Jump to content

NASA Updates Coverage of JPSS-2 Weather Satellite, LOFTID Tech Demo


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer, NASA welcomed interns with professional teaching experience to help make the agency’s data more interactive and accessible in the classroom. Their efforts are an important step in fostering the education and curiosity of the Artemis Generation of students who will shape the future workforce.
      Diane Ripollone: Making Activities Accessible for Low-Vision Students
      In the center, Diane Ripollone smiles in a blue jacket with the blue, white, and red NASA logo on the left and a SOFIA patch on the right. Behind Diane is the SOFIA aircraft and her arm rests on a railing beside her. Credit: Diane Ripollone A 35-year-veteran educator, Diane Ripollone teaches Earth science, astronomy, and physics to high school students in North Carolina. In her decades of experience, she’s seen firsthand how students with physical challenges can face difficulties in connecting with lessons. She decided to tackle the issue head-on with her internship.
      Ripollone supports the My NASA Data Program, which provides educational materials to interact with live data collected by NASA satellites, observatories, and sensors worldwide. As a NASA intern, she has worked to create physical materials with braille for students with- vision limitations.
      “It’s a start for teachers,” Ripollone said. “Although every classroom is different, this helps to provide teachers a jumpstart to make engaging lesson plans centered around real NASA data.” Her NASA internship has excited and inspired her students, according to Ripollone. “My students have been amazed! I see their eyes open wide,” she said. “They say, ‘My teacher is working for NASA!'”
      Felicia Haseleu: Improving Reading and Writing Skills
      North Dakota teacher  Felicia Haseleu never imagined she’d be a NASA intern until a colleague forwarded the opportunity to her inbox. A teacher on her 11th year, she has seen how COVID-19 has affected students: “It’s caused a regression in reading and writing ability,” a shared impact that was seen in students nationwide.
      A science teacher passionate about reading and writing, Felicia set out to utilize these in the science curriculum. As an intern with My NASA Data, she’s prepared lesson plans that combine using the scientific method with creative writing, allowing students to strengthen their reading and writing skills while immersing themselves in science.
      Haseleu anticipates her NASA internship will provide benefits inside and outside the classroom.
      “It’s going to be awesome to return to the classroom with all of these materials,” she said. “Being a NASA intern has been a great experience! I’ve felt really supported and you can tell that NASA is all encompassing and supports one another. From the camaraderie to NASA investing in interns, it’s nice to feel valued by NASA.”
      Teri Minami: Hands-on Lesson for Neurodivergent and Artistic Students
      Teri Minami poses in a white lab coat, lilac gloves, glasses, and “Dexter” name tag. She is on the right of the image with a coworker on the left. Red school lockers line the wall behind them. Credit: Teri Minami “I’ve never been a data-whiz; I’ve always connected with science hands-on or through art,” said NASA intern Teri Minami, a teacher of 10 years in coastal Virginia. She cites her personal experience in science to guide her to develop lessons using NASA data for neurodivergent students or those with a more artistic background.
      Through her NASA internship, she aims to create lesson plans which allow students to engage first-hand with science while outdoors, such as looking at water quality data, sea level ice, and CO2 emissions, taking their own measurements, and doing their own research on top of that.
      Although many people associate being an intern with being an undergraduate in college, NASA interns come from all ages and backgrounds. In 2024, the agency’s interns ranged in age from 16 to 61 and included high school students, undergraduates, graduate students, doctoral students, and teachers.

      Interested in joining NASA as an intern? Apply at intern.nasa.gov.
      Explore More
      8 min read The Future is Bright: Johnson Space Center Interns Shine Throughout Summer Term
      Article 2 days ago 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024
      Article 7 days ago 3 min read NASA Awards Launch Excitement for STEM Learning Nationwide
      NASA awards inspire the next generation of explorers by helping community institutions like museums, science…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      NASA Internship Programs
      For Educators
      For Colleges and Universities
      Learning Resources
      View the full article
    • By NASA
      5 Min Read NASA Returns to Arctic Studying Summer Sea Ice Melt
      NASA's Gulfstream III aircraft taxis on the runway at Pituffik Space Base as it begins one of its daily science flights for the ARCSIX mission. Credits: NASA/Gary Banziger What happens in the Arctic doesn’t stay in the Arctic, and a new NASA mission is helping improve data modeling and increasing our understanding of Earth’s rapidly changing climate. Changing ice, ocean, and atmospheric conditions in the northernmost part of Earth have a large impact on the entire planet. That’s because the Arctic region acts like Earth’s air conditioner.  
      Much of the Sun’s energy is transported from tropical regions of our planet by winds and weather systems into the Arctic where it is then lost to space. This process helps cool the planet.  
      The NASA-sponsored Arctic Radiation Cloud Aerosol Surface Interaction Experiment (ARCSIX) mission is flying three aircraft over the Arctic Ocean north of Greenland to study these processes. The aircraft are equipped with instruments to gather observations of surface sea ice, clouds, and aerosol particles, which affect the Arctic energy budget and cloud properties. The energy budget is the balance between the energy that Earth receives from the Sun and the energy the Earth loses to outer space. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This highlight video gives viewers a front row seat to a typical day on the ARCSIX mission from Pituffik Space Base as NASA's research scientists, instrument operators, and flight crews fly daily routes observing sea ice and clouds 750 miles north of the Arctic Circle in Greenland.NASA/Gary Banziger “More sea ice makes that air conditioning effect more efficient. Less sea ice lessens the Arctic’s cooling effect,” says Patrick Taylor, a climate scientist at NASA’s Langley Research Center in Hampton, Virginia. “Over the last 40 years, The Arctic has lost a significant amount of sea ice making the Arctic warm faster. As the Arctic warms and sea ice melts, it can cause ripple effects that impact weather conditions thousands of miles away, how fast our seas are rising, and how much flooding we get in our neighborhoods.” 
      As the Arctic warms and sea ice melts, it can cause ripple effects…thousands of miles away.
      Patrick Taylor
      NASA Climate Research Scientist
      The first series of flights took place in May and June as the seasonal melting of ice started. Flights began again on July 24 during the summer season, when sea ice melting is at its most intense. 
      “We can’t do this kind of Arctic science without having two campaigns,” said Taylor, the deputy science lead for ARCSIX. “The sea ice surface in the spring was very bright white and snow covered. We saw some breaks in the ice. What we will see in the second campaign is less sea ice and sea ice that is bare, with no snow. It will be covered with all kinds of melt ponds – pooling water on top of the ice – that changes the way the ice interacts with sunlight and potentially changes how the ice interacts with the atmosphere and clouds above.” 
      Sea ice and the snow on top of the ice insulate the ocean from the atmosphere, reflecting the Sun’s radiation back towards space, and helping to cool the planet. Less sea ice and darker surfaces result in more of the Sun’s radiation being absorbed at the surface or trapped between the surface and the clouds.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A pilot's view of Arctic sea ice from NASA's P-3 Orion aircraft during NASA's ARCSIX airborne science mission flights in June.NASA/Gary Banziger Understanding this relationship, and the role clouds play in the system, will help scientists improve satellite data and better predict future changes in the Arctic climate.  
      “This unique team of pilots, engineers, scientists, and aircraft can only be done by leveraging expertise from multiple NASA centers and our partners,” said Linette Boisvert, cryosphere lead for the mission from NASA’s Space Flight Center in Greenbelt, Maryland. “We gathered great data of the snow and ice pre-melt and at the onset of melt. I can’t wait to see the changes at the height of melt as we measure the same areas covered with melt ponds.” 
      NASA partnered with the University of Colorado Boulder for the ARCSIX mission, and the research team found some surprises in their early data analysis from the spring campaign. One potential discovery is something Taylor is calling a “sea ice sandwich”, when a younger layer of sea ice is caught in between two layers of older sea ice. Scientists also found more drizzle within the clouds than expected. Both observations will need further investigating once the data is fully processed. 
      A research scientist monitors data measurements in-flight during the spring campaign of the ARCSIX mission.NASA/Gary Banziger “A volcano erupted in Iceland, and we believe the volcanic aerosol plume was indicated by our models four days later,” Taylor said. “Common scientific knowledge tells us volcanic particles, like ash and sulfate, would have already been removed from the atmosphere. More work needs to be done, but our initial results suggest these particles might live in the atmosphere much longer than previously thought.” 
      Previous studies suggest that aerosol particles in clouds can influence sea ice melt. Data collected during ARCSIX’s spring flights showed the Arctic atmosphere had several aerosol particle layers, including wildfire smoke, pollution, and dust transported from Asia and North America. 
      “We got everything we hoped for and more in the first campaign,” Taylor added. “The data from this summer will help us better understand how clouds and sea ice behave. We’ll be able to use these results to improve predictive models. In the coming years, scientists will be able to better predict how to mitigate and adapt to the rapid changes in climate we’re seeing in the Arctic.” 
       
      Read More ESPO.NASA.gov 
      AIR.LARC.NASA.gov 
      NASA.gov/Earth 
      Share
      Details
      Last Updated Jul 26, 2024 EditorCharles G. HatfieldContactCharles G. Hatfieldcharles.g.hatfield@nasa.govLocationLangley Research Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Ice & Glaciers Langley Research Center Sea Ice Wallops Flight Facility Explore More
      4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes
      Article 2 months ago 5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      Article 4 months ago 4 min read NASA Ice Scientists Take Flight from Greenland to Study Melting Arctic Ice
      Article 2 years ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The LZR Racer reduces skin friction drag by covering more skin than traditional swimsuits. Multiple pieces of the water-resistant and extremely lightweight LZR Pulse fabric connect at ultrasonically welded seams and incorporate extremely low-profile zippers to keep viscous drag to a minimum.Credit: SpeedoUSA A supersonic airplane and a competitive swimmer have much more in common than people might realize; both have to contend with the slowing influence of drag. NASA’s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and fluid dynamics, especially the forces of pressure and drag, which are the same for bodies moving through air as for bodies moving through water. Shortly after the 2004 Olympics, Los Angeles-based SpeedoUSA, also known as Speedo, asked NASA’s Langley Research Center to help design a swimsuit with reduced surface drag. The manufacturer sought a partnership with NASA because of the agency’s expertise in fluid dynamics.

      In competitive swimming, where every hundredth of a second counts, achieving the best possible drag reduction is crucially important. Researchers at NASA began flat plate testing of fabrics, using a small wind tunnel developed for earlier research on low-speed viscous drag reduction and collaborated over the next few years with Speedo to design the LZR Racer swimsuit.

      Researcher Corey Diebler inspects a model of the supersonic X-59 after a test in Langley Research Center’s 12 foot wind tunnel. Wind tunnel testing at Langley enabled Speedo’s LZR Racer to achieve its excellent underwater performance.NASA/David C. Bowman. NASA and Speedo performed tests on traditionally sewn seams, ultrasonically welded seams, and the fabric alone, which gave Speedo a baseline for reducing drag caused by seams and helped identify problem areas. NASA wind tunnel results helped Speedo create a bonding system that eliminates seams and reduces drag. The results also showed that a low-profile zipper ultrasonically bonded into the fabric inside the suit generated eight percent less drag in wind tunnel tests than a standard zipper. Low-profile seams and zippers were a crucial component in the LZR Racer, because the suit consists of multiple connecting fabric pieces—instead of just a few sewn pieces such as found in traditional suits—that provide extra compression for maximum efficiency.

      In March 2008, the LZR Racer made its mark on the world of competitive swimming. Athletes donning this innovative swimsuit shattered 13 world records, a testament to the power of collaboration between NASA and Speedo. While the original LZR Racer is no longer used in competition because of the advantage it gave wearers, its legacy lives on in today’s swimsuits approved by World Aquatics, the governing body for international competitive swimming. 
      Read More Share
      Details
      Last Updated Jul 25, 2024 Related Terms
      Technology Transfer & Spinoffs Langley Research Center Spinoffs Technology Transfer Explore More
      2 min read Tech Today: NASA’s Moonshot Launched Commercial Fuel Cell Industry 
      Agency’s technology development prepared fuel cells for tomorrow’s renewable energy grids
      Article 1 week ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 4 weeks ago 5 min read Langley Celebrates Pride Month: Derek Bramble
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Langley Research Center
      Aeronautics
      Neutral Buoyancy Laboratory
      View the full article
    • By NASA
      11 Min Read Former Space Communications, Navigation Interns Pioneer NASA’s Future
      Interns from the SCaN Internship Project visiting NASA's Wallops Flight Facility in Wallops Island, Virginia. Credits: NASA For over a decade, NASA’s SCaN (Space Communications and Navigation) Internship Project alumni have played important roles in extending the agency’s long-term vision for exploration. For National Intern Day on Thursday, July 25, previous program interns reflect on their journeys to and through NASA and offer advice for current and future interns. 
      Every summer interns join NASA’s SIP (SCaN Internship Project) program to advance the capabilities of the agency’s Deep and Near Space Networks that enable missions to communicate and navigate. 
      The SIP intern program develops the future workforce that will imagine, maintain, and operate the next generation of communications and navigation systems. In addition to interns’ main projects, which can range from network engineering and orbital mathematics to mission awareness campaigns and graphic design, SIP interns participate in programming that enhances their professional development and networking skills. 
      Justin Long
      Justin Long was a SIP intern in 2017 while earning his degree in electrical engineering.
      Before he applied for an internship, Long was set on working in space communications at NASA and looked out for opportunities to deepen his aerospace experience. Long attributes his work at the University of Alaska Fairbanks’ CubeSat lab for his acceptance into the intern program, as well as his university’s unique partnership with NASA.
      “On my morning walks, I would pass by several of the Near Space Network ground stations operated by the Alaska Satellite Facility at the University of Alaska Fairbanks,” Long said. “At the time I was working on a ground station for our CubeSat program, so I went to intern.nasa.gov and searched anything space communications-related.”
      Long was selected for a project at NASA’s Wallops Flight Facility in Virginia focused on ground station improvements to the agency’s Near Space Network. In addition to looking at hardware upgrades for NASA-owned ground stations, Long also explored opportunities to expand the network by integrating commercial and university assets.
      Justin Long, 2017 SCaN Internship Project (SIP) Intern Courtesy of Justin Long Now, Long works as a telecommunications engineer at NASA Goddard, designing antennas and communication systems for spacecraft. His experience with ground stations at NASA Wallops influences his work on spacecraft today.
      “Working on communications systems means figuring out what the end-to-end system for a spacecraft looks like, from the radio to the antenna,” Long said. “The internship prepared me to answer questions about how we’re transmitting the data, how fast we can transmit it, and how much data we can receive in one day.”
      The major difference between his current role and his intern project is that the hardware he is developing will fly on a spacecraft rather than remain on Earth as part of a ground station antenna. Long will also test his hardware to ensure it functions as expected in orbit. The reward for this rigorous testing is the knowledge that the communications hardware he designed is a critical part of ensuring the spacecraft’s successful operation.
      “There is nothing more exciting than working hands-on with a spacecraft,” Long said. “Getting to see the hardware integrated onto the spacecraft — watching the whole thing come together — is my favorite part of the job.”
      While Long’s internship allowed him to come into his current position with a broader knowledge base than other engineers at his level of experience, he stresses that the networking opportunities he had with SIP were more important than the intern project itself.
      “Even if you have an internship that’s not directly in your field of expertise, the opportunity to network with NASA professionals and meet different groups can have impact on your career,” Long said. “I’m still in contact with people I met as an intern.”
      Thomas Montano
      Thomas Montano was completing his bachelor’s degree in electrical engineering during his SIP internships in 2019 and 2020. In his current role as an electrical engineer in NASA’s Search and Rescue office at Goddard, Montano supports human spaceflight recovery efforts as well as the development of a lunar search and rescue system.
      Thomas Montano during Artemis II Underway Recovery Test 10.NASA Montano was initially interested in digital signal processing and communication systems, so he decided to apply for a SCaN internship.
      “It wasn’t really a contest between NASA and other internship programs,” Montano said. “I got to work on cool projects. I got to work with cool people. Goddard is just a place that makes you want to do better and learn things.”
      Montano’s first internship was rewriting a software tool for running link budgets, a log of signal gains and losses in a radio communications system. In his second internship, Montano developed a virtual model of the physical transmission environment for lunar communications systems that could combine with the link budget tool to create an end-to-end communication channel simulation.
      Both tools continue to be used at the agency today, though Montano’s current position has shifted his focus to the special realities of human spaceflight. Now, Montano is helping NASA test location beacons for the Artemis II astronauts. He describes meeting the Artemis crew while practicing capsule recovery on a U.S. Navy ship as an exciting and sobering reminder of the importance of his work.
      “Nothing can top putting boots on the ground,” Montano said. “Meeting the crew made the work all the more real. My work isn’t hypothetical or theoretical. These are real people going to the Moon. My system cannot fail. The search and rescue system cannot go down. Failure really is not an option.”
      Nothing can top putting boots on the ground. Meeting the Artemis crew mad the work all the more real.
      THomas Montano
      Electrical Engineer at NASA's Goddard Space Flight Center
      Montano advises new interns to explore the center, ask questions, and learn how the agency works. He encourages anyone considering an internship to apply. 
      “The biggest reason that people don’t get NASA internships is because they don’t apply,” he said. “They count themselves out, and that’s nonsense. If you have good qualifications, go submit your résumé.”
      Katrina Lee
      Before becoming the engagement coordinator for NASA’s Commercialization, Innovation, and Synergies (CIS) office at Goddard, Katrina Lee was a communications intern with SIP.
      For her project, Lee wrote promotional materials highlighting NASA’s then-upcoming LCRD (Laser Communications Relay Demonstration), which launched Dec. 7, 2021. The role required her to research the science behind laser communications and understand the role the technology is playing in advancing communications at NASA. The following summer, Lee applied her experience to writing and producing promotional materials for Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) — LCRD’s first in-space user.
      When Lee first joined the program in 2021, she was planning to work in national security. Her internship experience shifted her attention to pursuing a degree in marketing and business. She also joined her student newspaper as a contributing writer.
      “The project I was covering resonated with me. I learned that I was really interested in writing and communications,” said Lee. “I homed in on my interest in public-facing opportunities to share very technical information in a digestible way.”
      Katrina Lee, SCaN Internship Project (SIP) Intern Summer 2021 and 2022.Courtesy of Katrina Lee In her current role, Lee applies the skills she developed as an intern to promote the Near Space Network’s commercialization opportunities. In addition to writing promotional and informational material, Lee manages event logistics, plans and guides center tours for the public and potential partners, attends conferences, and generates ideas for promoting the CIS office.
      Lee’s work gives her special insight into the continuing development of the Near Space Network.
      “I get to see the future of space exploration in real time,” Lee said. “There’s a greater emphasis on collaboration than we’ve seen in the past, and that collaboration is going to help space communications capabilities go further than ever before.”
      When Lee reflects on what aspects of her internship were most important, she returns to the value of her work and her mentor-mentee relationship.
      “I felt challenged here,” Lee said. “It was an opportunity to build confidence and learn from your mistakes beside someone who wants you to succeed. It really helped me grow as a professional.”
      Lee advises new interns and students considering an internship to remember that mistakes are a valuable part of the experience. “No one at NASA expects you to know everything right away,” Lee said. “They recognize that you’re an intern and you are here to learn. This is a place where you can learn something new every day.”
      Unsh Rawal
      Unsh Rawal joined SIP in 2022 as a rising high school senior. He came to the program with a passion for robotics and a desire to expand his interests and try new things.
      Rawal’s project contributed to the development of an interface that allows students to control robots over local and remote wireless connections. The interface is part of an educational activity for Amateur Radio on the International Space Station (ARISS) exploring telerobotics, or the distant remote control of a robot.
      Unsh Rawal, SCaN Internship Project (SIP) Intern Summer 2022.Courtesy of Unsh Rawal Rawal continued to develop his project with ARISS beyond his internship. He spent the past winter porting the activity’s code to a Raspberry Pi, a palm-sized minicomputer, while broadening its functionality. His work is key to ARISS’s efforts to distribute accessible, interactive educational tools.
      Rawal hopes to return to the intern program to continue his NASA project alongside his educational pursuits. While Rawal came to the intern program planning to pursue a degree in robotics, his project ignited his passion for a new field. “I learned a lot about networking, gained UI and API experience, learned about sockets,” he said. “I learned I really enjoy computer science.”
      When asked to share his advice with interns new to the program, Rawal recommends scheduling regular meetings with your project mentor.
      “Having consistent meetings with the people supervising the project helps you stay on track and better understand the project requirements,” Rawal said. “They’re an opportunity to learn new things from someone willing to give you one-on-one guidance.”
      Lindsay White
      Lindsay White was a SIP intern in 2018 and 2019 before joining NASA’s Pathways program in 2020. She completed her internship while earning her master’s degree in electrical engineering, specifically applied electromagnetics.
      During her SIP internship, White programmed software-defined radios, a communication system where computer software is used to replace physical radio hardware like modulators and amplifiers, to create test benches for the development of novel signals. That internship evolved into learning more about Field Programmable Gate Arrays (FPGAs) in her second summer, a customizable hardware that can be reconfigured into different digital circuits. White then applied her FPGA knowledge to laser communications missions.
      White’s first summer in the internship program confirmed that she wanted to work for NASA. “The environment is so welcoming and supportive,” she said. “People want to answer your questions and help you. I enjoyed the work I was doing and learned a ton.”
      White sees a direct relationship between the work she completed as an intern and her current role as a signal analysis engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The work I do now is an evolution of all the work I did as an intern. I’m applying the skills I gained by working in laser communications to my current work in radio communications.”
      Lindsay White, SCaN Internship Project (SIP) Intern in 2018 and 2019.NASA White works on the digital signal processing inside the Mars Sample Return mission’s radio, as well as a research and development project called Universal Space Transponder Lite, a flexible, modular radio with a broad series of potential applications. Sometimes even she is surprised by the importance of her role to NASA’s commitment to space exploration.
      “The impact is astonishing,” White said. “My work is essential to a Mars mission. Something I’m touching is going to end up on Mars.”
      The impact is astonishing. My work is essential to a Mars mission. Something I'm touching is going to end up on Mars.
      Lindsay White
      Signal Analysis Engineer at NASA's Jet Propulsion Laboratory
      White advises incoming interns to use their time in the program to develop their understanding of the agency’s personnel and projects. “SIP provides an opportunity to talk with people you otherwise wouldn’t meet,” said White. “Learning the different things NASA is working on can be even more important than hitting stretch goals on your technical project.”
      White’s advice for students considering a SIP internship is straightforward: “Do it! Even if you don’t have a technical background, there’s a spot for you at NASA.”
      By Korine Powers
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASASCaN @NASASCaN@NearSpaceNet More about the SCaN Internship Program, including how to apply Explore More
      6 min read Meet the NASA Interns Advancing Space Communications & Navigation
      NASA celebrates National Intern Day and all the interns who are shaping the future of…
      Article 12 months ago 6 min read From Quantum Optics to Increased Risk Posture: Student Innovations at NASA
      Article 6 years ago 6 min read NASA Celebrates World Quantum Day
      On today’s World Quantum Day, NASA celebrates its on-going quantum research being done across the…
      Article 1 year ago Share
      Details
      Last Updated Jul 25, 2024 EditorKatherine SchauerContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Space Communications & Navigation Program Communicating and Navigating with Missions Goddard Space Flight Center Space Communications Technology View the full article
    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. NASA and Boeing will host a news conference with mission leadership at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test aboard the International Space Station. NASA previously planned an audio-only media teleconference to host the discussion.
      The agency will provide live coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing United States-based media seeking to attend in person must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 9:30 a.m. EDT Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson or NASA’s Kennedy Space Center in Florida at ksc-newsroom@mail.nasa.gov by 10:30 a.m. the day of the event. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the briefing.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...