Jump to content

Beam-hopping JoeySat has shipped

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Food for the Apollo astronauts was not always especially appealing, but thanks to the protocol NASA and Pillsbury came up with, known as the Hazard Analysis and Critical Control Point (HAACP) system, it was always safe.Credit: NASA Countless NASA technologies turn up in our everyday lives, but one of the space agency’s most important contributions to modern society isn’t a technology at all – it’s the methodology that ensures the safety of the food we eat. Today the safety procedures and regulations for most of the food produced around the world are based on a system NASA created to guarantee safe food for Apollo astronauts journeying to the Moon. 

      For the Gemini missions, NASA and partner Pillsbury tested the food they were producing at the Manned Spacecraft Center, now Johnson Space Center in Houston, and destroyed entire batches when irregularities were found, a process similar to industry practices of the day. In response to agencywide guidelines from the Apollo Program Office aimed at ensuring the reliability of all critical systems, they altered that method for the Apollo missions. 

      They focused on identifying any points in the production process where hazards could be introduced, establishing procedures to eliminate or control each of those hazards, and then monitoring each of those points regularly. And they required extensive documentation of all this work. This became the foundation for the Hazard Analysis and Critical Control Point (HACCP) system. 
      The Apollo missions were humans’ longest and farthest voyages in space, so food for the astronauts had to be guaranteed safe for consumption hundreds of thousands of miles from any medical facility. Credit: NASA
      Howard Bauman, the microbiologist leading Pillsbury’s Apollo work, convinced his company to adopt the approach, and he became the leading advocate for its adoption across the food industry. That gradual process took decades, starting with the regulation of certain canned foods in the 1970s and culminating in the 2011 Food Safety Modernization Act, which mandated HACCP-like requirements across all food producers regulated by the U.S. Food and Drug Administration. By then, the U.S. Department of Agriculture was managing HACCP requirements for meat and poultry, while Canada and much of Europe had also put similar rules in place. 

      The standards also apply to any outside producers who want to export food into a country that requires HACCP, effectively spreading them across the globe.
      Read More Share
      Last Updated Jun 10, 2024 Related Terms
      Spinoffs Technology Transfer Technology Transfer & Spinoffs Explore More
      2 min read New Energy Source Powers Subsea Robots Indefinitely
      Power modules driven by ocean temperatures save money, reduce pollution
      Article 6 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle
      NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more.
      Article 2 weeks ago 2 min read Tech Today: From Spacesuits to Racing Suits
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      The Apollo Program
      View the full article
    • By European Space Agency
      View the full article
    • By NASA
      4 min read
      What Are Hubble and Webb Observing Right Now? NASA Tool Has the Answer
      It’s not hard to find out what NASA’s Hubble and James Webb space telescopes have observed in the past. Barely a week goes by without news of a cosmic discovery made possible using images, spectra, and other data captured by NASA’s prolific astronomical observatories. 
      But what are Hubble and Webb looking at right this minute? A shadowy pillar harboring nascent stars? A pair of colliding galaxies? The atmosphere of a distant planet? Galactic light, stretched and distorted on a 13-billion-year journey across space?
      NASA’s Space Telescope Live, a web application originally developed in 2016 to deliver real-time updates on Hubble targets, now affords easy access to up-to-date information on current, past, and upcoming observations from both Hubble and Webb. 
      Designed and developed for NASA by the Space Telescope Science Institute in Baltimore, this exploratory tool offers the public a straightforward and engaging way to learn more about how astronomical investigations are carried out.
      With its redesigned user interface and expanded functionality, users can find out not only what planet, star, nebula, galaxy, or region of deep space each telescope is observing at the moment, but also where exactly these targets are in the sky; what scientific instruments are being used to capture the images, spectra, and other data; precisely when and how long the observations are scheduled to occur; the status of the observation; who is leading the research; and most importantly, what the scientists are trying to find out. 
      Information for observations from approved science programs is available via the Mikulski Archive for Space Telescopes. NASA’s Space Telescope Live offers easy access to this information – not only the current day’s targets, but the entire catalog of past observations as well – with Webb records dating back to its first commissioning targets in January 2022, and Hubble records all the way back to the beginning of its operations in May 1990. 
      The zoomable sky map centered on the target’s location was developed using the Aladin Sky Atlas, with imagery from ground-based telescopes to provide context for the observation. (Because the Hubble and Webb data must go through preliminary processing, and in many cases preliminary analysis, before being released to the public and astronomy community, real-time imagery is not available in this tool for either telescope.)
      Details such as target name and coordinates, scheduled start and end times, and the research topic, are pulled directly from the observation scheduling and proposal planning databases. Links within the tool direct users to the original research proposal, which serves as a gateway to more technical information. 
      While this latest version of NASA’s Space Telescope Live constitutes a significant transformation from the previous release, the team is already gathering feedback from users and planning additional enhancements to provide opportunities for deeper exploration and understanding.  
      NASA’s Space Telescope Live is designed to work on desktop and mobile devices, and is accessible via NASA’s official Hubble and Webb websites. Additional details about the content, including public-friendly explanations of the information displayed in the tool, can be found in the User Guide.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. Goddard also conducts mission operations with Lockheed Martin Space in Denver, Colorado. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations for NASA.
      Learn More:

      Selecting What Webb Observes Next

      Media Contacts:
      Claire Andreoli – claire.andreoli@nasa.gov
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Margaret W. Carruthers, Christine Pulliam
      Space Telescope Science Institute, Baltimore, MD

      Last Updated Mar 06, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Missions Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope

      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

      James Webb Space Telescope

      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

      International Observe the Moon Night

      2024 Total Eclipse

      View the full article
    • By Amazing Space
      Jupiter Mystery! STRANGE SHAPES IN GIANT RED SPOT - What has James Webb Telescope Discovered?
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A computer generated image of objects in Earth orbit that are currently being tracked. Credits: NASA ODPO NASA’s Office of Technology, Policy & Strategy is soliciting research and analysis related to the social, economic and policy aspects of space sustainability. This topic area is further refined into two separate elements: orbital space sustainability and lunar surface sustainability. OTPS will provide up to $300K (orbital) and $200K (lunar surface) for between 1-3 proposals in each element. Key questions are featured below. 
      Orbital Space Sustainability: Economic, Social and Policy Research and Analyses
      Proposals should be responsive to one of the following questions:
      What are current policy, regulatory or legal gaps to improve space sustainability in various orbital regimes (LEO, MEO, GEO, Cislunar, and/or Lunar) and what specific measures should be taken to address them? Proposers may address one or several orbital regimes.  Considering various scenarios for the space environment in the 2040 timeframe, what policies, regulations or other support are forecasted to be needed? Research should take into consideration that potential policies for space sustainability may be incentivized or rendered unnecessary by advancements in technological capabilities and differing assumptions about the future operational environment; therefore, the research should assess the robustness of various policy proposals under realistic assumptions. What are the costs to spacecraft operators from interacting with debris in GEO and Cislunar space? What are the benefits of potential risk-reducing actions? How effective are various policy tools and mechanisms (for example, performance bonds, incentives to improve PMD compliance/fees for bad behavior, global minimum tax, and environmental liability insurance)? How might such interventions impact the business of satellite owners and operators or government owners and operators? Lunar Surface Sustainability: Economic, Social and Policy Research and Analyses
      The sustainable development of the lunar surface acknowledges that current operations may impact our ability to conduct future operations (indeed current operations may also impact other current operations. Whether we seek to protect critical areas for scientific investigation (e.g., Permanently Shadowed Regions), preserve lunar heritage areas (e.g., Apollo sites) or incorporate other technical, economic, or cultural considerations may all factor into our mission planning, policy and potential regulatory approaches. Analyses may help disentangle and characterize the goals of sustainability, develop frameworks for evaluating the sustainability of operations, or compare and contrast the different definitions of sustainability. Proposals should consider both human and robotic missions.
      All proposals must be submitted to one of the ROSES calls (F.21 or F.17) by May 17, 2024. Proposers can submit different proposals to each element. However, duplicate proposals submitted to both elements will only be considered for a single element (NASA will make most appropriate determination).
      To submit proposals, visit:
      Orbital Sustainability
      Lunar Surface Sustainability
      Last Updated Feb 15, 2024 EditorBill Keeter Related Terms
      General View the full article
  • Check out these Videos

  • Create New...