL-Caltech/ASU After months of driving, Perseverance has finally arrived at ‘Bright Angel’, discovering oddly textured rock unlike any the rover has seen before. The team now plans to drive up the slope to uncover the origin of this rock sequence and its relationship to the margin unit.
      Having completed a survey of the intriguing and diverse boulders at ‘Mount Washburn,’ the rover headed north, parking just in front of an exposure of layered light toned rock. This provided the team with our first close-up look of the rocks that make up the ‘Bright Angel’ exposure, so Perseverance stopped to acquire images, before driving west to a larger and more accessible outcrop where the rover will conduct detailed exploration.
      Perseverance arrived at the base of this outcrop on sol 1175, and geologists on the science team were mesmerized by the strange textures of the light toned rocks found there. These rocks are filled with sharp ridges that resemble the mineral veins found at the base of the fan, but there appears to be more of them here. Additionally, some rocks are densely packed with small spheres, and we’ve jokingly referred to this as a ‘popcorn’-like texture. Together, these features suggest that groundwater flowed through these rocks after they were laid down. Next, Perseverance will gradually ascend up the rock exposure, taking measurements as it goes. Over the weekend, the abrasion tool will be used to take a close-up look and acquire detailed chemical information using the instruments on the rover’s arm. With this data in hand, the team will decide whether or not to sample. Once our exploration at ‘Bright Angel’ is complete, we will drive south back across Neretva Vallis and explore a site called ‘Serpentine Rapids’.
      Written by Athanasios Klidaras, Ph.D. Student at Purdue University
      Share








      Details
      Last Updated Jun 18, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4216-4218: Another ‘Mammoth’ Plan!


      Article


      14 hours ago
      3 min read Sols 4214–4215: The Best-Laid Plans…


      Article


      5 days ago
      2 min read Sols 4212-4214: Gearing up to Drill!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      2 min read
      Voyager 1 Returning Science Data From All Four Instruments
      An artist’s concept of the Voyager spacecraft. NASA/JPL-Caltech The spacecraft has resumed gathering information about interstellar space.
      NASA’s Voyager 1 spacecraft is conducting normal science operations for the first time following a technical issue that arose in November 2023.
      The team partially resolved the issue in April when they prompted the spacecraft to begin returning engineering data, which includes information about the health and status of the spacecraft. On May 19, the mission team executed the second step of that repair process and beamed a command to the spacecraft to begin returning science data. Two of the four science instruments returned to their normal operating modes immediately. Two other instruments required some additional work, but now, all four are returning usable science data.  
      The four instruments study plasma waves, magnetic fields, and particles. Voyager 1 and Voyager 2 are the only spacecraft to directly sample interstellar space, which is the region outside the heliosphere — the protective bubble of magnetic fields and solar wind created by the Sun.
      While Voyager 1 is back to conducting science, additional minor work is needed to clean up the effects of the issue. Among other tasks, engineers will resynchronize timekeeping software in the spacecraft’s three onboard computers so they can execute commands at the right time. The team will also perform maintenance on the digital tape recorder, which records some data for the plasma wave instrument that is sent to Earth twice per year. (Most of the Voyagers’ science data is sent directly to Earth and not recorded.)
      Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth, and Voyager 2 is more than 12 billion miles (20 billion kilometers) from the planet. The probes will mark 47 years of operations later this year. They are NASA’s longest-running and most-distant spacecraft. Both spacecraft flew past Jupiter and Saturn, while Voyager 2 also flew past Uranus and Neptune.
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Share








      Details
      Last Updated Jun 13, 2024 Related Terms
      Heliophysics Jet Propulsion Laboratory Voyager 1 Explore More
      4 min read NASA Announces New System to Aid Disaster Response


      Article


      4 hours ago
      2 min read Aurorasaurus Roars During Historic Solar Storm
      The largest geomagnetic storm in 21 years lit up the sky last weekend, and NASA’s volunteers were ready.…


      Article


      3 weeks ago
      5 min read How NASA Tracked the Most Intense Solar Storm in Decades


      Article


      4 weeks ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Background: To protect astronauts from spaceflight health risks like solar radiation and microgravity, scientists develop countermeasures by studying model organisms exposed to the space environment. For the first time, commercial astronaut data from the Inspiration4 (I4) mission has been collected for open-access research in an effort led by Weill Cornell Medicine. ARC’s Open Science Data Repository (OSDR) hosts this data for public use. Facilitated by the OSDR, data from the all-civilian crew enables researchers to validate decades of model organism research and make vital discoveries from biospecimens of humans. The OSDR’s Analysis Working Groups (AWGs), comprised of researchers from around the globe, collaborate to maximize the scientific value of space omics data.
      Main Findings: On June 11, 44 scientific publications, including 32 authored by members of the AWG community and the OSDR team, were prominently featured in the Space Omics and Medical Atlas (SOMA) package of publications in Nature Press. The collection of articles greatly expands our knowledge of how space travel affects humans by addressing questions about the transcriptomic, epigenomic, cellular, microbiome, and mitochondrial alterations observed during spaceflight. Results and best practices from these articles collectively inform SOMA, which provides a standardized approach to spaceflight related research (Figure).
      Impact: The AWG studies featured in these publications leverage the I4 data alongside other OSDR data to pioneer novel discoveries and formulate new hypotheses aimed at uncovering systemic biological responses during spaceflight. Historically, AWG collaborations have led to numerous scientific presentations at conferences, publications in high-impact journals, and the introduction of many new and more diverse researchers into the field.
      Keep Exploring Discover More Topics From NASA
      NASA Biological & Physical Sciences
      BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…
      International Space Station
      Human Research Program
      Ames Research Center
      View the full article
  • Check out these Videos

×
×
  • Create New...