Jump to content

Tonight's Moon - 5th November 2022 #Shorts


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An Historic Delivery to the Moon’s South Pole on This Week @NASA – March 1, 2024
    • By NASA
      NASA Science Live: Our First Commercial Science Delivery to the Moon
    • By NASA
      For the first time in more than 50 years, NASA was able to collect data from new science instruments and technology demonstrations on the Moon. The data comes from the first successful landing of a delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
      The six instruments ceased science and technology operations eight days after landing in the lunar South Pole region aboard Intuitive Machines’ Odysseus, meeting pre-launch projected mission operations. Known as IM-1, this was the first U.S. soft landing on the Moon in decades, touching down on Feb. 22, proving commercial vendors can deliver instruments designed to expand the scientific and technical knowledge on the Moon.
      Aboard the lunar lander, NASA science instruments measured the radio noise generated by the Earth and Sun. Technology instruments, aided Intuitive Machines in navigating to the Moon and gathered distance and speed (velocity) of the lander as touched down on the lunar surface.
      “This mission includes many firsts. This is the first time in over 50 years that an American organization has landed instruments on the surface of the Moon,” said Joel Kearns, deputy association administrator for exploration of NASA’s Science Mission Directorate in Washington. “This mission also provides evidence of the Commercial Lunar Payload Services model, that NASA can purchase the service of sending instruments to the Moon and receiving their data back. Congratulations to the entire Intuitive Machines team and our NASA scientists and engineers for this next leap to advance exploration and our understanding of Earth’s nearest neighbor.”
      During transit from Earth to the Moon, all powered NASA instruments received data and completed transit checkouts.
      During descent, the Radio Frequency Mass Gauge and Navigation Doppler Lidar collected data during the lander’s powered descent and landing. After landing, NASA payload data was acquired consistent with the communications and other constraints resulting from the lander orientation. During surface operations, the Radio-wave Observations at the Lunar Surface of the Photoelectron Sheath and Lunar Node-1 were powered on, performed surface operations, and have received data. The Stereo Cameras for Lunar Plume-Surface Studies was powered on and captured images during transit and several days after landing but was not successfully commanded to capture images of the lander rocket plume interaction with the lunar surface during landing. The Laser Retroreflector Array is passive and initial estimates suggest it is accessible for laser ranging from the Lunar Reconnaissance Orbiter’s Lunar Orbiter Laser Altimeter to create a permanent location marker on the Moon. “The bottom line is every NASA instrument has met some level of their objectives, and we are very excited about that,” said Sue Lederer, project scientist for CLPS. “We all worked together and it’s the people who really made a difference and made sure we overcame challenges to this incredible success – and that is where we are at today, with successes for all of our instruments.” 
      NASA and Intuitive Machines co-hosted a news conference non Feb. 28 to provide a status update on the six NASA instruments that collected data on the IM-1 mission. Mission challenges and successes were discussed during the briefing, including more than approximately 500 megabytes of science, technology, and spacecraft data downloaded and ready for analysis by NASA and Intuitive Machines.
      The first images from this historical mission are now available and showcase the orientation of the lander along with a view of the South Pole region on the Moon. Odysseus is gently leaning into the lunar surface, preserving the ability to return scientific data. After successful transmission of images to Earth, Intuitive Machines continues to gain additional insight into Odysseus’ position on the lunar surface. All data gathered from this mission will aid Intuitive Machines in their next two CLPS contracts that NASA has previously awarded.
      For more information about the agency’s Commercial Lunar Payload Services initiative, visit: 
      https://www.nasa.gov/clps
      Odysseus’ landing captured a leg, as it performed its primary task, absorbing first contact with the lunar surface. With the lander’s liquid methane and liquid oxygen engine still throttling, it provided stability.Credit: Intuitive Machines Taken on Tuesday, Feb. 27, Odysseus captured an image using its narrow-field-of-view camera.Credit: Intuitive Machines Keep Exploring Discover More Topics From NASA
      Commercial Lunar Payload Services
      Artemis
      Commercial Space
      Humans In Space
      View the full article
    • By NASA
      Following a launch on Feb. 15, Intuitive Machines’ Odysseus lander touched down in the Moon’s south polar region on Feb. 22 and has since transmitted valuable scientific data back to Earth. Odysseus took six NASA payloads along for the ride and their data will prepare us for future human exploration of the Moon under Artemis.
      This landing marked the United States’ first lunar landing since Apollo 17, as well as the first landing as part of our Commercial Lunar Payload Services initiative, which aims to expand the lunar economy to support future crewed Artemis missions.
      Read the latest updates about Intuitive Machines’ first mission to the Moon.
      View the full article
    • By NASA
      NASA’s Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft onto an inflatable “front porch” while NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the USS San Diego practice recovery procedures using the Crew Module Test Article, during Underway Recovery Test 11 (URT-11) off the coast of San Diego, California on Sunday, Feb. 25, 2024. NASA/Jamie Peer When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen return to Earth after a nearly 10-day mission around the Moon, a joint NASA and Department of Defense team led by NASA’s Exploration Ground Systems Program will be ready to retrieve them from the Orion spacecraft and ferry them onto a naval ship in the Pacific Ocean.
      As Orion enters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 300 mph, when its system of 11 parachutes will deploy in a precise sequence to help slow the capsule and crew to a relatively gentle 20 mph for splashdown about 60 miles off the coast of California, weather permitting.
      Prior to splashdown, a team from NASA’s Johnson Space Center in Houston, called Sasquatch, will map where elements jettisoned from Orion such as the forward bay cover, drogue parachutes, and mortars, will land in the Ocean so the boats and helicopters supporting recovery stay clear of those areas.
      NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024, while his crewmates look on. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.NASA/Kenny Allen Once it is safe to approach the capsule, helicopters, and a team of Navy divers in small boats, along with NASA’s open water lead, will begin making their way to the capsule. The Navy divers then will assess the environment surrounding the capsule to make sure there are no hazards present.
      Teams will stabilize Orion before the crew exits the capsule in the open water by installing an inflatable collar. To safely retrieve the astronauts, the divers also will install an inflatable raft, called the front porch, under Orion’s side hatch to aid in astronaut retrieval from the capsule.
      “Our highly choreographed recovery operations will help ensure the final phase of NASA’s first crewed mission to the Moon in more than 50 years ends as a success,” said Lili Villareal, NASA’s landing and recovery director.
      When all four crew members are out of the capsule, the front porch is repositioned about 100 yards from Orion to allow the astronauts to be individually lifted into a helicopter and returned to the ship. Two helicopters will be deployed to retrieve the crew. The helicopters will each retrieve two crewmembers and deliver them to the deck of the naval ship.
      Once on the ship, the astronauts will be transported to a medical bay for a post-mission evaluation before flying on a helicopter from the ship back to shore and then to Johnson. Teams expect to recover the crew and deliver them to the medical bay within two hours of splashdown. If the crew returns to Earth at night, teams expect the recovery activities to take a bit longer but still must meet a requirement to have the crew in the medical bay within two hours.
      With the crew safely out of the capsule, teams will work on towing Orion into the well deck of the ship, using procedures similar to those used during Artemis I. Navy divers will secure a system of lines to the capsule via several connection points on a collar to help tow Orion inside the ship.
      NASA’s Artemis II crew members (front to back) NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen descend the well deck of the USS San Diego as NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the ship practice recovery procedures using the Crew Module Test Article, during Underway Recovery Test 11 (URT-11) off the coast of San Diego, California on Sunday, Feb. 25, 2024. When Orion is close to the vessel, an additional line attached to a pneumatic winch will be affixed to the capsule by the divers. These ropes all work together to ensure the capsule is stable as it is slowly pulled inside the ship.  A team of sailors and NASA recovery personnel inside the ship will begin manually pulling some of the lines to help align Orion with the stand it will be placed on once back on the ship.
      As the sailors are pulling on the lines, NASA technicians will operate a main winch line attached to the capsule to help bring Orion inside making for a safe and precise recovery. After Orion is on a stand, the well deck will be drained of water and the ship will begin making its way back to Naval Base San Diego. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      View the full article
  • Check out these Videos

×
×
  • Create New...