Jump to content

Gearing up for the Moon with Pangaea


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA, Intuitive Machines Moon Mission Update
    • By NASA
      On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately 6 miles (10 km) altitude. Credit: Intuitive Machines NASA and Intuitive Machines will co-host a televised news conference at 2 p.m. EST Wednesday, Feb. 28, from the agency’s Johnson Space Center in Houston to highlight the company’s first mission, known as IM-1.
      The lander, called Odysseus, carried six NASA science instruments to the South Pole region of the Moon as part of the agency’s Commercial Lunar Payload Services (CLPS) initiative, and Artemis campaign. The IM-1 mission is the first U.S. soft landing on the Moon in more than 50 years, successfully landing on Feb. 22.
      The news conference will air on NASA+, NASA Television, and the agency’s website
      Learn how to stream NASA TV on a variety of platforms, including social media.
      Participants in the news conference include:
      Joel Kearns, deputy associate administrator, Exploration, Science Mission Directorate, NASA Headquarters in Washington Sue Lederer, CLPS project scientist, NASA Johnson Steve Altemus, chief executive officer and co-founder, Intuitive Machines Tim Crain, chief technology officer and co-founder, Intuitive Machines Media interested in participating in person must RSVP no later than 11 a.m. on Feb. 28. To participate by telephone, media must RSVP no later than one hour before the start of the news conference. Submit either request to the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. The agency’s media accreditation policy is online.
      For more information about the agency’s Commercial Lunar Payload Services initiative, visit:
      https://www.nasa.gov/clps
      -end-
      Cheryl Warner / Karen Fox
      Headquarters, Washington
      202-358-1100
      cheryl.m.warner@nasa.gov/ karen.c.fox@nasa.gov
      Nilufar Ramji / Laura Sorto
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov/ laura.g.sorto@nasa.gov
      Josh Marshall
      Intuitive Machines, Houston
      jmarshall@intuitivemachines.com
      View the full article
    • By NASA
      Credit: NASA/Kenny Allen NASA astronaut and Artemis II pilot Victor Glover is assisted by U.S. Navy personnel as he exits a mockup of the Orion spacecraft in the Pacific Ocean during training Feb. 25, while his crewmates look on. The Artemis II crew and a team from NASA and the Department of Defense are spending several days at sea to test the procedures and tools that will be used to help the crew to safety when they splash down in the ocean at the end of their 10-day, 685,000-mile journey around the Moon next year as part of the first crewed mission under NASA’s Artemis campaign.
      On the day of the crew’s return to Earth, a Navy ship with specially trained personnel will await splashdown and then approach the Orion capsule to help extract the four astronauts. An inflatable raft, called the front porch, will provide a place for them to rest when they exit the capsule before they are then individually hoisted by helicopters and flown to the waiting ship. 
      Artemis II, launching atop the SLS (Space Launch System) rocket from NASA’s Kennedy Space Center in Florida, will test the Orion spacecraft’s life support systems needed for future lunar missions.
      View the full article
    • By NASA
      A Commercial Lander Touches Down on the Moon on This Week @NASA – February 23, 2024
    • By NASA
      On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately about 6 miles (10 km) altitude. Credit: Intuitive Machines For the first time in more than 50 years, new NASA science instruments and technology demonstrations are operating on the Moon following the first successful delivery of the agency’s CLPS (Commercial Lunar Payload Services) initiative.
      Intuitive Machines’ Nova-C lander, called Odysseus, completed a seven-day journey to lunar orbit and executed procedures to softly land near Malapert A in the South Pole region of the Moon at 5:24 p.m. CST on Feb. 22. The lander is healthy, collecting solar power, and transmitting data back to the company’s mission control in Houston. The mission marks the first commercial uncrewed landing on the Moon.
      Carrying six NASA science research and technology demonstrations, among other customer payloads, all NASA science instruments completed transit checkouts en route to the Moon. A NASA precision landing technology demonstration also provided critical last-minute assistance to ensure a soft landing. As part of NASA’s Artemis campaign, the lunar delivery is in the region where NASA will send astronauts to search for water and other lunar resources later this decade.
      “For the first time in more than half a century, America returned to the Moon. Congratulations to Intuitive Machines for placing the lunar lander Odysseus carrying NASA scientific instruments to a place no person or machine has gone before, the lunar South Pole,” said NASA Administrator Bill Nelson. “This feat from Intuitive Machines, SpaceX, and NASA demonstrates the promise of American leadership in space and the power of commercial partnerships under NASA’s CLPS initiative. Further, this success opens the door for new voyages under Artemis to send astronauts to the Moon, then onward to Mars.” 
      During the journey to the Moon, NASA instruments measured the quantity of cryogenic engine fuel as it has been used, and while descending toward the lunar surface, teams collected data on plume-surface interactions and tested precision landing technologies.
      Odysseus’ surface operations are underway and expected to take place through Thursday, Feb. 29.
      New lunar science, technology
      NASA’s Navigation Doppler Lidar for Precise Velocity and Range Sensing (NDL) guidance system for descent and landing ultimately played a key role in aiding the successful landing. A few hours ahead of landing, Intuitive Machines encountered a sensor issue with their navigation system and leaned on NASA’s guidance system for an assist to precisely land. NASA’s instrument operates on the same principles of radar and uses pulses from a laser emitted through three optical telescopes. It measures speed, direction, and altitude with high precision during descent and touchdown.
      “We are thrilled to have NASA on the Moon again, and proud of the agency’s contribution to the successful landing with our NDL technology. Congratulations for completing this first lunar delivery for NASA, paving the way for a bright future for our CLPS initiative,” said Nicky Fox. “Some of the NASA science instruments on this mission will bring us insight on lunar plume interactions and conduct radio astronomy. The valiant efforts and innovation demonstrated by Intuitive Machines is exemplary and we are excited for the upcoming lunar deliveries that will follow this first mission.”  
      Now that they are on the lunar surface, NASA instruments will focus on investigating lunar surface interactions and radio astronomy. The Odysseus lander also carries a retroreflector array that will contribute to a network of location markers on the Moon for communication and navigation for future autonomous navigation technologies.
      Additional NASA hardware aboard the lander includes:
      Lunar Node 1 Navigation Demonstrator: A small, CubeSat-sized experiment that will demonstrate autonomous navigation that could be used by future landers, surface infrastructure, and astronauts, digitally confirming their positions on the Moon relative to other spacecraft, ground stations, or rovers on the move. Laser Retroreflector Array: A collection of eight retroreflectors that enable precision laser ranging, which is a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument and will function as a permanent location marker on the Moon for decades to come.    Radio Frequency Mass Gauge: A technology demonstration that measures the amount of propellant in spacecraft tanks in a low-gravity space environment. Using sensor technology, the gauge will measure the amount of cryogenic propellant in Nova-C’s fuel and oxidizer tanks, providing data that could help predict fuel usage on future missions.    Radio-wave Observations at the Lunar Surface of the Photoelectron Sheath: The instrument will observe the Moon’s surface environment in radio frequencies, to determine how natural and human-generated activity near the surface interacts with and could interfere with science conducted there. Stereo Cameras for Lunar Plume-Surface Studies: A suite of four tiny cameras to capture imagery showing how the Moon’s surface changes from interactions with the spacecraft’s engine plume during and after descent. NASA is committed to supporting its U.S. commercial vendors as they navigate the challenges of sending science and technology to the surface of the Moon.
      “In daring to confront one of humanity’s greatest challenges, Intuitive Machines created an entire lunar program that has ventured farther than any American mission to land on the Moon in over 50 years,” said Altemus. “This humbling moment reminds us that pursuing the extraordinary requires both boldness and resilience.”
      For more information about CLPS, visit:
      https://www.nasa.gov/clps
      -end-
      Faith McKie / Karen Fox
      Headquarters, Washington
      202-358-1600
      faith.d.mckie@nasa.gov / karen.c.fox@nasa.gov
      Nilufar Ramji / Laura Sorto
      Johnson Space Center, Houston 
      281-483-5111 
      nilufar.ramji@nasa.gov / laura.g.sorto@nasa.gov
      Share
      Details
      Last Updated Feb 23, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
  • Check out these Videos

×
×
  • Create New...